Spaces:
Runtime error
Runtime error
Update app.py
#1
by
DHEIVER
- opened
app.py
CHANGED
|
@@ -1,41 +1,38 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
import random
|
| 4 |
-
|
|
|
|
| 5 |
"google/gemma-7b",
|
| 6 |
"google/gemma-7b-it",
|
| 7 |
"google/gemma-2b",
|
| 8 |
"google/gemma-2b-it"
|
| 9 |
]
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
InferenceClient(models[
|
| 13 |
-
InferenceClient(models[
|
| 14 |
-
InferenceClient(models[
|
|
|
|
| 15 |
]
|
|
|
|
| 16 |
def format_prompt(message, history):
|
| 17 |
prompt = ""
|
| 18 |
if history:
|
| 19 |
-
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
|
| 20 |
for user_prompt, bot_response in history:
|
| 21 |
-
prompt += f"<start_of_turn>
|
| 22 |
-
prompt += f"<start_of_turn>
|
| 23 |
-
prompt += f"<start_of_turn>
|
| 24 |
return prompt
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def chat_inf(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p):
|
| 29 |
-
#token max=8192
|
| 30 |
-
client=clients[int(client_choice)-1]
|
| 31 |
if not history:
|
| 32 |
history = []
|
| 33 |
-
hist_len=0
|
| 34 |
if history:
|
| 35 |
-
hist_len=len(history)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
#seed = random.randint(1,1111111111111111)
|
| 39 |
generate_kwargs = dict(
|
| 40 |
temperature=temp,
|
| 41 |
max_new_tokens=tokens,
|
|
@@ -44,57 +41,56 @@ def chat_inf(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,r
|
|
| 44 |
do_sample=True,
|
| 45 |
seed=seed,
|
| 46 |
)
|
| 47 |
-
|
| 48 |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
| 49 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
| 50 |
output = ""
|
| 51 |
-
|
| 52 |
for response in stream:
|
| 53 |
output += response.token.text
|
| 54 |
-
yield [(prompt,output)]
|
| 55 |
-
history.append((prompt,output))
|
| 56 |
yield history
|
| 57 |
|
| 58 |
def clear_fn():
|
| 59 |
-
return None,None,None
|
| 60 |
-
rand_val=random.randint(1,1111111111111111)
|
| 61 |
-
def check_rand(inp,val):
|
| 62 |
-
if inp==True:
|
| 63 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
|
| 64 |
-
else:
|
| 65 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
with gr.Blocks() as app:
|
| 70 |
-
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma
|
| 71 |
chat_b = gr.Chatbot(height=500)
|
| 72 |
with gr.Group():
|
| 73 |
with gr.Row():
|
| 74 |
with gr.Column(scale=3):
|
| 75 |
inp = gr.Textbox(label="Prompt")
|
| 76 |
-
sys_inp = gr.Textbox(label="
|
| 77 |
with gr.Row():
|
| 78 |
with gr.Column(scale=2):
|
| 79 |
-
btn = gr.Button("
|
| 80 |
with gr.Column(scale=1):
|
| 81 |
with gr.Group():
|
| 82 |
-
stop_btn=gr.Button("
|
| 83 |
-
clear_btn=gr.Button("
|
| 84 |
-
client_choice=gr.Dropdown(label="
|
| 85 |
|
| 86 |
with gr.Column(scale=1):
|
| 87 |
with gr.Group():
|
| 88 |
-
rand = gr.Checkbox(label="
|
| 89 |
-
seed=gr.Slider(label="
|
| 90 |
-
tokens = gr.Slider(label="
|
| 91 |
-
temp=gr.Slider(label="
|
| 92 |
-
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
| 93 |
-
rep_p=gr.Slider(label="
|
| 94 |
-
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
app.queue(default_concurrency_limit=10).launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
import random
|
| 4 |
+
|
| 5 |
+
models = [
|
| 6 |
"google/gemma-7b",
|
| 7 |
"google/gemma-7b-it",
|
| 8 |
"google/gemma-2b",
|
| 9 |
"google/gemma-2b-it"
|
| 10 |
]
|
| 11 |
+
|
| 12 |
+
clients = [
|
| 13 |
+
InferenceClient(models[0]),
|
| 14 |
+
InferenceClient(models[1]),
|
| 15 |
+
InferenceClient(models[2]),
|
| 16 |
+
InferenceClient(models[3]),
|
| 17 |
