FlexSED / src /utils /.ipynb_checkpoints /utils-checkpoint.py
OpenSound's picture
Upload 544 files
3b6a091 verified
raw
history blame
3.12 kB
import torch
import numpy as np
import yaml
import os
from torch.utils.data import Sampler
def load_yaml_with_includes(yaml_file):
def loader_with_include(loader, node):
# Load the included file
include_path = os.path.join(os.path.dirname(yaml_file), loader.construct_scalar(node))
with open(include_path, 'r') as f:
return yaml.load(f, Loader=yaml.FullLoader)
yaml.add_constructor('!include', loader_with_include, Loader=yaml.FullLoader)
with open(yaml_file, 'r') as f:
return yaml.load(f, Loader=yaml.FullLoader)
def customized_lr_scheduler(optimizer, warmup_steps=10000, decay_steps=1e6, end_factor=1e-4):
from torch.optim.lr_scheduler import LinearLR, SequentialLR
warmup_scheduler = LinearLR(optimizer,
start_factor=min(1 / warmup_steps, 1),
end_factor=1.0, total_iters=warmup_steps)
decay_scheduler = LinearLR(optimizer,
start_factor=1.0,
end_factor=end_factor,
total_iters=decay_steps)
scheduler = SequentialLR(optimizer, schedulers=[warmup_scheduler, decay_scheduler],
milestones=[warmup_steps])
return scheduler
def get_lr_scheduler(optimizer, name, **kwargs):
if name == 'customized':
return customized_lr_scheduler(optimizer, **kwargs)
elif name == 'cosine':
from torch.optim.lr_scheduler import CosineAnnealingLR
return CosineAnnealingLR(optimizer, **kwargs)
else:
raise NotImplementedError(name)
class ConcatDatasetBatchSampler(Sampler):
def __init__(self, samplers, batch_sizes, epoch=0):
self.batch_sizes = batch_sizes
self.samplers = samplers
self.offsets = [0] + np.cumsum([len(x) for x in self.samplers]).tolist()[:-1]
self.epoch = epoch
self.set_epoch(self.epoch)
def _iter_one_dataset(self, c_batch_size, c_sampler, c_offset):
batch = []
for idx in c_sampler:
batch.append(c_offset + idx)
if len(batch) == c_batch_size:
yield batch
def set_epoch(self, epoch):
if hasattr(self.samplers[0], "epoch"):
for s in self.samplers:
s.set_epoch(epoch)
def __iter__(self):
iterators = [iter(i) for i in self.samplers]
tot_batch = []
for b_num in range(len(self)):
for samp_idx in range(len(self.samplers)):
c_batch = []
while len(c_batch) < self.batch_sizes[samp_idx]:
c_batch.append(self.offsets[samp_idx] + next(iterators[samp_idx]))
tot_batch.extend(c_batch)
yield tot_batch
tot_batch = []
def __len__(self):
min_len = float("inf")
for idx, sampler in enumerate(self.samplers):
c_len = (len(sampler)) // self.batch_sizes[idx]
min_len = min(c_len, min_len)
return min_len