Spaces:
Sleeping
Sleeping
First version (Back only)
Browse files- Dockerfile +17 -0
- README.md +2 -2
- app.py +302 -0
- classes.py +100 -0
- requirements.txt +14 -0
- schemas.py +38 -0
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11.3
|
| 2 |
+
|
| 3 |
+
RUN apt-get update && \
|
| 4 |
+
apt-get install -y libreoffice libreoffice-writer libreoffice-calc libreoffice-impress && \
|
| 5 |
+
apt-get clean && rm -rf /var/lib/apt/lists/*
|
| 6 |
+
|
| 7 |
+
RUN useradd -m -u 1000 user
|
| 8 |
+
USER user
|
| 9 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 10 |
+
|
| 11 |
+
WORKDIR /app
|
| 12 |
+
|
| 13 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 14 |
+
RUN pip install --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host files.pythonhosted.org --no-cache-dir --upgrade -r requirements.txt
|
| 15 |
+
|
| 16 |
+
COPY --chown=user . /app
|
| 17 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
title: DocFinder
|
| 3 |
emoji: 📉
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: pink
|
| 6 |
sdk: docker
|
| 7 |
-
pinned:
|
| 8 |
license: mit
|
| 9 |
short_description: 3GPP & ETSI Document Finder (frontend to be released...)
|
| 10 |
---
|
|
|
|
| 1 |
---
|
| 2 |
title: DocFinder
|
| 3 |
emoji: 📉
|
| 4 |
+
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: docker
|
| 7 |
+
pinned: true
|
| 8 |
license: mit
|
| 9 |
short_description: 3GPP & ETSI Document Finder (frontend to be released...)
|
| 10 |
---
|
app.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
import os, warnings, nltk, json, subprocess
|
| 4 |
+
import numpy as np
|
| 5 |
+
from nltk.stem import WordNetLemmatizer
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 8 |
+
|
| 9 |
+
os.environ['CURL_CA_BUNDLE'] = ""
|
| 10 |
+
warnings.filterwarnings('ignore')
|
| 11 |
+
nltk.download('wordnet')
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
import bm25s
|
| 16 |
+
from bm25s.hf import BM25HF
|
| 17 |
+
|
| 18 |
+
from fastapi import FastAPI, HTTPException
|
| 19 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 20 |
+
from fastapi.responses import FileResponse
|
| 21 |
+
from fastapi.staticfiles import StaticFiles
|
| 22 |
+
|
| 23 |
+
from schemas import *
|
| 24 |
+
from classes import *
|
| 25 |
+
|
| 26 |
+
from bs4 import BeautifulSoup
|
| 27 |
+
import requests
|
| 28 |
+
|
| 29 |
+
lemmatizer = WordNetLemmatizer()
|
| 30 |
+
|
| 31 |
+
spec_metadatas_3gpp = load_dataset("OrganizedProgrammers/3GPPSpecMetadata", token=os.environ["HF_TOKEN"])
|
| 32 |
+
spec_contents_3gpp = load_dataset("OrganizedProgrammers/3GPPSpecContent", token=os.environ["HF_TOKEN"])
|
| 33 |
+
tdoc_locations_3gpp = load_dataset("OrganizedProgrammers/3GPPTDocLocation", token=os.environ["HF_TOKEN"])
|
| 34 |
+
|
| 35 |
+
spec_metadatas_etsi = load_dataset("OrganizedProgrammers/ETSISpecMetadata", token=os.environ["HF_TOKEN"])
|
| 36 |
+
spec_contents_etsi = load_dataset("OrganizedProgrammers/ETSISpecContent", token=os.environ["HF_TOKEN"])
|
| 37 |
+
|
| 38 |
+
