Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import json | |
| import argparse | |
| import time | |
| import io | |
| import uuid | |
| from PIL import Image | |
| from typing import List, Dict, Any, Iterator | |
| import gradio as gr | |
| from gradio import ChatMessage | |
| # Add the project root to the Python path | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir))) | |
| sys.path.insert(0, project_root) | |
| from octotools.models.initializer import Initializer | |
| from octotools.models.planner import Planner | |
| from octotools.models.memory import Memory | |
| from octotools.models.executor import Executor | |
| from octotools.models.utils import make_json_serializable | |
| from pathlib import Path | |
| from huggingface_hub import CommitScheduler | |
| # Get Huggingface token from environment variable | |
| HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
| ########### Test Huggingface Dataset ########### | |
| # Update the HuggingFace dataset constants | |
| DATASET_DIR = Path("solver_cache") # the directory to save the dataset | |
| DATASET_DIR.mkdir(parents=True, exist_ok=True) | |
| global QUERY_ID | |
| QUERY_ID = None | |
| scheduler = CommitScheduler( | |
| repo_id="lupantech/OctoTools-Gradio-Demo-User-Data", | |
| repo_type="dataset", | |
| folder_path=DATASET_DIR, | |
| path_in_repo="solver_cache", # Update path in repo | |
| token=HF_TOKEN | |
| ) | |
| def save_query_data(query_id: str, query: str, image_path: str) -> None: | |
| """Save query data to Huggingface dataset""" | |
| # Save query metadata | |
| query_cache_dir = DATASET_DIR / query_id | |
| query_cache_dir.mkdir(parents=True, exist_ok=True) | |
| query_file = query_cache_dir / "query_metadata.json" | |
| query_metadata = { | |
| "query_id": query_id, | |
| "query_text": query, | |
| "datetime": time.strftime("%Y%m%d_%H%M%S"), | |
| "image_path": image_path if image_path else None | |
| } | |
| print(f"Saving query metadata to {query_file}") | |
| with query_file.open("w") as f: | |
| json.dump(query_metadata, f, indent=4) | |
| # # NOTE: As we are using the same name for the query cache directory as the dataset directory, | |
| # # NOTE: we don't need to copy the content from the query cache directory to the query directory. | |
| # # Copy all content from root_cache_dir to query_dir | |
| # import shutil | |
| # shutil.copytree(args.root_cache_dir, query_data_dir, dirs_exist_ok=True) | |
| def save_feedback(query_id: str, feedback_type: str, feedback_text: str = None) -> None: | |
| """ | |
| Save user feedback to the query directory. | |
| Args: | |
| query_id: Unique identifier for the query | |
| feedback_type: Type of feedback ('upvote', 'downvote', or 'comment') | |
| feedback_text: Optional text feedback from user | |
| """ | |
| feedback_data_dir = DATASET_DIR / query_id | |
| feedback_data_dir.mkdir(parents=True, exist_ok=True) | |
| feedback_data = { | |
| "query_id": query_id, | |
| "feedback_type": feedback_type, | |
| "feedback_text": feedback_text, | |
| "datetime": time.strftime("%Y%m%d_%H%M%S") | |
| } | |
| # Save feedback in the query directory | |
| feedback_file = feedback_data_dir / "feedback.json" | |
| print(f"Saving feedback to {feedback_file}") | |
| # If feedback file exists, update it | |
| if feedback_file.exists(): | |
| with feedback_file.open("r") as f: | |
| existing_feedback = json.load(f) | |
| # Convert to list if it's a single feedback entry | |
| if not isinstance(existing_feedback, list): | |
| existing_feedback = [existing_feedback] | |
| existing_feedback.append(feedback_data) | |
| feedback_data = existing_feedback | |
| # Write feedback data | |
| with feedback_file.open("w") as f: | |
| json.dump(feedback_data, f, indent=4) | |
| def save_steps_data(query_id: str, memory: Memory) -> None: | |
| """Save steps data to Huggingface dataset""" | |