]
|
| 18 |
+
|
| 19 |
def format_prompt(message, history):
|
| 20 |
prompt = ""
|
| 21 |
if history:
|
|
|
|
| 22 |
for user_prompt, bot_response in history:
|
| 23 |
+
prompt += f"<start_of_turn>usuário{user_prompt}<end_of_turn>"
|
| 24 |
+
prompt += f"<start_of_turn>modelo{bot_response}"
|
| 25 |
+
prompt += f"<start_of_turn>usuário{message}<end_of_turn><start_of_turn>modelo"
|
| 26 |
return prompt
|
| 27 |
|
| 28 |
+
def chat_inf(system_prompt, prompt, history, client_choice, seed, temp, tokens, top_p, rep_p):
|
| 29 |
+
client = clients[int(client_choice) - 1]
|
|
|
|
|
|
|
|
|
|
| 30 |
if not history:
|
| 31 |
history = []
|
| 32 |
+
hist_len = 0
|
| 33 |
if history:
|
| 34 |
+
hist_len = len(history)
|
| 35 |
+
|
|
|
|
|
|
|
| 36 |
generate_kwargs = dict(
|
| 37 |
temperature=temp,
|
| 38 |
max_new_tokens=tokens,
|
|
|
|
| 41 |
do_sample=True,
|
| 42 |
seed=seed,
|
| 43 |
)
|
| 44 |
+
|
| 45 |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
| 46 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
| 47 |
output = ""
|
| 48 |
+
|
| 49 |
for response in stream:
|
| 50 |
output += response.token.text
|
| 51 |
+
yield [(prompt, output)]
|
| 52 |
+
history.append((prompt, output))
|
| 53 |
yield history
|
| 54 |
|
| 55 |
def clear_fn():
|
| 56 |
+
return None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
rand_val = random.randint(1, 1111111111111111)
|
| 59 |
+
|
| 60 |
+
def check_rand(inp, val):
|
| 61 |
+
if inp == True:
|
| 62 |
+
return gr.Slider(label="Semente", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
| 63 |
+
else:
|
| 64 |
+
return gr.Slider(label="Semente", minimum=1, maximum=1111111111111111, value=int(val))
|
| 65 |
|
|
|
|
| 66 |
with gr.Blocks() as app:
|
| 67 |
+
gr.HTML("""<center><h1 style='font-size:xx-large;'>Modelos Google Gemma</h1><br><h3>Executando no Cliente de Inferência Huggingface</h3><br><h7>EXPERIMENTAL""")
|
| 68 |
chat_b = gr.Chatbot(height=500)
|
| 69 |
with gr.Group():
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column(scale=3):
|
| 72 |
inp = gr.Textbox(label="Prompt")
|
| 73 |
+
sys_inp = gr.Textbox(label="Prompt do Sistema (opcional)")
|
| 74 |
with gr.Row():
|
| 75 |
with gr.Column(scale=2):
|
| 76 |
+
btn = gr.Button("Conversar")
|
| 77 |
with gr.Column(scale=1):
|
| 78 |
with gr.Group():
|
| 79 |
+
stop_btn = gr.Button("Parar")
|
| 80 |
+
clear_btn = gr.Button("Limpar")
|
| 81 |
+
client_choice = gr.Dropdown(label="Modelos", type='index', choices=[c for c in models], value=models[0], interactive=True)
|
| 82 |
|
| 83 |
with gr.Column(scale=1):
|
| 84 |
with gr.Group():
|
| 85 |
+
rand = gr.Checkbox(label="Semente Aleatória", value=True)
|
| 86 |
+
seed = gr.Slider(label="Semente", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
|
| 87 |
+
tokens = gr.Slider(label="Máximo de novos tokens", value=6400, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="O número máximo de tokens")
|
| 88 |
+
temp = gr.Slider(label="Temperatura", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
| 89 |
+
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
| 90 |
+
rep_p = gr.Slider(label="Penalidade de Repetição", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
|
|
|
| 91 |
|
| 92 |
+
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [sys_inp, inp, chat_b, client_choice, seed, temp, tokens, top_p, rep_p], chat_b)
|
| 93 |
+
stop_btn.click(None, None, None, cancels=go)
|
| 94 |
+
clear_btn.click(clear_fn, None, [inp, sys_inp, chat_b])
|
| 95 |
+
|
| 96 |
+
app.queue(default_concurrency_limit=10).launch()
|