Spaces:
Running
Running
| import json | |
| import os | |
| import pandas as pd | |
| from src.display.formatting import has_no_nan_values, make_clickable_model | |
| from src.display.utils import AutoEvalColumn, EvalQueueColumn, ModelType, Precision, WeightType | |
| from src.leaderboard.read_evals import get_raw_eval_results | |
| from src.about import Tasks | |
| def load_csv_results(): | |
| """Load results from main-results.csv file""" | |
| csv_path = "main-results.csv" | |
| if not os.path.exists(csv_path): | |
| return [] | |
| df = pd.read_csv(csv_path) | |
| results = [] | |
| for _, row in df.iterrows(): | |
| # Parse parameters - handle different formats | |
| param_str = str(row['Param']) | |
| if 'activated' in param_str: | |
| # Extract the activated parameter count (e.g., "2.8B activated (16B total)") | |
| param_value = float(param_str.split('B')[0]) | |
| elif 'B' in param_str: | |
| # Simple format (e.g., "9B") | |
| param_value = float(param_str.replace('B', '')) | |
| else: | |
| param_value = 0 | |
| # Convert CSV data to the format expected by the leaderboard | |
| data_dict = { | |
| AutoEvalColumn.model.name: make_clickable_model(row['Model']), | |
| AutoEvalColumn.average.name: row['ACC'], # Using ACC as the average score | |
| AutoEvalColumn.params.name: param_value, | |
| AutoEvalColumn.license.name: "Open Source" if row['Open Source?'] == 'Yes' else "Proprietary", | |
| AutoEvalColumn.model_type.name: ModelType.FT.value.name, # Default to fine-tuned | |
| AutoEvalColumn.precision.name: Precision.float16.value.name, # Default precision | |
| AutoEvalColumn.weight_type.name: WeightType.Original.value.name, | |
| AutoEvalColumn.architecture.name: "Unknown", | |
| AutoEvalColumn.still_on_hub.name: True, | |
| AutoEvalColumn.revision.name: "", | |
| AutoEvalColumn.likes.name: 0, | |
| AutoEvalColumn.model_type_symbol.name: ModelType.FT.value.symbol, | |
| } | |
| # Add task-specific scores (required by the leaderboard) | |
| for task in Tasks: | |
| data_dict[task.name] = row['ACC'] # Use the same ACC score for all tasks | |
| results.append(data_dict) | |
| return results | |
| def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
| """Creates a dataframe from all the individual experiment results""" | |
| raw_data = get_raw_eval_results(results_path, requests_path) | |
| all_data_json = [v.to_dict() for v in raw_data] | |
| # If no JSON data found, try loading from CSV | |
| if not all_data_json: | |
| all_data_json = load_csv_results() | |
| if not all_data_json: | |
| # Return empty dataframe if no data found | |
| return pd.DataFrame(columns=cols) | |
| df = pd.DataFrame.from_records(all_data_json) | |
| # Only include columns that exist in the dataframe | |
| existing_cols = [col for col in cols if col in df.columns] | |
| df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
| df = df[existing_cols].round(decimals=2) | |
| # filter out if any of the benchmarks have not been produced | |
| df = df[has_no_nan_values(df, benchmark_cols)] | |
| return df | |
| def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
| """Creates the different dataframes for the evaluation queues requestes""" | |
| entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
| all_evals = [] | |
| for entry in entries: | |
| if ".json" in entry: | |
| file_path = os.path.join(save_path, entry) | |
| with open(file_path) as fp: | |
| data = json.load(fp) | |
| data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
| data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| all_evals.append(data) | |
| elif ".md" not in entry: | |
| # this is a folder | |
| sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] | |
| for sub_entry in sub_entries: | |
| file_path = os.path.join(save_path, entry, sub_entry) | |
| with open(file_path) as fp: | |
| data = json.load(fp) | |
| data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
| data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| all_evals.append(data) | |
| pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
| running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
| finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
| df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
| df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
| df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
| return df_finished[cols], df_running[cols], df_pending[cols] | |