| steps_file = DATASET_DIR / query_id / "all_steps.json" | |
| memory_actions = memory.get_actions() | |
| memory_actions = make_json_serializable(memory_actions) # NOTE: make the memory actions serializable | |
| print("Memory actions: ", memory_actions) | |
| with steps_file.open("w") as f: | |
| json.dump(memory_actions, f, indent=4) | |
| def save_module_data(query_id: str, key: str, value: Any) -> None: | |
| """Save module data to Huggingface dataset""" | |
| try: | |
| key = key.replace(" ", "_").lower() | |
| module_file = DATASET_DIR / query_id / f"{key}.json" | |
| value = make_json_serializable(value) # NOTE: make the value serializable | |
| with module_file.open("a") as f: | |
| json.dump(value, f, indent=4) | |
| except Exception as e: | |
| print(f"Warning: Failed to save as JSON: {e}") | |
| # Fallback to saving as text file | |
| text_file = DATASET_DIR / query_id / f"{key}.txt" | |
| try: | |
| with text_file.open("a") as f: | |
| f.write(str(value) + "\n") | |
| print(f"Successfully saved as text file: {text_file}") | |
| except Exception as e: | |
| print(f"Error: Failed to save as text file: {e}") | |
| ########### End of Test Huggingface Dataset ########### | |
| class Solver: | |
| def __init__( | |
| self, | |
| planner, | |
| memory, | |
| executor, | |
| task: str, | |
| task_description: str, | |
| output_types: str = "base,final,direct", | |
| index: int = 0, | |
| verbose: bool = True, | |
| max_steps: int = 10, | |
| max_time: int = 60, | |
| query_cache_dir: str = "solver_cache" | |
| ): | |
| self.planner = planner | |
| self.memory = memory | |
| self.executor = executor | |
| self.task = task | |
| self.task_description = task_description | |
| self.index = index | |
| self.verbose = verbose | |
| self.max_steps = max_steps | |
| self.max_time = max_time | |
| self.query_cache_dir = query_cache_dir | |
| self.output_types = output_types.lower().split(',') | |
| assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'." | |
| def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, api_key: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]: | |
| """ | |
| Streams intermediate thoughts and final responses for the problem-solving process based on user input. | |
| Args: | |
| user_query (str): The text query input from the user. | |
| user_image (Image.Image): The uploaded image from the user (PIL Image object). | |
| messages (list): A list of ChatMessage objects to store the streamed responses. | |
| """ | |
| if user_image: | |
| # # Convert PIL Image to bytes (for processing) | |
| # img_bytes_io = io.BytesIO() | |
| # user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes | |
| # img_bytes = img_bytes_io.getvalue() # Get bytes | |
| # Use image paths instead of bytes, | |
| # os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True) | |
| # img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg') | |
| img_path = os.path.join(self.query_cache_dir, 'query_image.jpg') | |
| user_image.save(img_path) | |
| else: | |
| img_path = None | |
| # Set tool cache directory | |
| _tool_cache_dir = os.path.join(self.query_cache_dir, "tool_cache") # NOTE: This is the directory for tool cache | |
| self.executor.set_query_cache_dir(_tool_cache_dir) # NOTE: set query cache directory | |
| # Step 1: Display the received inputs | |
| if user_image: | |
| messages.append(ChatMessage(role="assistant", content=f"### 📝 Received Query:\n{user_query}\n### 🖼️ Image Uploaded")) | |
| else: | |
| messages.append(ChatMessage(role="assistant", content=f"### 📝 Received Query:\n{user_query}")) | |
| yield messages | |
| # # Step 2: Add "thinking" status while processing | |
| # messages.append(ChatMessage( | |
| # role="assistant", | |
| # content="", | |
| # metadata={"title": "⏳ Thinking: Processing input..."} | |
| # )) | |
| # [Step 3] Initialize problem-solving state | |
| start_time = time.time() | |
