File size: 8,897 Bytes
3b6a091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from einops import rearrange
from torch.cuda.amp import autocast
from functools import partial
from typing import Optional, Tuple
import torchaudio.transforms as audio_transforms
from einops.layers.torch import Rearrange

import torch
import torch.nn as nn
from .dasheng import AudioPatchEmbed, Block

# if hasattr(nn.functional, 'scaled_dot_product_attention'):
#     ATTENTION_MODE = 'flash'
# else:
#     ATTENTION_MODE = 'math'
# print(f'attention mode is {ATTENTION_MODE}')


class Dasheng_Encoder(nn.Module):
    def __init__(self,
                 patch_size: Tuple[int, int] = (64, 4),
                 patch_stride: Tuple[int, int] = (64, 4),
                 embed_dim: int = 768,
                 depth: int = 12,
                 num_heads=8,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 norm_layer=None,
                 act_layer=None,
                 init_values=None,
                 target_length=1008,
                 pooling='mean',
                 time_patch_out: Optional[float] = None,
                 freq_patch_out: Optional[float] = None,
                 block_type='Block',
                 attention_type='Attention',
                 eval_avg='cat',
                 n_fft: int = 512,
                 n_mels: int = 64,
                 hop_size: int = 160,
                 win_size: int = 512,
                 f_min: int = 0,
                 f_max: int = 8000,
                 center: bool = True,
                 **kwargs):
        super().__init__()
        self.pooling = pooling
        self.embed_dim = embed_dim
        self.patch_stride = patch_stride
        self.patch_size = patch_size
        self.n_mels = n_mels
        self.eval_avg = eval_avg
        self.time_patch_out = time_patch_out
        self.freq_patch_out = freq_patch_out

        self.front_end = nn.Sequential(
            audio_transforms.MelSpectrogram(f_min=f_min,
                                            sample_rate=16000,
                                            win_length=win_size,
                                            center=center,
                                            n_fft=n_fft,
                                            f_max=f_max,
                                            hop_length=hop_size,
                                            n_mels=self.n_mels,
                                            power=1))

        self.to_db = audio_transforms.AmplitudeToDB(stype='magnitude', top_db=kwargs.get('top_db', 120))

        self.init_bn = nn.Sequential(
            Rearrange('b c f t -> b f c t'),
            nn.BatchNorm2d(self.n_mels, momentum=0.01),
            Rearrange('b f c t -> b c f t'))

        self.target_length = target_length
        self.patch_embed = AudioPatchEmbed(input_size=(self.n_mels,
                                                       target_length),
                                           embed_dim=self.embed_dim,
                                           patch_size=self.patch_size,
                                           flatten=False,
                                           patch_stride=self.patch_stride)
        self.num_patches = self.patch_embed.num_patches

        if pooling == 'token':
            self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
            self.token_pos_embed = nn.Parameter(
                torch.randn(1, embed_dim) * .02)

        self.time_pos_embed = nn.Parameter(
            torch.randn(1, embed_dim, 1, self.patch_embed.grid_size[1]) * .02)
        self.freq_pos_embed = nn.Parameter(
            torch.randn(1, embed_dim, self.patch_embed.grid_size[0], 1) * .02)

        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU
        self.pos_drop = nn.Dropout(p=drop_rate)
        self.blocks = nn.Sequential(*[
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                init_values=init_values,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                norm_layer=norm_layer,
                act_layer=act_layer,
                attention_type=attention_type,
            ) for _ in range(depth)
        ])
        self.norm = norm_layer(embed_dim)
        self.apply(self.init_weights)
        if hasattr(self, 'cls_token') and self.cls_token is not None:
            nn.init.normal_(self.cls_token, std=1e-6)
        # group_masking = kwargs.get('group_masking', False)
        # if isinstance(group_masking, bool):
        #     if group_masking is True:
        #         self.masking_func = self.random_masking_group
        #     else:
        #         self.masking_func = self.random_masking
        # elif isinstance(group_masking, int):
        #     self.masking_func = partial(self.random_masking_group,
        #                                 group_factor=group_masking)
    # @torch.jit.ignore
    # def no_weight_decay(self):
    #     return {
    #         'time_pos_embed', 'cls_token', 'freq_pos_embed', 'token_pos_embed'
    #     }

