Spaces:
Paused
Paused
| import torch | |
| from torch import nn, einsum | |
| import torch.nn.functional as F | |
| import torch.distributed as distributed | |
| from torch.cuda.amp import autocast | |
| from einops import rearrange, repeat | |
| from contextlib import contextmanager | |
| def exists(val): | |
| return val is not None | |
| def default(val, d): | |
| return val if exists(val) else d | |
| def noop(*args, **kwargs): | |
| pass | |
| def l2norm(t): | |
| return F.normalize(t, p = 2, dim = -1) | |
| def log(t, eps = 1e-20): | |
| return torch.log(t.clamp(min = eps)) | |
| def uniform_init(*shape): | |
| t = torch.empty(shape) | |
| nn.init.kaiming_uniform_(t) | |
| return t | |
| def gumbel_noise(t): | |
| noise = torch.zeros_like(t).uniform_(0, 1) | |
| return -log(-log(noise)) | |
| def gumbel_sample(t, temperature = 1., dim = -1): | |
| if temperature == 0: | |
| return t.argmax(dim = dim) | |
| return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim) | |
| def ema_inplace(moving_avg, new, decay): | |
| moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay)) | |
| def laplace_smoothing(x, n_categories, eps = 1e-5): | |
| return (x + eps) / (x.sum() + n_categories * eps) | |
| def sample_vectors(samples, num): | |
| num_samples, device = samples.shape[0], samples.device | |
| if num_samples >= num: | |
| indices = torch.randperm(num_samples, device = device)[:num] | |
| else: | |
| indices = torch.randint(0, num_samples, (num,), device = device) | |
| return samples[indices] | |
| def batched_sample_vectors(samples, num): | |
| return torch.stack([sample_vectors(sample, num) for sample in samples.unbind(dim = 0)], dim = 0) | |
| def pad_shape(shape, size, dim = 0): | |
| return [size if i == dim else s for i, s in enumerate(shape)] | |
| def sample_multinomial(total_count, probs): | |
| device = probs.device | |
| probs = probs.cpu() | |
| total_count = probs.new_full((), total_count) | |
| remainder = probs.new_ones(()) | |
| sample = torch.empty_like(probs, dtype = torch.long) | |
| for i, p in enumerate(probs): | |
| s = torch.binomial(total_count, p / remainder) | |
| sample[i] = s | |
| total_count -= s | |
| remainder -= p | |
| return sample.to(device) | |
| def all_gather_sizes(x, dim): | |
| size = torch.tensor(x.shape[dim], dtype = torch.long, device = x.device) | |
| all_sizes = [torch.empty_like(size) for _ in range(distributed.get_world_size())] | |
| distributed.all_gather(all_sizes, size) | |
| return torch.stack(all_sizes) | |
| def all_gather_variably_sized(x, sizes, dim = 0): | |
| rank = distributed.get_rank() | |
| all_x = [] | |
| for i, size in enumerate(sizes): | |
| t = x if i == rank else x.new_empty(pad_shape(x.shape, size, dim)) | |
| distributed.broadcast(t, src = i, async_op = True) | |
| all_x.append(t) | |
| distributed.barrier() | |
| return all_x | |
| def sample_vectors_distributed(local_samples, num): | |
| local_samples = rearrange(local_samples, '1 ... -> ...') | |
| rank = distributed.get_rank() | |
| all_num_samples = all_gather_sizes(local_samples, dim = 0) | |
| if rank == 0: | |
| samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum()) | |
| else: | |
| samples_per_rank = torch.empty_like(all_num_samples) | |
| distributed.broadcast(samples_per_rank, src = 0) | |
| samples_per_rank = samples_per_rank.tolist() | |
| local_samples = sample_vectors(local_samples, samples_per_rank[rank]) | |
| all_samples = all_gather_variably_sized(local_samples, samples_per_rank, dim = 0) | |
| out = torch.cat(all_samples, dim = 0) | |
| return rearrange(out, '... -> 1 ...') | |
| def batched_bincount(x, *, minlength): | |
| batch, dtype, device = x.shape[0], x.dtype, x.device | |
| target = torch.zeros(batch, minlength, dtype = dtype, device = device) | |
