FlexSED / api.py
OpenSound's picture
Update api.py
33db348 verified
raw
history blame
6.66 kB
import torch
import librosa
import os
import numpy as np
import matplotlib.pyplot as plt
from transformers import AutoTokenizer, ClapTextModelWithProjection
from src.models.transformer import Dasheng_Encoder
from src.models.sed_decoder import Decoder, TSED_Wrapper
from src.utils import load_yaml_with_includes
class FlexSED:
def __init__(
self,
config_path='src/configs/model.yml',
ckpt_path='ckpts/flexsed_as.pt',
ckpt_url='https://huggingface.co/Higobeatz/FlexSED/resolve/main/ckpts/flexsed_as.pt',
device='cuda'
):
"""
Initialize FlexSED with model, CLAP, and tokenizer loaded once.
If the checkpoint is not available locally, it will be downloaded automatically.
"""
self.device = device
params = load_yaml_with_includes(config_path)
# Ensure checkpoint exists
if not os.path.exists(ckpt_path):
print(f"[FlexSED] Downloading checkpoint from {ckpt_url} ...")
state_dict = torch.hub.load_state_dict_from_url(ckpt_url, map_location="cpu")
else:
state_dict = torch.load(ckpt_path, map_location="cpu")
# Encoder + Decoder
encoder = Dasheng_Encoder(**params['encoder']).to(self.device)
decoder = Decoder(**params['decoder']).to(self.device)
self.model = TSED_Wrapper(encoder, decoder, params['ft_blocks'], params['frozen_encoder'])
self.model.load_state_dict(state_dict['model'])
self.model.eval()
# CLAP text model
self.clap = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused")
self.clap.eval()
self.tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
def run_inference(self, audio_path, events, norm_audio=True):
"""
Run inference on audio for given events.
"""
audio, sr = librosa.load(audio_path, sr=16000)
audio = torch.tensor([audio]).to(self.device)
if norm_audio:
eps = 1e-9
max_val = torch.max(torch.abs(audio))
audio = audio / (max_val + eps)
clap_embeds = []
with torch.no_grad():
for event in events:
text = f"The sound of {event.replace('_', ' ').capitalize()}"
inputs = self.tokenizer([text], padding=True, return_tensors="pt")
outputs = self.clap(**inputs)
text_embeds = outputs.text_embeds.unsqueeze(1)
clap_embeds.append(text_embeds)
query = torch.cat(clap_embeds, dim=1).to(self.device)
mel = self.model.forward_to_spec(audio)
preds = self.model(mel, query)
preds = torch.sigmoid(preds).cpu()
return preds # shape: [num_events, 1, T]
# ---------- Multi-event plotting ----------
@staticmethod
def plot_and_save_multi(preds, events, sr=25, out_dir="./plots", fname="all_events"):
os.makedirs(out_dir, exist_ok=True)
preds_np = preds.squeeze(1).numpy() # [num_events, T]
T = preds_np.shape[1]
plt.figure(figsize=(12, len(events) * 0.6 + 2))
plt.imshow(
preds_np,
aspect="auto",
cmap="Blues",
extent=[0, T/sr, 0, len(events)],
vmin=0, vmax=1, origin="lower"
)
plt.colorbar(label="Probability")
plt.yticks(np.arange(len(events)) + 0.5, events)
plt.xlabel("Time (s)")
plt.ylabel("Events")
plt.title("Event Predictions")
save_path = os.path.join(out_dir, f"{fname}.png")
plt.savefig(save_path, dpi=200, bbox_inches="tight")
plt.close()
return save_path
def to_multi_plot(self, preds, events, out_dir="./plots", fname="all_events"):
return self.plot_and_save_multi(preds, events, out_dir=out_dir, fname=fname)
# ---------- Multi-event video ----------
@staticmethod
def make_multi_event_video(preds, events, sr=25, out_dir="./videos",
audio_path=None, fps=25, highlight=True, fname="all_events"):
from moviepy.editor import ImageSequenceClip, AudioFileClip
from tqdm import tqdm
os.makedirs(out_dir, exist_ok=True)
preds_np = preds.squeeze(1).numpy() # [num_events, T]
T = preds_np.shape[1]
duration = T / sr
frames = []
n_frames = int(duration * fps)
for i in tqdm(range(n_frames)):
t = int(i * T / n_frames)
plt.figure(figsize=(12, len(events) * 0.6 + 2))
if highlight:
mask = np.zeros_like(preds_np)
mask[:, :t+1] = preds_np[:, :t+1]
plt.imshow(
mask,
aspect="auto",
cmap="Blues",
extent=[0, T/sr, 0, len(events)],
vmin=0, vmax=1, origin="lower"
)
else:
plt.imshow(
preds_np[:, :t+1],
aspect="auto",
cmap="Blues",
extent=[0, (t+1)/sr, 0, len(events)],
vmin=0, vmax=1, origin="lower"
)
plt.colorbar(label="Probability")
plt.yticks(np.arange(len(events)) + 0.5, events)
plt.xlabel("Time (s)")
plt.ylabel("Events")
plt.title("Event Predictions")
frame_path = f"/tmp/frame_{i:04d}.png"
plt.savefig(frame_path, dpi=150, bbox_inches="tight")
plt.close()
frames.append(frame_path)
clip = ImageSequenceClip(frames, fps=fps)
if audio_path is not None:
audio = AudioFileClip(audio_path).subclip(0, duration)
clip = clip.set_audio(audio)
save_path = os.path.join(out_dir, f"{fname}.mp4")
clip.write_videofile(
save_path,
fps=fps,
codec="mpeg4",
audio_codec="aac"
)
for f in frames:
os.remove(f)
return save_path
def to_multi_video(self, preds, events, audio_path, out_dir="./videos", fname="all_events"):
return self.make_multi_event_video(
preds, events, audio_path=audio_path, out_dir=out_dir, fname=fname
)
if __name__ == "__main__":
flexsed = FlexSED(device='cuda')
events = ["Door", "Laughter", "Dog"]
preds = flexsed.run_inference("example2.wav", events)
# Combined plot & video
flexsed.to_multi_plot(preds, events, fname="example2")
# flexsed.to_multi_video(preds, events, audio_path="example2.wav", fname="example2")