Update app.py
Browse files
app.py
CHANGED
|
@@ -3,9 +3,9 @@ import pandas as pd
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
import sqlite3
|
| 5 |
|
| 6 |
-
# Load model
|
| 7 |
model_name = "mrm8488/t5-base-finetuned-wikiSQL"
|
| 8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) #
|
| 9 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 10 |
|
| 11 |
def nl_to_sql(question, file):
|
|
@@ -18,15 +18,14 @@ def nl_to_sql(question, file):
|
|
| 18 |
conn = sqlite3.connect(":memory:")
|
| 19 |
df.to_sql("data_table", conn, index=False, if_exists="replace")
|
| 20 |
|
| 21 |
-
# Schema description
|
| 22 |
schema = ", ".join(df.columns)
|
| 23 |
text = f"translate English to SQL: {question} | table columns: {schema}"
|
| 24 |
|
|
|
|
| 25 |
inputs = tokenizer(text, return_tensors="pt")
|
| 26 |
outputs = model.generate(**inputs, max_length=256)
|
| 27 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 28 |
|
| 29 |
-
# Execute SQL query
|
| 30 |
try:
|
| 31 |
result = pd.read_sql_query(sql_query, conn)
|
| 32 |
except Exception as e:
|
|
@@ -45,8 +44,8 @@ iface = gr.Interface(
|
|
| 45 |
gr.Textbox(label="Generated SQL Query"),
|
| 46 |
gr.Dataframe(label="Result Preview")
|
| 47 |
],
|
| 48 |
-
title="🧠
|
| 49 |
-
description="Upload a CSV and ask questions in plain English. Generates SQL and shows results
|
| 50 |
)
|
| 51 |
|
| 52 |
if __name__ == "__main__":
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
import sqlite3
|
| 5 |
|
| 6 |
+
# Load model with slow tokenizer explicitly
|
| 7 |
model_name = "mrm8488/t5-base-finetuned-wikiSQL"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, local_files_only=False) # Force slow tokenizer
|
| 9 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 10 |
|
| 11 |
def nl_to_sql(question, file):
|
|
|
|
| 18 |
conn = sqlite3.connect(":memory:")
|
| 19 |
df.to_sql("data_table", conn, index=False, if_exists="replace")
|
| 20 |
|
|
|
|
| 21 |
schema = ", ".join(df.columns)
|
| 22 |
text = f"translate English to SQL: {question} | table columns: {schema}"
|
| 23 |
|
| 24 |
+
# Tokenize with slow tokenizer
|
| 25 |
inputs = tokenizer(text, return_tensors="pt")
|
| 26 |
outputs = model.generate(**inputs, max_length=256)
|
| 27 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 28 |
|
|
|
|
| 29 |
try:
|
| 30 |
result = pd.read_sql_query(sql_query, conn)
|
| 31 |
except Exception as e:
|
|
|
|
| 44 |
gr.Textbox(label="Generated SQL Query"),
|
| 45 |
gr.Dataframe(label="Result Preview")
|
| 46 |
],
|
| 47 |
+
title="🧠 NL to SQL Generator",
|
| 48 |
+
description="Upload a CSV and ask questions in plain English. Generates SQL and shows results."
|
| 49 |
)
|
| 50 |
|
| 51 |
if __name__ == "__main__":
|