Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- demo.py +7 -7
- similarity_check.py +15 -32
demo.py
CHANGED
|
@@ -61,7 +61,7 @@ def get_face_encoding(path):
|
|
| 61 |
# if cv2.waitKey(1) & 0xFF == ord('q'):
|
| 62 |
# break
|
| 63 |
|
| 64 |
-
|
| 65 |
def process_frame(frame, process_this_frame, face_locations, faces, face_names, score):
|
| 66 |
|
| 67 |
hkid_face_encoding = get_face_encoding("image")
|
|
@@ -84,12 +84,12 @@ def process_frame(frame, process_this_frame, face_locations, faces, face_names,
|
|
| 84 |
# print(f'frame: {len(frame)}')
|
| 85 |
# try:
|
| 86 |
# small_frame = cv2.imread(image_dir)
|
| 87 |
-
|
| 88 |
# else:
|
| 89 |
# print('fram has nth')
|
| 90 |
|
| 91 |
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
|
| 92 |
-
rgb_small_frame = cv2.cvtColor(
|
| 93 |
|
| 94 |
# Find all the faces and face encodings in the current frame of video
|
| 95 |
face_locations = face_recognition.face_locations(rgb_small_frame)
|
|
@@ -142,10 +142,10 @@ def process_frame(frame, process_this_frame, face_locations, faces, face_names,
|
|
| 142 |
|
| 143 |
for (top, right, bottom, left), name in zip(face_locations, face_names):
|
| 144 |
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
# Draw a box around the face
|
| 151 |
cv2.rectangle(frame, (left, top), (right, bottom), (65, 181, 41), 4)
|
|
|
|
| 61 |
# if cv2.waitKey(1) & 0xFF == ord('q'):
|
| 62 |
# break
|
| 63 |
|
| 64 |
+
# frames are the snapshot of the video
|
| 65 |
def process_frame(frame, process_this_frame, face_locations, faces, face_names, score):
|
| 66 |
|
| 67 |
hkid_face_encoding = get_face_encoding("image")
|
|
|
|
| 84 |
# print(f'frame: {len(frame)}')
|
| 85 |
# try:
|
| 86 |
# small_frame = cv2.imread(image_dir)
|
| 87 |
+
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
|
| 88 |
# else:
|
| 89 |
# print('fram has nth')
|
| 90 |
|
| 91 |
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
|
| 92 |
+
rgb_small_frame = cv2.cvtColor(small_frame, cv2.COLOR_BGR2RGB)
|
| 93 |
|
| 94 |
# Find all the faces and face encodings in the current frame of video
|
| 95 |
face_locations = face_recognition.face_locations(rgb_small_frame)
|
|
|
|
| 142 |
|
| 143 |
for (top, right, bottom, left), name in zip(face_locations, face_names):
|
| 144 |
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
|
| 145 |
+
top *= 4
|
| 146 |
+
right *= 4
|
| 147 |
+
bottom *= 4
|
| 148 |
+
left *= 4
|
| 149 |
|
| 150 |
# Draw a box around the face
|
| 151 |
cv2.rectangle(frame, (left, top), (right, bottom), (65, 181, 41), 4)
|
similarity_check.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
-
from
|
| 2 |
-
from model2 import model2
|
| 3 |
import checkTool as ct
|
| 4 |
import extract_pdf as pf
|
| 5 |
import extraction_data as ed
|
| 6 |
import get_chinese_name as cn
|
| 7 |
import search_engine as se
|
|
|
|
| 8 |
|
| 9 |
# get info from hkid card
|
| 10 |
|
|
@@ -43,29 +43,19 @@ def get_data(img1_path, img2_path):
|
|
| 43 |
|
| 44 |
# img_fp = 'IMG_4495.jpg'
|
| 45 |
|
| 46 |
-
info1 = model1(img1_path)
|
| 47 |
-
info2 = model2(img1_path)
|
| 48 |
|
| 49 |
-
def print_info(name, valid_hkid, hkid, issuedate):
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
-
cinfo = ct.combine_info(info1, info2)