| step_count = 0 | |
| json_data = {"query": user_query, "image": "Image received as bytes"} | |
| messages.append(ChatMessage(role="assistant", content="<br>")) | |
| messages.append(ChatMessage(role="assistant", content="### 🐙 Reasoning Steps from OctoTools (Deep Thinking...)")) | |
| yield messages | |
| # [Step 4] Query Analysis | |
| query_analysis = self.planner.analyze_query(user_query, img_path) | |
| json_data["query_analysis"] = query_analysis | |
| query_analysis = query_analysis.replace("Concise Summary:", "**Concise Summary:**\n") | |
| query_analysis = query_analysis.replace("Required Skills:", "**Required Skills:**") | |
| query_analysis = query_analysis.replace("Relevant Tools:", "**Relevant Tools:**") | |
| query_analysis = query_analysis.replace("Additional Considerations:", "**Additional Considerations:**") | |
| messages.append(ChatMessage(role="assistant", | |
| content=f"{query_analysis}", | |
| metadata={"title": "### 🔍 Step 0: Query Analysis"})) | |
| yield messages | |
| # Save the query analysis data | |
| query_analysis_data = { | |
| "query_analysis": query_analysis, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, "step_0_query_analysis", query_analysis_data) | |
| # Execution loop (similar to your step-by-step solver) | |
| while step_count < self.max_steps and (time.time() - start_time) < self.max_time: | |
| step_count += 1 | |
| messages.append(ChatMessage(role="OctoTools", | |
| content=f"Generating the {step_count}-th step...", | |
| metadata={"title": f"🔄 Step {step_count}"})) | |
| yield messages | |
| # [Step 5] Generate the next step | |
| next_step = self.planner.generate_next_step( | |
| user_query, img_path, query_analysis, self.memory, step_count, self.max_steps | |
| ) | |
| context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step) | |
| step_data = { | |
| "step_count": step_count, | |
| "context": context, | |
| "sub_goal": sub_goal, | |
| "tool_name": tool_name, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, f"step_{step_count}_action_prediction", step_data) | |
| # Display the step information | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"**Context:** {context}\n\n**Sub-goal:** {sub_goal}\n\n**Tool:** `{tool_name}`", | |
| metadata={"title": f"### 🎯 Step {step_count}: Action Prediction ({tool_name})"})) | |
| yield messages | |
| # Handle tool execution or errors | |
| if tool_name not in self.planner.available_tools: | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"⚠️ Error: Tool '{tool_name}' is not available.")) | |
| yield messages | |
| continue | |
| # [Step 6-7] Generate and execute the tool command | |
| tool_command = self.executor.generate_tool_command( | |
| user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name] | |
| ) | |
| analysis, explanation, command = self.executor.extract_explanation_and_command(tool_command) | |
| result = self.executor.execute_tool_command(tool_name, command) | |
| result = make_json_serializable(result) | |
| # Display the ommand generation information | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"**Analysis:** {analysis}\n\n**Explanation:** {explanation}\n\n**Command:**\n```python\n{command}\n```", | |
| metadata={"title": f"### 📝 Step {step_count}: Command Generation ({tool_name})"})) | |
| yield messages | |
| # Save the command generation data | |
| command_generation_data = { | |
| "analysis": analysis, | |
| "explanation": explanation, | |
| "command": command, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, f"step_{step_count}_command_generation", command_generation_data) | |
| # Display the command execution result | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"**Result:**\n```json\n{json.dumps(result, indent=4)}\n```", | |
| # content=f"**Result:**\n```json\n{result}\n```", | |
| metadata={"title": f"### 🛠️ Step {step_count}: Command Execution ({tool_name})"})) | |