spec_contents_3gpp = spec_contents_3gpp["train"].to_list()
|
| 39 |
+
spec_metadatas_3gpp = spec_metadatas_3gpp["train"].to_list()
|
| 40 |
+
spec_contents_etsi = spec_contents_etsi["train"].to_list()
|
| 41 |
+
spec_metadatas_etsi = spec_metadatas_etsi["train"].to_list()
|
| 42 |
+
tdoc_locations = tdoc_locations_3gpp["train"].to_list()
|
| 43 |
+
|
| 44 |
+
bm25_index_3gpp = BM25HF.load_from_hub("OrganizedProgrammers/3GPPBM25IndexSingle", load_corpus=True, token=os.environ["HF_TOKEN"])
|
| 45 |
+
bm25_index_etsi = BM25HF.load_from_hub("OrganizedProgrammers/ETSIBM25IndexSingle", load_corpus=True, token=os.environ["HF_TOKEN"])
|
| 46 |
+
|
| 47 |
+
def get_docs_from_url(url):
|
| 48 |
+
"""Get list of documents/directories from a URL"""
|
| 49 |
+
try:
|
| 50 |
+
response = requests.get(url, verify=False, timeout=10)
|
| 51 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
| 52 |
+
return [item.get_text() for item in soup.select("tr td a")]
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"Error accessing {url}: {e}")
|
| 55 |
+
return []
|
| 56 |
+
|
| 57 |
+
def get_tdoc_url(doc_id):
|
| 58 |
+
for tdoc in tdoc_locations:
|
| 59 |
+
if tdoc["doc_id"] == doc_id:
|
| 60 |
+
return tdoc["url"]
|
| 61 |
+
return "Document not indexed (Re-index TDocs)"
|
| 62 |
+
|
| 63 |
+
def get_spec_url(document):
|
| 64 |
+
series = document.split(".")[0].zfill(2)
|
| 65 |
+
url = f"https://www.3gpp.org/ftp/Specs/archive/{series}_series/{document}"
|
| 66 |
+
versions = get_docs_from_url(url)
|
| 67 |
+
return url + "/" + versions[-1] if versions != [] else f"Specification {document} not found"
|
| 68 |
+
|
| 69 |
+
def get_document(spec_id: str, spec_title: str, source: str):
|
| 70 |
+
text = [f"{spec_id} - {spec_title}"]
|
| 71 |
+
spec_contents = spec_contents_3gpp if source == "3GPP" else spec_contents_etsi if source == "ETSI" else spec_contents_3gpp + spec_contents_etsi
|
| 72 |
+
for section in spec_contents:
|
| 73 |
+
if not isinstance(section, str) and spec_id == section["doc_id"]:
|
| 74 |
+
text.extend([section['section'], section['content']])
|
| 75 |
+
return text
|
| 76 |
+
|
| 77 |
+
app = FastAPI(title="Document Finder Back-End", docs_url="/", description="Backend for DocFinder - Searching technical documents & specifications from 3GPP & ETSI")
|
| 78 |
+
app.add_middleware(
|
| 79 |
+
CORSMiddleware,
|
| 80 |
+
allow_origins=["*"],
|
| 81 |
+
allow_credentials=True,
|
| 82 |
+
allow_methods=["*"],
|
| 83 |
+
allow_headers=["*"],
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
etsi_doc_finder = ETSIDocFinder()
|
| 87 |
+
etsi_spec_finder = ETSISpecFinder()
|
| 88 |
+
|
| 89 |
+
valid_3gpp_doc_format = re.compile(r'^(S[1-6P]|C[1-6P]|R[1-6P])-\d+', flags=re.IGNORECASE)
|
| 90 |
+
valid_3gpp_spec_format = re.compile(r'^\d{2}\.\d{3}(?:-\d+)?')
|
| 91 |
+
|
| 92 |
+
valid_etsi_doc_format = re.compile(r'^(?:SET|SCP|SETTEC|SETREQ|SCPTEC|SCPREQ)\(\d+\)\d+(?:r\d+)?', flags=re.IGNORECASE)
|
| 93 |
+
valid_etsi_spec_format = re.compile(r'^\d{3} \d{3}(?:-\d+)?')
