Omkar1872 commited on
Commit
59cae62
·
verified ·
1 Parent(s): e8cfc3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -47
app.py CHANGED
@@ -1,56 +1,28 @@
1
  import gradio as gr
2
- import pandas as pd
3
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
- import sqlite3
5
-
6
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
7
 
 
8
  model_name = "mrm8488/t5-base-finetuned-wikiSQL"
9
 
10
- # Force slow tokenizer
11
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
12
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
13
 
14
-
15
- def nl_to_sql(question, file):
16
- try:
17
- df = pd.read_csv(file.name)
18
- except Exception as e:
19
- return f"Error reading CSV: {e}", pd.DataFrame()
20
-
21
- # Create SQLite DB
22
- conn = sqlite3.connect(":memory:")
23
- df.to_sql("data_table", conn, index=False, if_exists="replace")
24
-
25
- schema = ", ".join(df.columns)
26
- text = f"translate English to SQL: {question} | table columns: {schema}"
27
-
28
- # Tokenize with slow tokenizer
29
- inputs = tokenizer(text, return_tensors="pt")
30
- outputs = model.generate(**inputs, max_length=256)
31
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
32
-
33
- try:
34
- result = pd.read_sql_query(sql_query, conn)
35
- except Exception as e:
36
- result = pd.DataFrame({"Error": [str(e)]})
37
-
38
- conn.close()
39
- return sql_query, result.head()
40
-
41
- iface = gr.Interface(
42
- fn=nl_to_sql,
43
- inputs=[
44
- gr.Textbox(label="Ask your question (Natural Language)", placeholder="e.g., Show customers older than 30"),
45
- gr.File(label="Upload your CSV file")
46
- ],
47
- outputs=[
48
- gr.Textbox(label="Generated SQL Query"),
49
- gr.Dataframe(label="Result Preview")
50
- ],
51
- title="🧠 NL to SQL Generator",
52
- description="Upload a CSV and ask questions in plain English. Generates SQL and shows results."
53
- )
54
-
55
- if __name__ == "__main__":
56
- iface.launch()
 
1
  import gradio as gr
 
 
 
 
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
 
4
+ # Public model fine-tuned on WikiSQL
5
  model_name = "mrm8488/t5-base-finetuned-wikiSQL"
6
 
7
+ # Force slow tokenizer to avoid tiktoken issues
8
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
9
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
10
 
11
+ def nl_to_sql(nl_query):
12
+ # Add prefix required for this model
13
+ input_text = "translate English to SQL: " + nl_query
14
+ inputs = tokenizer.encode(input_text, return_tensors="pt")
15
+ outputs = model.generate(inputs, max_length=512)
 
 
 
 
 
 
 
 
 
 
 
 
16
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
17
+ return sql_query
18
+
19
+ # Gradio UI
20
+ with gr.Blocks() as demo:
21
+ gr.Markdown("## 🧠 Natural Language to SQL Generator")
22
+ with gr.Row():
23
+ nl_input = gr.Textbox(label="Enter your query in English")
24
+ sql_output = gr.Textbox(label="Generated SQL")
25
+ btn = gr.Button("Generate SQL")
26
+ btn.click(nl_to_sql, inputs=nl_input, outputs=sql_output)
27
+
28
+ demo.launch()