File size: 8,758 Bytes
3b6a091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import random
import argparse
import os
import time
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader

from accelerate import Accelerator

from models.transformer import Dasheng_Encoder
from models.sed_decoder import Decoder, TSED_Wrapper
from dataset.tsed import TSED_AS
from dataset.tsed_val import TSED_Val
from utils import load_yaml_with_includes, get_lr_scheduler, ConcatDatasetBatchSampler
from utils.data_aug import frame_shift, mixup, time_mask, feature_transformation
from val import val_psds


def parse_args():
    parser = argparse.ArgumentParser()

    # Config settings
    parser.add_argument('--config-name', type=str, default='configs/model.yml')

    # Training settings
    parser.add_argument("--amp", type=str, default='fp16')
    parser.add_argument('--epochs', type=int, default=20)
    parser.add_argument('--num-workers', type=int, default=8)
    parser.add_argument('--num-threads', type=int, default=1)
    parser.add_argument('--eval-every-step', type=int, default=5000)
    parser.add_argument('--save-every-step', type=int, default=5000)
    # parser.add_argument('--dataloader', type=str, default='EACaps')
    parser.add_argument("--logit-normal-indices", type=bool, default=False)

    # Log and random seed
    parser.add_argument('--random-seed', type=int, default=2024)
    parser.add_argument('--log-step', type=int, default=100)
    parser.add_argument('--log-dir', type=str, default='../logs/')
    parser.add_argument('--save-dir', type=str, default='../ckpts/')
    return parser.parse_args()


def setup_directories(args, params):
    args.log_dir = os.path.join(args.log_dir, params['model_name']) + '/'
    args.save_dir = os.path.join(args.save_dir, params['model_name']) + '/'

    os.makedirs(args.log_dir, exist_ok=True)
    os.makedirs(args.save_dir, exist_ok=True)


def set_device(args):
    torch.set_num_threads(args.num_threads)
    if torch.cuda.is_available():
        args.device = 'cuda'
        torch.cuda.manual_seed_all(args.random_seed)
        torch.backends.cuda.matmul.allow_tf32 = True
        if torch.backends.cudnn.is_available():
            torch.backends.cudnn.deterministic = True
            torch.backends.cudnn.benchmark = False
    else:
        args.device = 'cpu'


if __name__ == '__main__':
    args = parse_args()
    params = load_yaml_with_includes(args.config_name)
    set_device(args)
    setup_directories(args, params)

    random.seed(args.random_seed)
    torch.manual_seed(args.random_seed)

    # use accelerator for multi-gpu training
    accelerator = Accelerator(mixed_precision=args.amp,
                              gradient_accumulation_steps=params['opt']['accumulation_steps'],
                              step_scheduler_with_optimizer=False)

    train_set = TSED_AS(**params['data']['train_data'])
    train_loader = DataLoader(train_set, shuffle=True,
                              batch_size=params['opt']['batch_size'],
                              num_workers=args.num_workers)

    val_set = TSED_Val(**params['data']['val_data'])
    val_loader = DataLoader(val_set, num_workers=0, batch_size=1, shuffle=False)

    # test_set = TSED_Val(**params['data']['test_data'])
    # test_loader = DataLoader(val_set, num_workers=0, batch_size=1, shuffle=False)

    encoder = Dasheng_Encoder(**params['encoder']).to(accelerator.device)
    pretrained_url = 'https://zenodo.org/records/11511780/files/dasheng_base.pt?download=1'
    dump = torch.hub.load_state_dict_from_url(pretrained_url, map_location='cpu')
    model_parmeters = dump['model']
    # pretrained_url = 'https://zenodo.org/records/13315686/files/dasheng_audioset_mAP497.pt?download=1'
    # dump = torch.hub.load_state_dict_from_url(pretrained_url, map_location='cpu')
    # model_parmeters = dump
    encoder.load_state_dict(model_parmeters)

    decoder = Decoder(**params['decoder']).to(accelerator.device)

    model = TSED_Wrapper(encoder, decoder, params['ft_blocks'], params['frozen_encoder'])
    print(f"Trainable Parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.2f}M")

