Upload 3 files
Browse files- README.md +27 -13
- app.py +56 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,13 +1,27 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# π§ Natural Language β SQL Generator App
|
| 2 |
+
|
| 3 |
+
This app converts **natural language questions** into **SQL queries** and runs them directly on your uploaded CSV data.
|
| 4 |
+
|
| 5 |
+
## π Features
|
| 6 |
+
- Upload any CSV file
|
| 7 |
+
- Ask questions in plain English
|
| 8 |
+
- Auto-generates SQL queries
|
| 9 |
+
- Executes SQL and shows the result instantly
|
| 10 |
+
- Runs 100% on Hugging Face β **no API keys required**
|
| 11 |
+
|
| 12 |
+
## π§© Tech Stack
|
| 13 |
+
- Python π
|
| 14 |
+
- Transformers (Hugging Face)
|
| 15 |
+
- Gradio (UI)
|
| 16 |
+
- SQLite + Pandas
|
| 17 |
+
|
| 18 |
+
## π§ Model Used
|
| 19 |
+
[`mrm8488/t5-base-finetuned-wikiSQL`](https://huggingface.co/mrm8488/t5-base-finetuned-wikiSQL)
|
| 20 |
+
|
| 21 |
+
## πͺ Example
|
| 22 |
+
**Input:**
|
| 23 |
+
> Show employees older than 25
|
| 24 |
+
|
| 25 |
+
**Output SQL:**
|
| 26 |
+
```sql
|
| 27 |
+
SELECT * FROM data_table WHERE age > 25;
|
app.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 4 |
+
import sqlite3
|
| 5 |
+
|
| 6 |
+
# Load model and tokenizer
|
| 7 |
+
model_name = "mrm8488/t5-base-finetuned-wikiSQL"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 10 |
+
|
| 11 |
+
def generate_sql_query(natural_language, data):
|
| 12 |
+
# Load uploaded CSV
|
| 13 |
+
df = pd.read_csv(data.name)
|
| 14 |
+
|
| 15 |
+
# Create in-memory SQLite DB
|
| 16 |
+
conn = sqlite3.connect(":memory:")
|
| 17 |
+
df.to_sql("data_table", conn, index=False, if_exists="replace")
|
| 18 |
+
|
| 19 |
+
# Create schema description
|
| 20 |
+
schema = ", ".join([f"{col}" for col in df.columns])
|
| 21 |
+
|
| 22 |
+
# Combine user query and schema
|
| 23 |
+
input_text = f"translate English to SQL: {natural_language} | table columns: {schema}"
|
| 24 |
+
|
| 25 |
+
# Generate SQL query
|
| 26 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 27 |
+
outputs = model.generate(**inputs, max_length=256)
|
| 28 |
+
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
# Execute the generated SQL query
|
| 32 |
+
result_df = pd.read_sql_query(sql_query, conn)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
result_df = pd.DataFrame({"Error": [str(e)]})
|
| 35 |
+
|
| 36 |
+
conn.close()
|
| 37 |
+
return sql_query, result_df.head()
|
| 38 |
+
|
| 39 |
+
# Gradio UI
|
| 40 |
+
iface = gr.Interface(
|
| 41 |
+
fn=generate_sql_query,
|
| 42 |
+
inputs=[
|
| 43 |
+
gr.Textbox(label="Enter your question (Natural Language)", placeholder="e.g., Show customers with age > 30"),
|
| 44 |
+
gr.File(label="Upload CSV dataset")
|
| 45 |
+
],
|
| 46 |
+
outputs=[
|
| 47 |
+
gr.Textbox(label="Generated SQL Query"),
|
| 48 |
+
gr.Dataframe(label="Query Result")
|
| 49 |
+
],
|
| 50 |
+
title="π§ Natural Language to SQL Generator",
|
| 51 |
+
description="Upload a CSV file and ask questions in plain English. The app converts them into SQL and shows the result.",
|
| 52 |
+
allow_flagging="never"
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
if __name__ == "__main__":
|
| 56 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.41.2
|
| 2 |
+
torch
|
| 3 |
+
gradio
|
| 4 |
+
pandas
|
| 5 |
+
sqlite3-binary
|