    def init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.xavier_uniform_(module.weight)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.LayerNorm):
            nn.init.constant_(module.bias, 0)
            nn.init.constant_(module.weight, 1.0)

    def forward_features(self, x):
        x = self.patch_embed(x)
        b, c, f, t = x.shape
        x = x + self.time_pos_embed[:, :, :, :t]
        x = x + self.freq_pos_embed[:, :, :, :]  # Just for sin pos embed
        x = rearrange(x, 'b c f t -> b (f t) c')
        # x, mask, ids_restore = self.random_masking(x, mask_ratio)
        # x, mask, ids_restore = self.masking_func(x, mask_ratio)
        if self.pooling == 'token':
            cls_token = self.cls_token.expand(x.shape[0], -1, -1)
            cls_token = cls_token + self.token_pos_embed[:, :]
            x = torch.cat((cls_token, x), dim=1)
        x = self.pos_drop(x)
        for block in self.blocks:
            x = block(x)
        # x = self.norm(x)
        return x

    def load_state_dict(self, state_dict, **kwargs):
        if 'time_pos_embed' in state_dict and self.time_pos_embed.shape != state_dict[
                'time_pos_embed'].shape:
            print("Positional Embedding shape not the same with model, resizing!")
            self.change_pos_embedding(state_dict)
        # Call the parent class method and capture the missing/unexpected keys
        missing_keys, unexpected_keys = super().load_state_dict(state_dict, strict=False, **kwargs)
        # Print missing and unexpected keys
        if missing_keys:
            print("Missing keys:", missing_keys)
        if unexpected_keys:
            print("Unexpected keys:", unexpected_keys)

    def change_pos_embedding(self, state_dict):
        target_time_pos_embed_length = self.time_pos_embed.shape[-1]
        target_freq_pos_embed_length = self.freq_pos_embed.shape[-2]

        pretrained_time_pos_embed = state_dict['time_pos_embed']
        pretrained_freq_pos_embed = state_dict['freq_pos_embed']

        if target_freq_pos_embed_length <= pretrained_time_pos_embed.shape[-1]:
            state_dict['time_pos_embed'] = pretrained_time_pos_embed[
                ..., :target_time_pos_embed_length]
        else:
            state_dict['time_pos_embed'] = torch.nn.functional.interpolate(
                pretrained_time_pos_embed,
                size=(1, target_time_pos_embed_length),
                align_corners=False,
                mode='bilinear')
        if target_freq_pos_embed_length <= pretrained_freq_pos_embed.shape[-2]:
            state_dict[
                 'freq_pos_embed'] = pretrained_freq_pos_embed[:, :, :
                                                              target_freq_pos_embed_length, :]
        else:
            state_dict['freq_pos_embed'] = torch.nn.functional.interpolate(
                pretrained_freq_pos_embed,
                size=(target_freq_pos_embed_length, 1),
                align_corners=False,
                mode='bilinear')

    def forward_to_spec(self, x):
        # Do not use fp16 for feature extraction, that is likely to get nan
        with autocast(enabled=False):
            X = self.front_end(x)
            # X = rearrange(X, 'b f t -> b 1 f t')
            # X = self.init_bn(X)
        return X

    def forward(self, x):
        # x = self.forward_to_spec(x)
        # print(x.shape)
        with autocast(enabled=False):
            x = self.to_db(x)
        x = rearrange(x, 'b f t -> b 1 f t')
        x = self.init_bn(x)
        x = self.forward_features(x)
        return x