    # model.load_state_dict(torch.load('../ckpts/TSED_AS_filter/20000.0.pt', map_location='cpu')['model'])

    if params['frozen_encoder']:
        optimizer = torch.optim.AdamW(
            model.parameters(),
            lr=params['opt']['learning_rate'],
            weight_decay=params['opt']['weight_decay'],
            betas=(params['opt']['beta1'], params['opt']['beta2']),
            eps=params['opt']['adam_epsilon'])
    else:
        optimizer = torch.optim.AdamW(
            [
                {'params': model.encoder.parameters(), 'lr': 0.1 * params['opt']['learning_rate']},
                {'params': model.decoder.parameters(), 'lr': params['opt']['learning_rate']}
            ],
            weight_decay=params['opt']['weight_decay'],
            betas=(params['opt']['beta1'], params['opt']['beta2']),
            eps=params['opt']['adam_epsilon'])

    lr_scheduler = get_lr_scheduler(optimizer, 'customized', **params['opt']['lr_scheduler'])

    strong_loss_func = nn.BCEWithLogitsLoss()

    model, optimizer, lr_scheduler, train_loader, val_loader = accelerator.prepare(
        model, optimizer, lr_scheduler, train_loader, val_loader)

    global_step = 0.0
    losses = 0.0

    if accelerator.is_main_process:
        model_module = model.module if hasattr(model, 'module') else model
        val_psds(model_module, val_loader, params, epoch='debug', split='val',
                 save_path=args.log_dir + 'output/', device=accelerator.device)

    for epoch in range(args.epochs):
        model.train()
        for step, batch in enumerate(tqdm(train_loader)):
            with accelerator.accumulate(model):
                audio, cls, label, _ = batch
                mel = model.forward_to_spec(audio)

                # data aug
                mel, label = frame_shift(mel, label, params['net_pooling'])
                mel, label = time_mask(mel, label, params["net_pooling"],
                                       mask_ratios=params['data_aug']["time_mask_ratios"])
                mel, _ = feature_transformation(mel, **params['data_aug']["transform"])

                strong_pred = model(mel, cls)

                B, N, L = label.shape
                label = label.reshape(B * N, L)
                label = label.unsqueeze(1)

                loss = strong_loss_func(strong_pred, label)

                accelerator.backward(loss)

                # clip grad up
                if accelerator.sync_gradients:
                    if 'grad_clip' in params['opt'] and params['opt']['grad_clip'] > 0:
                        accelerator.clip_grad_norm_(model.parameters(),
                                                    max_norm=params['opt']['grad_clip'])
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

                global_step += 1/params['opt']['accumulation_steps']
                losses += loss.item()/params['opt']['accumulation_steps']

            if accelerator.is_main_process:
                if global_step % args.log_step == 0:
                    current_time = time.asctime(time.localtime(time.time()))
                    epoch_info = f'Epoch: [{epoch + 1}][{args.epochs}]'
                    batch_info = f'Global Step: {global_step}'
                    loss_info = f'Loss: {losses / args.log_step:.6f}'

                    # Extract the learning rate from the optimizer
                    lr = optimizer.param_groups[0]['lr']
                    lr_info = f'Learning Rate: {lr:.6f}'

                    log_message = f'{current_time}\n{epoch_info}    {batch_info}    {loss_info}    {lr_info}\n'

                    with open(args.log_dir + 'log.txt', mode='a') as n:
                        n.write(log_message)

                    losses = 0.0

            # check performance
            if (global_step + 1) % args.eval_every_step == 0:
                if accelerator.is_main_process:
                    model_module = model.module if hasattr(model, 'module') else model
                    val_psds(model_module, val_loader, params, epoch=global_step+1, split='val',
                             save_path=args.log_dir + 'output/', device=accelerator.device)
                    # save model
                    unwrapped_model = accelerator.unwrap_model(model)
                    accelerator.save({
                        "model": model.state_dict(),
                    }, args.save_dir + str(global_step+1) + '.pt')
                accelerator.wait_for_everyone()
                model.train()