| values = torch.ones_like(x) | |
| target.scatter_add_(-1, x, values) | |
| return target | |
| def kmeans( | |
| samples, | |
| num_clusters, | |
| num_iters = 10, | |
| use_cosine_sim = False, | |
| sample_fn = batched_sample_vectors, | |
| all_reduce_fn = noop | |
| ): | |
| num_codebooks, dim, dtype, device = samples.shape[0], samples.shape[-1], samples.dtype, samples.device | |
| means = sample_fn(samples, num_clusters) | |
| for _ in range(num_iters): | |
| if use_cosine_sim: | |
| dists = samples @ rearrange(means, 'h n d -> h d n') | |
| else: | |
| dists = -torch.cdist(samples, means, p = 2) | |
| buckets = torch.argmax(dists, dim = -1) | |
| bins = batched_bincount(buckets, minlength = num_clusters) | |
| all_reduce_fn(bins) | |
| zero_mask = bins == 0 | |
| bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
| new_means = buckets.new_zeros(num_codebooks, num_clusters, dim, dtype = dtype) | |
| new_means.scatter_add_(1, repeat(buckets, 'h n -> h n d', d = dim), samples) | |
| new_means = new_means / rearrange(bins_min_clamped, '... -> ... 1') | |
| all_reduce_fn(new_means) | |
| if use_cosine_sim: | |
| new_means = l2norm(new_means) | |
| means = torch.where( | |
| rearrange(zero_mask, '... -> ... 1'), | |
| means, | |
| new_means | |
| ) | |
| return means, bins | |
| def batched_embedding(indices, embeds): | |
| batch, dim = indices.shape[1], embeds.shape[-1] | |
| indices = repeat(indices, 'h b n -> h b n d', d = dim) | |
| embeds = repeat(embeds, 'h c d -> h b c d', b = batch) | |
| return embeds.gather(2, indices) | |
| # regularization losses | |
| def orthogonal_loss_fn(t): | |
| # eq (2) from https://arxiv.org/abs/2112.00384 | |
| h, n = t.shape[:2] | |
| normed_codes = l2norm(t) | |
| cosine_sim = einsum('h i d, h j d -> h i j', normed_codes, normed_codes) | |
| return (cosine_sim ** 2).sum() / (h * n ** 2) - (1 / n) | |
| # distance types | |
| class EuclideanCodebook(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| codebook_size, | |
| num_codebooks = 1, | |
| kmeans_init = False, | |
| kmeans_iters = 10, | |
| sync_kmeans = True, | |
| decay = 0.8, | |
| eps = 1e-5, | |
| threshold_ema_dead_code = 2, | |
| use_ddp = False, | |
| learnable_codebook = False, | |
| sample_codebook_temp = 0 | |
| ): | |
| super().__init__() | |
| self.decay = decay | |
| init_fn = uniform_init if not kmeans_init else torch.zeros | |
| embed = init_fn(num_codebooks, codebook_size, dim) | |
| self.codebook_size = codebook_size | |
| self.num_codebooks = num_codebooks | |
| self.kmeans_iters = kmeans_iters | |
| self.eps = eps | |
| self.threshold_ema_dead_code = threshold_ema_dead_code | |
| self.sample_codebook_temp = sample_codebook_temp | |
| assert not (use_ddp and num_codebooks > 1 and kmeans_init), 'kmeans init is not compatible with multiple codebooks in distributed environment for now' | |
| self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors | |
| self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop | |
| self.all_reduce_fn = distributed.all_reduce if use_ddp else noop | |
| self.register_buffer('initted', torch.Tensor([not kmeans_init])) | |
| self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size)) | |
| self.register_buffer('embed_avg', embed.clone()) | |
| self.learnable_codebook = learnable_codebook | |
| if learnable_codebook: | |
| self.embed = nn.Parameter(embed) | |
| else: | |
| self.register_buffer('embed', embed) | |
| def init_embed_(self, data): | |
| if self.initted: | |
| return | |
| embed, cluster_size = kmeans( | |
| data, | |
| self.codebook_size, | |
| self.kmeans_iters, | |
| sample_fn = self.sample_fn, | |
| all_reduce_fn = self.kmeans_all_reduce_fn | |
| ) | |
| self.embed.data.copy_(embed) | |
