Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import torch | |
| import random | |
| import spaces | |
| import numpy as np | |
| import gradio as gr | |
| import soundfile as sf | |
| from accelerate import Accelerator | |
| from transformers import T5Tokenizer, T5EncoderModel | |
| from diffusers import DDIMScheduler | |
| from src.models.conditioners import MaskDiT | |
| from src.modules.autoencoder_wrapper import Autoencoder | |
| from src.inference import inference | |
| from src.utils import load_yaml_with_includes | |
| # Load model and configs | |
| def load_models(config_name, ckpt_path, vae_path, device): | |
| params = load_yaml_with_includes(config_name) | |
| # Load codec model | |
| autoencoder = Autoencoder(ckpt_path=vae_path, | |
| model_type=params['autoencoder']['name'], | |
| quantization_first=params['autoencoder']['q_first']).to(device) | |
| autoencoder.eval() | |
| # Load text encoder | |
| tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model']) | |
| text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device) | |
| text_encoder.eval() | |
| # Load main U-Net model | |
| unet = MaskDiT(**params['model']).to(device) | |
| unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model']) | |
| unet.eval() | |
| accelerator = Accelerator(mixed_precision="fp16") | |
| unet = accelerator.prepare(unet) | |
| # Load noise scheduler | |
| noise_scheduler = DDIMScheduler(**params['diff']) | |
| latents = torch.randn((1, 128, 128), device=device) | |
| noise = torch.randn_like(latents) | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device) | |
| _ = noise_scheduler.add_noise(latents, noise, timesteps) | |
| return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # Model and config paths | |
| config_name = 'ckpts/ezaudio-xl.yml' | |
| ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt' | |
| vae_path = 'ckpts/vae/1m.pt' | |
| save_path = 'output/' | |
| os.makedirs(save_path, exist_ok=True) | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path, | |
| device) | |
| def generate_audio(text, length, | |
| guidance_scale, guidance_rescale, ddim_steps, eta, | |
| random_seed, randomize_seed): | |
| neg_text = None | |
| length = length * params['autoencoder']['latent_sr'] | |
| if randomize_seed: | |
| random_seed = random.randint(0, MAX_SEED) | |
| pred = inference(autoencoder, unet, None, None, | |
| tokenizer, text_encoder, | |
| params, noise_scheduler, | |
| text, neg_text, | |
| length, | |
| guidance_scale, guidance_rescale, | |
| ddim_steps, eta, random_seed, | |
| device) | |
| pred = pred.cpu().numpy().squeeze(0).squeeze(0) | |
| # output_file = f"{save_path}/{text}.wav" | |
| # sf.write(output_file, pred, samplerate=params['autoencoder']['sr']) | |
| return params['autoencoder']['sr'], pred | |
| # Examples (if needed for the demo) | |
| examples = [ | |
| "the sound of rain falling softly", | |
| "a dog barking in the distance", | |
| "light guitar music is playing", | |
| ] | |
| # CSS styling (optional) | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1280px; | |
| } | |
| """ | |
| # Gradio Blocks layout | |
| with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(""" | |
| # EzAudio: High-quality Text-to-Audio Generator | |
| Generate audio from text using a diffusion transformer. Adjust advanced settings for more control. | |
| """) | |
| # Basic Input: Text prompt and Audio Length | |
| with gr.Row(): | |
| text_input = gr.Textbox( | |
| label="Text Prompt", | |
| show_label=False, | |
| max_lines=2, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| value="a dog barking in the distance" | |
| ) | |
| length_input = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)") | |
| # Output Component | |
| result = gr.Audio(label="Result", type="numpy") | |
| # Advanced settings in an Accordion | |
| with gr.Accordion("Advanced Settings", open=False): | |
| guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5.0, label="Guidance Scale") | |
| guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale") | |
| ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps") | |
| eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta") | |
| seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0, label="Seed") | |
| randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True) | |
| # Examples block | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[text_input] | |
| ) | |
| # Run button | |
| run_button = gr.Button("Generate") | |
| # Define the trigger and input-output linking | |
| run_button.click( | |
| fn=generate_audio, | |
| inputs=[text_input, length_input, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed], | |
| outputs=[result] | |
| ) | |
| # Launch the Gradio demo | |
| demo.launch() | |