| yield messages | |
| # Save the command execution data | |
| command_execution_data = { | |
| "result": result, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, f"step_{step_count}_command_execution", command_execution_data) | |
| # [Step 8] Memory update and stopping condition | |
| self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result) | |
| stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory) | |
| conclusion = self.planner.extract_conclusion(stop_verification) | |
| # Save the context verification data | |
| context_verification_data = { | |
| "stop_verification": stop_verification, | |
| "conclusion": conclusion, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, f"step_{step_count}_context_verification", context_verification_data) | |
| # Display the context verification result | |
| conclusion_emoji = "✅" if conclusion == 'STOP' else "🛑" | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"**Analysis:** {analysis}\n\n**Conclusion:** `{conclusion}` {conclusion_emoji}", | |
| metadata={"title": f"### 🤖 Step {step_count}: Context Verification"})) | |
| yield messages | |
| if conclusion == 'STOP': | |
| break | |
| # Step 7: Generate Final Output (if needed) | |
| if 'direct' in self.output_types: | |
| messages.append(ChatMessage(role="assistant", content="<br>")) | |
| direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory) | |
| messages.append(ChatMessage(role="assistant", content=f"### 🐙 Final Answer:\n{direct_output}")) | |
| yield messages | |
| # Save the direct output data | |
| direct_output_data = { | |
| "direct_output": direct_output, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, "direct_output", direct_output_data) | |
| if 'final' in self.output_types: | |
| final_output = self.planner.generate_final_output(user_query, img_path, self.memory) # Disabled visibility for now | |
| # messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}")) | |
| # yield messages | |
| # Save the final output data | |
| final_output_data = { | |
| "final_output": final_output, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, "final_output", final_output_data) | |
| # Step 8: Completion Message | |
| messages.append(ChatMessage(role="assistant", content="<br>")) | |
| messages.append(ChatMessage(role="assistant", content="### ✅ Query Solved!")) | |
| messages.append(ChatMessage(role="assistant", content="How do you like the output from OctoTools 🐙? Please give us your feedback below. \n\n👍 If the answer is correct or the reasoning steps are helpful, please upvote the output. \n👎 If it is incorrect or the reasoning steps are not helpful, please downvote the output. \n💬 If you have any suggestions or comments, please leave them below.\n\nThank you for using OctoTools! 🐙")) | |
| yield messages | |
| def parse_arguments(): | |
| parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.") | |
| parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.") | |
| parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.") | |
| parser.add_argument("--task", default="minitoolbench", help="Task to run.") | |
| parser.add_argument("--task_description", default="", help="Task description.") | |
| parser.add_argument( | |
| "--output_types", | |
| default="base,final,direct", | |
| help="Comma-separated list of required outputs (base,final,direct)" | |
| ) | |
| parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.") | |
| parser.add_argument("--root_cache_dir", default="solver_cache", help="Path to solver cache directory.") | |
| parser.add_argument("--query_id", default=None, help="Query ID.") | |
| parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.") | |
| # NOTE: Add new arguments | |
| parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).") | |
| parser.add_argument("--openai_api_source", default="we_provided", choices=["we_provided", "user_provided"], help="Source of OpenAI API key.") | |