|
| 94 |
+
|
| 95 |
+
@app.post("/find", response_model=DocResponse)
|
| 96 |
+
def find_document(request: DocRequest):
|
| 97 |
+
start_time = time.time()
|
| 98 |
+
document = request.doc_id
|
| 99 |
+
source = request.source
|
| 100 |
+
spec_metadatas = spec_metadatas_3gpp if source == "3GPP" else spec_metadatas_etsi if source == "ETSI" else spec_metadatas_3gpp + spec_metadatas_etsi
|
| 101 |
+
is_3gpp = valid_3gpp_doc_format.match(document) or valid_3gpp_spec_format.match(document)
|
| 102 |
+
|
| 103 |
+
url = get_tdoc_url(document) if valid_3gpp_doc_format.match(document) else \
|
| 104 |
+
get_spec_url(document) if valid_3gpp_spec_format.match(document) else \
|
| 105 |
+
etsi_doc_finder.search_document(document) if valid_etsi_doc_format.match(document) else \
|
| 106 |
+
etsi_spec_finder.search_document(document) if valid_etsi_spec_format.match(document) else "Document ID not supported"
|
| 107 |
+
if "Specification" in url or "Document" in url:
|
| 108 |
+
raise HTTPException(status_code=404, detail=url)
|
| 109 |
+
|
| 110 |
+
version = None
|
| 111 |
+
if is_3gpp:
|
| 112 |
+
version = url.split("/")[-1].replace(".zip", "").split("-")[-1]
|
| 113 |
+
scope = None
|
| 114 |
+
for spec in spec_metadatas:
|
| 115 |
+
if spec['id'] == document:
|
| 116 |
+
scope = spec['scope']
|
| 117 |
+
break
|
| 118 |
+
|
| 119 |
+
return DocResponse(
|
| 120 |
+
doc_id=document,
|
| 121 |
+
version=version,
|
| 122 |
+
url=url,
|
| 123 |
+
search_time=time.time() - start_time,
|
| 124 |
+
scope=scope
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
@app.post("/batch", response_model=BatchDocResponse)
|
| 128 |
+
def find_document_batch(request: BatchDocRequest):
|
| 129 |
+
start_time = time.time()
|
| 130 |
+
documents = request.doc_ids
|
| 131 |
+
results = {}
|
| 132 |
+
missing = []
|
| 133 |
+
|
| 134 |
+
for document in documents:
|
| 135 |
+
url = get_tdoc_url(document) if valid_3gpp_doc_format.match(document) else \
|
| 136 |
+
get_spec_url(document) if valid_3gpp_spec_format.match(document) else \
|
| 137 |
+
etsi_doc_finder.search_document(document) if valid_etsi_doc_format.match(document) else \
|
| 138 |
+
etsi_spec_finder.search_document(document) if valid_etsi_spec_format.match(document) else "Document ID not supported"
|
| 139 |
+
|
| 140 |
+
if "Specification" in url or "Document" in url:
|
| 141 |
+
missing.append(document)
|
| 142 |
+
else:
|
| 143 |
+
results[document] = url
|
| 144 |
+
|
| 145 |
+
return BatchDocResponse(
|
| 146 |
+
results=results,
|
| 147 |
+
missing=missing,
|
| 148 |
+
search_time=time.time()-start_time
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
@app.post('/search-spec', response_model=KeywordResponse)
|
| 152 |
+
def search_specifications(request: KeywordRequest):
|
| 153 |
+
start_time = time.time()
|
| 154 |
+
boolSensitiveCase = request.case_sensitive
|
| 155 |
+
search_mode = request.search_mode
|
| 156 |
+
source = request.source
|
| 157 |
+
spec_metadatas = spec_metadatas_3gpp if source == "3GPP" else spec_metadatas_etsi if source == "ETSI" else spec_metadatas_3gpp + spec_metadatas_etsi
|
| 158 |
+
spec_type = request.spec_type
|
| 159 |
+
keywords = [string.lower() if boolSensitiveCase else string for string in request.keywords.split(",")]
|
| 160 |
+
print(keywords)
|
| 161 |
+
unique_specs = set()
|
| 162 |
+
results = []
|
| 163 |
+
|
| 164 |
+
if keywords == [""] and search_mode == "deep":
|
| 165 |
+
raise HTTPException(status_code=400, detail="You must enter keywords in deep search mode !")