| self.embed_avg.data.copy_(embed.clone()) | |
| self.cluster_size.data.copy_(cluster_size) | |
| self.initted.data.copy_(torch.Tensor([True])) | |
| def replace(self, batch_samples, batch_mask): | |
| batch_samples = l2norm(batch_samples) | |
| for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim = 0), batch_mask.unbind(dim = 0))): | |
| if not torch.any(mask): | |
| continue | |
| sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item()) | |
| self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...') | |
| def expire_codes_(self, batch_samples): | |
| if self.threshold_ema_dead_code == 0: | |
| return | |
| expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
| if not torch.any(expired_codes): | |
| return | |
| batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d') | |
| self.replace(batch_samples, batch_mask = expired_codes) | |
| def forward(self, x): | |
| needs_codebook_dim = x.ndim < 4 | |
| x = x.float() | |
| if needs_codebook_dim: | |
| x = rearrange(x, '... -> 1 ...') | |
| shape, dtype = x.shape, x.dtype | |
| flatten = rearrange(x, 'h ... d -> h (...) d') | |
| self.init_embed_(flatten) | |
| embed = self.embed if not self.learnable_codebook else self.embed.detach() | |
| dist = -torch.cdist(flatten, embed, p = 2) | |
| embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) | |
| embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
| embed_ind = embed_ind.view(*shape[:-1]) | |
| quantize = batched_embedding(embed_ind, self.embed) | |
| if self.training: | |
| cluster_size = embed_onehot.sum(dim = 1) | |
| self.all_reduce_fn(cluster_size) | |
| ema_inplace(self.cluster_size, cluster_size, self.decay) | |
| embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot) | |
| self.all_reduce_fn(embed_sum.contiguous()) | |
| ema_inplace(self.embed_avg, embed_sum, self.decay) | |
| cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum() | |
| embed_normalized = self.embed_avg / rearrange(cluster_size, '... -> ... 1') | |
| self.embed.data.copy_(embed_normalized) | |
| self.expire_codes_(x) | |
| if needs_codebook_dim: | |
| quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind)) | |
| return quantize, embed_ind | |
| class CosineSimCodebook(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| codebook_size, | |
| num_codebooks = 1, | |
| kmeans_init = False, | |
| kmeans_iters = 10, | |
| sync_kmeans = True, | |
| decay = 0.8, | |
| eps = 1e-5, | |
| threshold_ema_dead_code = 2, | |
| use_ddp = False, | |
| learnable_codebook = False, | |
| sample_codebook_temp = 0. | |
| ): | |
| super().__init__() | |
| self.decay = decay | |
| if not kmeans_init: | |
| embed = l2norm(uniform_init(num_codebooks, codebook_size, dim)) | |
| else: | |
| embed = torch.zeros(num_codebooks, codebook_size, dim) | |
| self.codebook_size = codebook_size | |
| self.num_codebooks = num_codebooks | |
| self.kmeans_iters = kmeans_iters | |
| self.eps = eps | |
| self.threshold_ema_dead_code = threshold_ema_dead_code | |
| self.sample_codebook_temp = sample_codebook_temp | |
| self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors | |
| self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop | |
| self.all_reduce_fn = distributed.all_reduce if use_ddp else noop | |
| self.register_buffer('initted', torch.Tensor([not kmeans_init])) | |
| self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size)) | |
| self.learnable_codebook = learnable_codebook | |
| if learnable_codebook: | |
| self.embed = nn.Parameter(embed) | |
| else: | |
| self.register_buffer('embed', embed) | |
| def init_embed_(self, data): | |
| if self.initted: | |
| return | |
| embed, cluster_size = kmeans( | |
| data, | |
| self.codebook_size, | |
| self.kmeans_iters, | |