| return parser.parse_args() | |
| def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_key=None, llm_model_engine=None, enabled_tools=None): | |
| """ | |
| Wrapper function to connect the solver to Gradio. | |
| Streams responses from `solver.stream_solve_user_problem` for real-time UI updates. | |
| """ | |
| # Generate Unique Query ID (Date and first 8 characters of UUID) | |
| query_id = time.strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())[:8] # e.g, 20250217_062225_612f2474 | |
| print(f"Query ID: {query_id}") | |
| # NOTE: update the global variable to save the query ID | |
| global QUERY_ID | |
| QUERY_ID = query_id | |
| # Create a directory for the query ID | |
| query_cache_dir = os.path.join(DATASET_DIR.name, query_id) # NOTE | |
| os.makedirs(query_cache_dir, exist_ok=True) | |
| if api_key is None: | |
| return [["assistant", "⚠️ Error: OpenAI API Key is required."]] | |
| # Save the query data | |
| save_query_data( | |
| query_id=query_id, | |
| query=user_query, | |
| image_path=os.path.join(query_cache_dir, 'query_image.jpg') if user_image else None | |
| ) | |
| # # Initialize Tools | |
| # enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else [] | |
| # # Hack enabled_tools | |
| # enabled_tools = ["Generalist_Solution_Generator_Tool"] | |
| # Instantiate Initializer | |
| initializer = Initializer( | |
| enabled_tools=enabled_tools, | |
| model_string=llm_model_engine, | |
| api_key=api_key | |
| ) | |
| # Instantiate Planner | |
| planner = Planner( | |
| llm_engine_name=llm_model_engine, | |
| toolbox_metadata=initializer.toolbox_metadata, | |
| available_tools=initializer.available_tools, | |
| api_key=api_key | |
| ) | |
| # Instantiate Memory | |
| memory = Memory() | |
| # Instantiate Executor | |
| executor = Executor( | |
| llm_engine_name=llm_model_engine, | |
| query_cache_dir=query_cache_dir, # NOTE | |
| enable_signal=False, | |
| api_key=api_key | |
| ) | |
| # Instantiate Solver | |
| solver = Solver( | |
| planner=planner, | |
| memory=memory, | |
| executor=executor, | |
| task=args.task, | |
| task_description=args.task_description, | |
| output_types=args.output_types, # Add new parameter | |
| verbose=args.verbose, | |
| max_steps=max_steps, | |
| max_time=max_time, | |
| query_cache_dir=query_cache_dir # NOTE | |
| ) | |
| if solver is None: | |
| return [["assistant", "⚠️ Error: Solver is not initialized. Please restart the application."]] | |
| messages = [] # Initialize message list | |
| for message_batch in solver.stream_solve_user_problem(user_query, user_image, api_key, messages): | |
| yield [msg for msg in message_batch] # Ensure correct format for Gradio Chatbot | |
| # Save steps | |
| save_steps_data( | |
| query_id=query_id, | |
| memory=memory | |
| ) | |
| def main(args): | |
| #################### Gradio Interface #################### | |
| with gr.Blocks() as demo: | |
| # with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| # Theming https://www.gradio.app/guides/theming-guide | |
| gr.Markdown("# 🐙 Chat with OctoTools: An Agentic Framework with Extensive Tools for Complex Reasoning") # Title | |
| # gr.Markdown("[](https://octotools.github.io/)") # Title | |
| gr.Markdown(""" | |
| **OctoTools** is a training-free, user-friendly, and easily extensible open-source agentic framework designed to tackle complex reasoning across diverse domains. | |
| It introduces standardized **tool cards** to encapsulate tool functionality, a **planner** for both high-level and low-level planning, and an **executor** to carry out tool usage. | |
| [Website](https://octotools.github.io/) | | |
| [Github](https://github.com/octotools/octotools) | | |
| [arXiv](https://arxiv.org/abs/2502.11271) | | |
| [Paper](https://arxiv.org/pdf/2502.11271) | | |
| [Daily Paper](https://huggingface.co/papers/2502.11271) | | |
