File size: 5,142 Bytes
3b6a091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import os
import pandas as pd
from tqdm import tqdm
import sed_scores_eval
from desed_task.evaluation.evaluation_measures import (compute_per_intersection_macro_f1,
                                                       compute_psds_from_operating_points,
                                                       compute_psds_from_scores)
from local.utils import (batched_decode_preds,)
from utils.sed import Encoder
import numpy as np


@torch.no_grad()
def val_psds(model, val_loader, params, epoch, split, save_path, device):
    label_df = pd.read_csv(params['data'][split]['label'])
    EVENTS = label_df['label'].tolist()

    clap_emb = []
    for event in EVENTS:
        cls = torch.load(params['data']['train_data']['clap_dir'] + event + '.pt').to(device)
        cls = cls.unsqueeze(1)
        clap_emb.append(cls)
    cls = torch.cat(clap_emb, dim=1)

    encoder = Encoder(EVENTS, audio_len=10, frame_len=160, frame_hop=160, net_pooling=4, sr=16000)

    model.eval()
    test_csv = params['data'][split]["csv"]
    test_dur = params['data'][split]["dur"]

    gt = pd.read_csv(test_csv, sep='\t')

    test_scores_postprocessed_buffer = {}
    test_scores_postprocessed_buffer_tsed = {}
    test_thresholds = [0.5]
    test_psds_buffer = {k: pd.DataFrame() for k in test_thresholds}
    test_psds_buffer_tsed = {k: pd.DataFrame() for k in test_thresholds}

    for batch in tqdm(val_loader):
        audio, filenames = batch
        B = audio.shape[0]
        N = cls.shape[1]
        cls = cls.expand(B, -1, -1)

        audio = audio.to(device)
        mel = model.forward_to_spec(audio)

        preds = model(mel, cls)
        preds = torch.sigmoid(preds)
        preds = preds.reshape(B, N, -1)
        preds_tsed = preds.clone()
        # tsed assumes sound exitencance is known
        for idx, filename in enumerate(filenames):
            weak_label = list(gt[gt['filename'] == filename]['event_label'].unique())
            for j, event in enumerate(EVENTS):
                if event not in weak_label:
                    preds_tsed[idx][j] = 0.0
        # preds = preds.transpose(1, 2)

        (_, scores_postprocessed_strong, _,) = \
            batched_decode_preds(
                preds,
                filenames,
                encoder,
                median_filter=9,
                thresholds=list(test_psds_buffer.keys()), )
        test_scores_postprocessed_buffer.update(scores_postprocessed_strong)

        (_, scores_postprocessed_strong_tsed, _,) = \
            batched_decode_preds(
                preds_tsed,
                filenames,
                encoder,
                median_filter=9,
                thresholds=list(test_psds_buffer_tsed.keys()), )
        test_scores_postprocessed_buffer_tsed.update(scores_postprocessed_strong_tsed)

    ground_truth = sed_scores_eval.io.read_ground_truth_events(test_csv)
    audio_durations = sed_scores_eval.io.read_audio_durations(test_dur)

    ground_truth = {
        audio_id: ground_truth[audio_id]
        for audio_id in test_scores_postprocessed_buffer
    }
    audio_durations = {
        audio_id: audio_durations[audio_id]
        for audio_id in test_scores_postprocessed_buffer
    }

    psds1_sed_scores_eval, psds1_cls = compute_psds_from_scores(
        test_scores_postprocessed_buffer,
        ground_truth,
        audio_durations,
        dtc_threshold=0.7,
        gtc_threshold=0.7,
        cttc_threshold=None,
        alpha_ct=0.0,
        alpha_st=0.0,
        # save_dir=os.path.join(save_dir, "student", "scenario1"),
    )
    psds1_cls['overall'] = psds1_sed_scores_eval
    psds1_cls['macro_averaged'] = np.array([v for k, v in psds1_cls.items()]).mean()
    psds1_cls['name'] = 'psds1'

    psds1_sed_scores_eval_tsed, psds1_cls_tsed = compute_psds_from_scores(
        test_scores_postprocessed_buffer_tsed,
        ground_truth,
        audio_durations,
        dtc_threshold=0.7,
        gtc_threshold=0.7,
        cttc_threshold=None,
        alpha_ct=0.0,
        alpha_st=0.0,
        # save_dir=os.path.join(save_dir, "student", "scenario1"),
    )

    psds1_cls_tsed['overall'] = psds1_sed_scores_eval_tsed
    psds1_cls_tsed['macro_averaged'] = np.array([v for k, v in psds1_cls_tsed.items()]).mean()
    psds1_cls_tsed['name'] = 'psds1_tsed'

    # psds2_sed_scores_eval, psds2_cls = compute_psds_from_scores(
    #     test_scores_postprocessed_buffer,
    #     ground_truth,
    #     audio_durations,
    #     dtc_threshold=0.1,
    #     gtc_threshold=0.1,
    #     cttc_threshold=0.3,
    #     alpha_ct=0.5,
    #     alpha_st=1,
    #     # save_dir=os.path.join(save_dir, "student", "scenario1"),
    # )
    # psds2_cls['overall'] = psds2_sed_scores_eval
    # psds2_cls['macro_averaged'] = np.array([v for k, v in psds2_cls.items()]).mean()
    # psds2_cls['name'] = 'psds2'
    psds_cls = pd.DataFrame([psds1_cls, psds1_cls_tsed])
    # psds_cls = pd.DataFrame([psds1_cls, psds2_cls])
    os.makedirs(f'{save_path}/psds_cls/', exist_ok=True)
    psds_cls.to_csv(f'{save_path}/psds_cls/{epoch}.csv', index=False)

    return psds1_sed_scores_eval, psds1_sed_scores_eval_tsed