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# get info from bank
|
| 57 |
-
|
| 58 |
-
# images = r'hangseng_page-0001.jpg'
|
| 59 |
-
# bank_list = ['bankofchina','hangsengbank','hsbc','sc']
|
| 60 |
-
# image_path = 'hangseng_page-0001.jpg'
|
| 61 |
-
# post_url = r''
|
| 62 |
-
|
| 63 |
-
# name = pf.get_info_from_bank(img2_path)
|
| 64 |
-
# name = pf.check_mr(name)
|
| 65 |
-
# name = name.replace(' ', '')
|
| 66 |
-
# name = name.lower()
|
| 67 |
-
|
| 68 |
-
# data = pf.get_info_from_bank(img2_path, file_name)
|
| 69 |
data = ed.get_info_from_bank(img2_path)
|
| 70 |
name = data["nameStatement"]
|
| 71 |
|
|
@@ -75,24 +65,17 @@ def get_data(img1_path, img2_path):
|
|
| 75 |
# img_fp = 'IMG_1234.jpg'
|
| 76 |
name1 = cinfo[0]
|
| 77 |
threshold = 85
|
| 78 |
-
# print(f'Name in HKID: {name1}')
|
| 79 |
-
# print(f'Nmae in bank statement: {name}')
|
| 80 |
similarity_score = string_similarity(name,name1)
|
| 81 |
-
# print(f'Similarity: {similarity_score}')
|
| 82 |
-
# if (similarity_score >= threshold): # Above threshold
|
| 83 |
-
# print('It is the same person')
|
| 84 |
-
# else: # Below threshold
|
| 85 |
-
# print('It is not the same person')
|
| 86 |
data["similarity_score"] = similarity_score
|
| 87 |
data["name_on_id"] = name1
|
| 88 |
data["hkid"] = cinfo[2]
|
| 89 |
data["validity"] = cinfo[1]
|
| 90 |
data["issue_date"] = cinfo[3]
|
|
|
|
| 91 |
|
| 92 |
-
#
|
|
|
|
| 93 |
# chi_name = cn.get_chiname(img1_path)["Chinese Name"]
|
| 94 |
-
chi_name = "allen lau"
|
| 95 |
data["chi_name_id"] = chi_name
|
| 96 |
|
| 97 |
-
return data
|
| 98 |
-
|
|
|
|
| 1 |
+
from model0 import model0
|
|
|
|
| 2 |
import checkTool as ct
|
| 3 |
import extract_pdf as pf
|
| 4 |
import extraction_data as ed
|
| 5 |
import get_chinese_name as cn
|
| 6 |
import search_engine as se
|
| 7 |
+
import get_chinese_code as cc
|
| 8 |
|
| 9 |
# get info from hkid card
|
| 10 |
|
|
|
|
| 43 |
|
| 44 |
# img_fp = 'IMG_4495.jpg'
|
| 45 |
|
| 46 |
+
# info1 = model1(img1_path)
|
| 47 |
+
# info2 = model2(img1_path)
|
| 48 |
|
| 49 |
+
# def print_info(name, valid_hkid, hkid, issuedate):
|
| 50 |
+
# print(f'Name: {name}') # name is without space
|
| 51 |
+
# print(f'HKID: {hkid} and validity: {valid_hkid}')
|
| 52 |
+
# print(f'Date of issue: {issuedate}')
|
| 53 |
|
| 54 |
+
# cinfo = ct.combine_info(info1, info2)
|
| 55 |
+
cinfo = model0(img1_path)
|
| 56 |
+
print(cinfo)
|
| 57 |
|
| 58 |
# get info from bank
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
data = ed.get_info_from_bank(img2_path)
|
| 60 |
name = data["nameStatement"]
|
| 61 |
|
|
|
|
| 65 |
# img_fp = 'IMG_1234.jpg'
|
| 66 |
name1 = cinfo[0]
|
| 67 |
threshold = 85
|
|
|
|
|
|
|
| 68 |
similarity_score = string_similarity(name,name1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
data["similarity_score"] = similarity_score
|
| 70 |
data["name_on_id"] = name1
|
| 71 |
data["hkid"] = cinfo[2]
|
| 72 |
data["validity"] = cinfo[1]
|
| 73 |
data["issue_date"] = cinfo[3]
|
| 74 |
+
data["dateofbirth"] = cinfo[4]
|
| 75 |
|
| 76 |
+
# Get chinese name
|
| 77 |
+
chi_name = cc.get_chinese_name(img1_path)
|
| 78 |
# chi_name = cn.get_chiname(img1_path)["Chinese Name"]
|
|
|
|
| 79 |
data["chi_name_id"] = chi_name
|
| 80 |
|
| 81 |
+
return data
|
|
|