| [Tool Cards](https://octotools.github.io/#tool-cards) | | |
| [Example Visualizations](https://octotools.github.io/#visualization) | | |
| [Coverage](https://x.com/lupantech/status/1892260474320015861) | | |
| [Discord](https://discord.gg/NMJx66DC) | |
| """) | |
| with gr.Row(): | |
| # Left column for settings | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| if args.openai_api_source == "user_provided": | |
| print("Using API key from user input.") | |
| api_key = gr.Textbox( | |
| show_label=True, | |
| placeholder="Your API key will not be stored in any way.", | |
| type="password", | |
| label="OpenAI API Key", | |
| # container=False | |
| ) | |
| else: | |
| print(f"Using local API key from environment variable: ...{os.getenv('OPENAI_API_KEY')[-4:]}") | |
| api_key = gr.Textbox( | |
| value=os.getenv("OPENAI_API_KEY"), | |
| visible=False, | |
| interactive=False | |
| ) | |
| with gr.Row(): | |
| llm_model_engine = gr.Dropdown( | |
| choices=["gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13", | |
| "gpt-4o-mini", "gpt-4o-mini-2024-07-18"], | |
| value="gpt-4o", | |
| label="LLM Model" | |
| ) | |
| with gr.Row(): | |
| max_steps = gr.Slider(value=8, minimum=1, maximum=10, step=1, label="Max Steps") | |
| with gr.Row(): | |
| max_time = gr.Slider(value=240, minimum=60, maximum=300, step=30, label="Max Time (seconds)") | |
| with gr.Row(): | |
| # Container for tools section | |
| with gr.Column(): | |
| # First row for checkbox group | |
| enabled_tools = gr.CheckboxGroup( | |
| choices=all_tools, | |
| value=all_tools, | |
| label="Selected Tools", | |
| ) | |
| # Second row for buttons | |
| with gr.Row(): | |
| enable_all_btn = gr.Button("Select All Tools") | |
| disable_all_btn = gr.Button("Clear All Tools") | |
| # Add click handlers for the buttons | |
| enable_all_btn.click( | |
| lambda: all_tools, | |
| outputs=enabled_tools | |
| ) | |
| disable_all_btn.click( | |
| lambda: [], | |
| outputs=enabled_tools | |
| ) | |
| with gr.Column(scale=5): | |
| with gr.Row(): | |
| # Middle column for the query | |
| with gr.Column(scale=2): | |
| user_image = gr.Image(type="pil", label="Upload an Image (Optional)", height=500) # Accepts multiple formats | |
| with gr.Row(): | |
| user_query = gr.Textbox( placeholder="Type your question here...", label="Question (Required)") | |
| with gr.Row(): | |
| run_button = gr.Button("🐙 Submit and Run", variant="primary") # Run button with blue color | |
| # Right column for the output | |
| with gr.Column(scale=3): | |
| chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output", height=500) | |
| # TODO: Add actions to the buttons | |
| with gr.Row(elem_id="buttons") as button_row: | |
| upvote_btn = gr.Button(value="👍 Upvote", interactive=True, variant="primary") # TODO | |
| downvote_btn = gr.Button(value="👎 Downvote", interactive=True, variant="primary") # TODO | |
| # stop_btn = gr.Button(value="⛔️ Stop", interactive=True) # TODO | |
| # clear_btn = gr.Button(value="🗑️ Clear history", interactive=True) # TODO | |
| # TODO: Add comment textbox | |
| with gr.Row(): | |
| comment_textbox = gr.Textbox(value="", | |
| placeholder="Feel free to add any comments here. Thanks for using OctoTools!", | |
| label="💬 Comment (Type and press Enter to submit.)", interactive=True) # TODO | |
| # Update the button click handlers | |
| upvote_btn.click( | |
| fn=lambda: save_feedback(QUERY_ID, "upvote"), | |
| inputs=[], | |
| outputs=[] | |
| ) | |
| downvote_btn.click( | |
| fn=lambda: save_feedback(QUERY_ID, "downvote"), | |
| inputs=[], | |
| outputs=[] | |
| ) | |
| # Add handler for comment submission | |
| comment_textbox.submit( | |
| fn=lambda comment: save_feedback(QUERY_ID, "comment", comment), | |
| inputs=[comment_textbox], | |
| outputs=[] | |
| ) | |
| # Bottom row for examples | |
| with gr.Row(): | |
| with gr.Column(scale=5): | |