| use_cosine_sim = True, | |
| sample_fn = self.sample_fn, | |
| all_reduce_fn = self.kmeans_all_reduce_fn | |
| ) | |
| self.embed.data.copy_(embed) | |
| self.cluster_size.data.copy_(cluster_size) | |
| self.initted.data.copy_(torch.Tensor([True])) | |
| def replace(self, batch_samples, batch_mask): | |
| batch_samples = l2norm(batch_samples) | |
| for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim = 0), batch_mask.unbind(dim = 0))): | |
| if not torch.any(mask): | |
| continue | |
| sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item()) | |
| self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...') | |
| def expire_codes_(self, batch_samples): | |
| if self.threshold_ema_dead_code == 0: | |
| return | |
| expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
| if not torch.any(expired_codes): | |
| return | |
| batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d') | |
| self.replace(batch_samples, batch_mask = expired_codes) | |
| def forward(self, x): | |
| needs_codebook_dim = x.ndim < 4 | |
| x = x.float() | |
| if needs_codebook_dim: | |
| x = rearrange(x, '... -> 1 ...') | |
| shape, dtype = x.shape, x.dtype | |
| flatten = rearrange(x, 'h ... d -> h (...) d') | |
| flatten = l2norm(flatten) | |
| self.init_embed_(flatten) | |
| embed = self.embed if not self.learnable_codebook else self.embed.detach() | |
| embed = l2norm(embed) | |
| dist = einsum('h n d, h c d -> h n c', flatten, embed) | |
| embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) | |
| embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
| embed_ind = embed_ind.view(*shape[:-1]) | |
| quantize = batched_embedding(embed_ind, self.embed) | |
| if self.training: | |
| bins = embed_onehot.sum(dim = 1) | |
| self.all_reduce_fn(bins) | |
| ema_inplace(self.cluster_size, bins, self.decay) | |
| zero_mask = (bins == 0) | |
| bins = bins.masked_fill(zero_mask, 1.) | |
| embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot) | |
| self.all_reduce_fn(embed_sum) | |
| embed_normalized = embed_sum / rearrange(bins, '... -> ... 1') | |
| embed_normalized = l2norm(embed_normalized) | |
| embed_normalized = torch.where( | |
| rearrange(zero_mask, '... -> ... 1'), | |
| embed, | |
| embed_normalized | |
| ) | |
| ema_inplace(self.embed, embed_normalized, self.decay) | |
| self.expire_codes_(x) | |
| if needs_codebook_dim: | |
| quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind)) | |
| return quantize, embed_ind | |
| # main class | |
| class VectorQuantize(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| codebook_size, | |
| codebook_dim = None, | |
| heads = 1, | |
| separate_codebook_per_head = False, | |
| decay = 0.8, | |
| eps = 1e-5, | |
| kmeans_init = False, | |
| kmeans_iters = 10, | |
| sync_kmeans = True, | |
| use_cosine_sim = False, | |
| threshold_ema_dead_code = 0, | |
| channel_last = True, | |
| accept_image_fmap = False, | |
| commitment_weight = 1., | |
| orthogonal_reg_weight = 0., | |
| orthogonal_reg_active_codes_only = False, | |
| orthogonal_reg_max_codes = None, | |
| sample_codebook_temp = 0., | |
| sync_codebook = False | |
| ): | |
| super().__init__() | |
| self.heads = heads | |
| self.separate_codebook_per_head = separate_codebook_per_head | |
| codebook_dim = default(codebook_dim, dim) | |
| codebook_input_dim = codebook_dim * heads | |
| requires_projection = codebook_input_dim != dim | |
| self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity() | |
| self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity() | |
| self.eps = eps | |
| self.commitment_weight = commitment_weight | |
| has_codebook_orthogonal_loss = orthogonal_reg_weight > 0 | |
| self.orthogonal_reg_weight = orthogonal_reg_weight | |