|
| 166 |
+
|
| 167 |
+
for spec in spec_metadatas:
|
| 168 |
+
valid = False
|
| 169 |
+
if spec['id'] in unique_specs: continue
|
| 170 |
+
if spec.get('type', None) is None or (spec_type is not None and spec["type"] != spec_type): continue
|
| 171 |
+
if search_mode == "deep":
|
| 172 |
+
contents = []
|
| 173 |
+
doc = get_document(spec["id"], spec["title"], source)
|
| 174 |
+
docValid = len(doc) > 1
|
| 175 |
+
|
| 176 |
+
if request.mode == "and":
|
| 177 |
+
string = f"{spec['id']}+-+{spec['title']}+-+{spec['type']}+-+{spec['version']}"
|
| 178 |
+
if all(keyword in (string.lower() if boolSensitiveCase else string) for keyword in keywords):
|
| 179 |
+
valid = True
|
| 180 |
+
if search_mode == "deep":
|
| 181 |
+
if docValid:
|
| 182 |
+
for x in range(1, len(doc) - 1, 2):
|
| 183 |
+
section_title = doc[x]
|
| 184 |
+
section_content = doc[x+1]
|
| 185 |
+
if "reference" not in section_title.lower() and "void" not in section_title.lower() and "annex" not in section_content.lower():
|
| 186 |
+
if all(keyword in (section_content.lower() if boolSensitiveCase else section_content) for keyword in keywords):
|
| 187 |
+
valid = True
|
| 188 |
+
contents.append({section_title: section_content})
|
| 189 |
+
elif request.mode == "or":
|
| 190 |
+
string = f"{spec['id']}+-+{spec['title']}+-+{spec['type']}+-+{spec['version']}"
|
| 191 |
+
if any(keyword in (string.lower() if boolSensitiveCase else string) for keyword in keywords):
|
| 192 |
+
valid = True
|
| 193 |
+
if search_mode == "deep":
|
| 194 |
+
if docValid:
|
| 195 |
+
for x in range(1, len(doc) - 1, 2):
|
| 196 |
+
section_title = doc[x]
|
| 197 |
+
section_content = doc[x+1]
|
| 198 |
+
if "reference" not in section_title.lower() and "void" not in section_title.lower() and "annex" not in section_content.lower():
|
| 199 |
+
if any(keyword in (section_content.lower() if boolSensitiveCase else section_content) for keyword in keywords):
|
| 200 |
+
valid = True
|
| 201 |
+
contents.append({section_title: section_content})
|
| 202 |
+
if valid:
|
| 203 |
+
spec_content = spec
|
| 204 |
+
if search_mode == "deep":
|
| 205 |
+
spec_content["contains"] = {k: v for d in contents for k, v in d.items()}
|
| 206 |
+
results.append(spec_content)
|
| 207 |
+
else:
|
| 208 |
+
unique_specs.add(spec['id'])
|
| 209 |
+
|
| 210 |
+
if len(results) > 0:
|
| 211 |
+
return KeywordResponse(
|
| 212 |
+
results=results,
|
| 213 |
+
search_time=time.time() - start_time
|
| 214 |
+
)
|
| 215 |
+
else:
|
| 216 |
+
raise HTTPException(status_code=404, detail="Specifications not found")
|
| 217 |
+
|
| 218 |
+
@app.post("/search-spec/experimental", response_model=KeywordResponse)
|
| 219 |
+
def bm25_search_specification(request: BM25KeywordRequest):
|
| 220 |
+
start_time = time.time()
|
| 221 |
+
source = request.source
|
| 222 |
+
spec_type = request.spec_type
|
| 223 |
+
threshold = request.threshold
|
| 224 |
+
query = request.keywords
|
| 225 |
+
|
| 226 |
+
results_out = []
|
| 227 |
+
query_tokens = bm25s.tokenize(query)
|
| 228 |
+
if source == "3GPP":
|
| 229 |
+
results, scores = bm25_index_3gpp.retrieve(query_tokens, k=len(bm25_index_3gpp.corpus))
|
| 230 |
+
elif source == "ETSI":
|
| 231 |
+
results, scores = bm25_index_etsi.retrieve(query_tokens, k=len(bm25_index_etsi.corpus))
|
| 232 |
+
else:
|
| 233 |
+
print(len(bm25_index_3gpp.corpus), len(bm25_index_etsi.corpus))
|
| 234 |
+
results1, scores1 = bm25_index_3gpp.retrieve(query_tokens, k=len(bm25_index_3gpp.corpus))
|
| 235 |
+
results2, scores2 = bm25_index_etsi.retrieve(query_tokens, k=len(bm25_index_etsi.corpus))
|
| 236 |
+
results = np.concatenate([results1, results2], axis=1)
|
| 237 |
+
scores = np.concatenate([scores1, scores2], axis=1)
|
| 238 |
+
|
| 239 |
+
def calculate_boosted_score(metadata, score, query):
|
| 240 |
+
title = set(metadata['title'].lower().split())
|
| 241 |
+
q = set(query.lower().split())
|
| 242 |
+
spec_id_presence = 0.5 if metadata['id'].lower() in q else 0