| gr.Markdown("") | |
| gr.Markdown(""" | |
| ## 💡 Try these examples with suggested tools. | |
| """) | |
| gr.Examples( | |
| examples=[ | |
| # [ None, "Who is the president of the United States?", ["Google_Search_Tool"]], | |
| [ "Logical Reasoning", | |
| None, | |
| "How many r letters are in the word strawberry?", | |
| ["Generalist_Solution_Generator_Tool", "Python_Code_Generator_Tool"], | |
| "3"], | |
| [ "Web Search", | |
| None, | |
| "What's up with the upcoming Apple Launch? Any rumors?", | |
| ["Generalist_Solution_Generator_Tool", "Google_Search_Tool", "Wikipedia_Knowledge_Searcher_Tool", "URL_Text_Extractor_Tool"], | |
| "Apple's February 19, 2025, event may feature the iPhone SE 4, new iPads, accessories, and rumored iPhone 17 and Apple Watch Series 10."], | |
| [ "Arithmetic Reasoning", | |
| None, | |
| "Which is bigger, 9.11 or 9.9?", | |
| ["Generalist_Solution_Generator_Tool", "Python_Code_Generator_Tool"], | |
| "9.9"], | |
| [ "Multi-step Reasoning", | |
| None, | |
| "Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic operations (+, -, ×, /) and parentheses. For example, one solution for [1, 2, 3, 4] is (1+2+3)×4.", ["Python_Code_Generator_Tool"], | |
| "((1 + 1) * 9) + 6"], | |
| [ "Scientific Research", | |
| None, | |
| "What are the research trends in tool agents with large language models for scientific discovery? Please consider the latest literature from ArXiv, PubMed, Nature, and news sources.", ["ArXiv_Paper_Searcher_Tool", "Pubmed_Search_Tool", "Nature_News_Fetcher_Tool"], | |
| "Open-ended question. No reference answer."], | |
| [ "Visual Perception", | |
| "examples/baseball.png", | |
| "How many baseballs are there?", | |
| ["Object_Detector_Tool"], | |
| "20"], | |
| [ "Visual Reasoning", | |
| "examples/rotting_kiwi.png", | |
| "You are given a 3 x 3 grid in which each cell can contain either no kiwi, one fresh kiwi, or one rotten kiwi. Every minute, any fresh kiwi that is 4-directionally adjacent to a rotten kiwi also becomes rotten. What is the minimum number of minutes that must elapse until no cell has a fresh kiwi?", ["Image_Captioner_Tool"], | |
| "4 minutes"], | |
| [ "Medical Image Analysis", | |
| "examples/lung.jpg", | |
| "What is the organ on the left side of this image?", | |
| ["Image_Captioner_Tool", "Relevant_Patch_Zoomer_Tool"], | |
| "Lung"], | |
| [ "Pathology Diagnosis", | |
| "examples/pathology.jpg", | |
| "What are the cell types in this image?", | |
| ["Generalist_Solution_Generator_Tool", "Image_Captioner_Tool", "Relevant_Patch_Zoomer_Tool"], | |
| "Need expert insights."], | |
| ], | |
| inputs=[gr.Textbox(label="Category", visible=False), user_image, user_query, enabled_tools, gr.Textbox(label="Reference Answer", visible=False)], | |
| # label="Try these examples with suggested tools." | |
| ) | |
| # Link button click to function | |
| run_button.click( | |
| fn=solve_problem_gradio, | |
| inputs=[user_query, user_image, max_steps, max_time, api_key, llm_model_engine, enabled_tools], | |
| outputs=chatbot_output | |
| ) | |
| #################### Gradio Interface #################### | |
| # Launch the Gradio app | |
| demo.launch(ssr_mode=False) | |
| if __name__ == "__main__": | |
| args = parse_arguments() | |
| # All tools | |
| all_tools = [ | |
| "Generalist_Solution_Generator_Tool", | |
| "Image_Captioner_Tool", | |
| "Object_Detector_Tool", | |
| "Relevant_Patch_Zoomer_Tool", | |
| "Text_Detector_Tool", | |
| "Python_Code_Generator_Tool", | |
| "ArXiv_Paper_Searcher_Tool", | |
| "Google_Search_Tool", | |
| "Nature_News_Fetcher_Tool", | |
| "Pubmed_Search_Tool", | |
| "URL_Text_Extractor_Tool", | |
| "Wikipedia_Knowledge_Searcher_Tool" | |
| ] | |
| args.enabled_tools = ",".join(all_tools) | |
| # NOTE: Use the same name for the query cache directory as the dataset directory | |
| args.root_cache_dir = DATASET_DIR.name | |
| main(args) | |