| self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only | |
| self.orthogonal_reg_max_codes = orthogonal_reg_max_codes | |
| codebook_class = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook | |
| self._codebook = codebook_class( | |
| dim = codebook_dim, | |
| num_codebooks = heads if separate_codebook_per_head else 1, | |
| codebook_size = codebook_size, | |
| kmeans_init = kmeans_init, | |
| kmeans_iters = kmeans_iters, | |
| sync_kmeans = sync_kmeans, | |
| decay = decay, | |
| eps = eps, | |
| threshold_ema_dead_code = threshold_ema_dead_code, | |
| use_ddp = sync_codebook, | |
| learnable_codebook = has_codebook_orthogonal_loss, | |
| sample_codebook_temp = sample_codebook_temp | |
| ) | |
| self.codebook_size = codebook_size | |
| self.accept_image_fmap = accept_image_fmap | |
| self.channel_last = channel_last | |
| def codebook(self): | |
| codebook = self._codebook.embed | |
| if self.separate_codebook_per_head: | |
| return codebook | |
| return rearrange(codebook, '1 ... -> ...') | |
| def forward( | |
| self, | |
| x, | |
| mask = None | |
| ): | |
| shape, device, heads, is_multiheaded, codebook_size = x.shape, x.device, self.heads, self.heads > 1, self.codebook_size | |
| need_transpose = not self.channel_last and not self.accept_image_fmap | |
| if self.accept_image_fmap: | |
| height, width = x.shape[-2:] | |
| x = rearrange(x, 'b c h w -> b (h w) c') | |
| if need_transpose: | |
| x = rearrange(x, 'b d n -> b n d') | |
| x = self.project_in(x) | |
| if is_multiheaded: | |
| ein_rhs_eq = 'h b n d' if self.separate_codebook_per_head else '1 (b h) n d' | |
| x = rearrange(x, f'b n (h d) -> {ein_rhs_eq}', h = heads) | |
| quantize, embed_ind = self._codebook(x) | |
| if self.training: | |
| quantize = x + (quantize - x).detach() | |
| loss = torch.tensor([0.], device = device, requires_grad = self.training) | |
| if self.training: | |
| if self.commitment_weight > 0: | |
| detached_quantize = quantize.detach() | |
| if exists(mask): | |
| # with variable lengthed sequences | |
| commit_loss = F.mse_loss(detached_quantize, x, reduction = 'none') | |
| if is_multiheaded: | |
| mask = repeat(mask, 'b n -> c (b h) n', c = commit_loss.shape[0], h = commit_loss.shape[1] // mask.shape[0]) | |
| commit_loss = commit_loss[mask].mean() | |
| else: | |
| commit_loss = F.mse_loss(detached_quantize, x) | |
| loss = loss + commit_loss * self.commitment_weight | |
| if self.orthogonal_reg_weight > 0: | |
| codebook = self._codebook.embed | |
| if self.orthogonal_reg_active_codes_only: | |
| # only calculate orthogonal loss for the activated codes for this batch | |
| unique_code_ids = torch.unique(embed_ind) | |
| codebook = codebook[unique_code_ids] | |
| num_codes = codebook.shape[0] | |
| if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes: | |
| rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes] | |
| codebook = codebook[rand_ids] | |
| orthogonal_reg_loss = orthogonal_loss_fn(codebook) | |
| loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight | |
| if is_multiheaded: | |
| if self.separate_codebook_per_head: | |
| quantize = rearrange(quantize, 'h b n d -> b n (h d)', h = heads) | |
| embed_ind = rearrange(embed_ind, 'h b n -> b n h', h = heads) | |
| else: | |
| quantize = rearrange(quantize, '1 (b h) n d -> b n (h d)', h = heads) | |
| embed_ind = rearrange(embed_ind, '1 (b h) n -> b n h', h = heads) | |
| quantize = self.project_out(quantize) | |
| if need_transpose: | |
| quantize = rearrange(quantize, 'b n d -> b d n') | |
| if self.accept_image_fmap: | |
| quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width) | |
| embed_ind = rearrange(embed_ind, 'b (h w) ... -> b h w ...', h = height, w = width) | |
| return quantize, embed_ind, loss |