import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline MODEL_NAME = "openpeerai/openpeerllm" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype="auto") generator = pipeline("text-generation", model=model, tokenizer=tokenizer) def chat(prompt, max_new_tokens=256, temperature=0.7): outputs = generator( prompt, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=True, pad_token_id=tokenizer.eos_token_id ) return outputs[0]['generated_text'][len(prompt):].strip() MODEL_NAME = "openpeerai/openpeerllm" iface = gr.Interface( fn=chat, inputs=[ gr.Textbox(lines=4, label="Enter your prompt"), gr.Slider(16, 1024, value=256, step=16, label="Max new tokens"), gr.Slider(0.1, 1.5, value=0.7, step=0.05, label="Temperature") ], outputs="text", title="OpenPeerLLM Text Demo", description="Chat with OpenPeerLLM from HuggingFace!" ) if __name__ == "__main__": iface.launch()