|
| 243 |
+
booster = len(q & title) * 0.5
|
| 244 |
+
return score + spec_id_presence + booster
|
| 245 |
+
|
| 246 |
+
spec_scores = {}
|
| 247 |
+
spec_indices = {}
|
| 248 |
+
spec_details = {}
|
| 249 |
+
|
| 250 |
+
for i in range(results.shape[1]):
|
| 251 |
+
doc = results[0, i]
|
| 252 |
+
score = scores[0, i]
|
| 253 |
+
spec = doc["metadata"]["id"]
|
| 254 |
+
|
| 255 |
+
boosted_score = calculate_boosted_score(doc['metadata'], score, query)
|
| 256 |
+
|
| 257 |
+
if spec not in spec_scores or boosted_score > spec_scores[spec]:
|
| 258 |
+
spec_scores[spec] = boosted_score
|
| 259 |
+
spec_indices[spec] = i
|
| 260 |
+
spec_details[spec] = {
|
| 261 |
+
'original_score': score,
|
| 262 |
+
'boosted_score': boosted_score,
|
| 263 |
+
'doc': doc
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
def normalize_scores(scores_dict):
|
| 267 |
+
if not scores_dict:
|
| 268 |
+
return {}
|
| 269 |
+
|
| 270 |
+
scores_array = np.array(list(scores_dict.values())).reshape(-1, 1)
|
| 271 |
+
scaler = MinMaxScaler()
|
| 272 |
+
normalized_scores = scaler.fit_transform(scores_array).flatten()
|
| 273 |
+
|
| 274 |
+
normalized_dict = {}
|
| 275 |
+
for i, spec in enumerate(scores_dict.keys()):
|
| 276 |
+
normalized_dict[spec] = normalized_scores[i]
|
| 277 |
+
|
| 278 |
+
return normalized_dict
|
| 279 |
+
|
| 280 |
+
normalized_scores = normalize_scores(spec_scores)
|
| 281 |
+
|
| 282 |
+
for spec in spec_details:
|
| 283 |
+
spec_details[spec]["normalized_score"] = normalized_scores[spec]
|
| 284 |
+
|
| 285 |
+
unique_specs = sorted(normalized_scores.keys(), key=lambda x: normalized_scores[x], reverse=True)
|
| 286 |
+
|
| 287 |
+
for rank, spec in enumerate(unique_specs, 1):
|
| 288 |
+
details = spec_details[spec]
|
| 289 |
+
metadata = details['doc']['metadata']
|
| 290 |
+
if metadata.get('type', None) is None or (spec_type is not None and metadata["type"] != spec_type):
|
| 291 |
+
continue
|
| 292 |
+
if details['normalized_score'] < threshold / 100:
|
| 293 |
+
break
|
| 294 |
+
results_out.append(metadata)
|
| 295 |
+
|
| 296 |
+
if len(results_out) > 0:
|
| 297 |
+
return KeywordResponse(
|
| 298 |
+
results=results_out,
|
| 299 |
+
search_time=time.time() - start_time
|
| 300 |
+
)
|
| 301 |
+
else:
|
| 302 |
+
raise HTTPException(status_code=404, detail="Specifications not found")
|
classes.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import re
|
| 3 |
+
from bs4 import BeautifulSoup
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
class ETSIDocFinder:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
self.main_ftp_url = "https://docbox.etsi.org/SET"
|
| 10 |
+
self.session = requests.Session()
|
| 11 |
+
req = self.session.post("https://portal.etsi.org/ETSIPages/LoginEOL.ashx", verify=False, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0 Safari/537.36"}, data=json.dumps({"username": os.environ.get("EOL_USER"), "password": os.environ.get("EOL_PASSWORD")}))
|
| 12 |
+
print(req.content, req.status_code)
|
| 13 |
+
|
| 14 |
+
def get_workgroup(self, doc: str):
|
| 15 |
+
main_tsg = "SET-WG-R" if any(doc.startswith(kw) for kw in ["SETREQ", "SCPREQ"]) else "SET-WG-T" if any(doc.startswith(kw) for kw in ["SETTEC", "SCPTEC"]) else "SET" if any(doc.startswith(kw) for kw in ["SET", "SCP"]) else None
|
| 16 |
+
if main_tsg is None:
|
| 17 |
+
return None, None, None
|
| 18 |
+
regex = re.search(r'\(([^)]+)\)', doc)
|
| 19 |
+
workgroup = "20" + regex.group(1)
|
| 20 |
+
return main_tsg, workgroup, doc
|
| 21 |
+
|
| 22 |
+
def find_workgroup_url(self, main_tsg, workgroup):
|
| 23 |
+
response = self.session.get(f"{self.main_ftp_url}/{main_tsg}/05-CONTRIBUTIONS", verify=False)
|
| 24 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 25 |
+
for item in soup.find_all("tr"):
|
| 26 |
+
link = item.find("a")
|
| 27 |
+
if link and workgroup in link.get_text():
|
| 28 |
+
return f"{self.main_ftp_url}/{main_tsg}/05-CONTRIBUTIONS/{link.get_text()}"
|
| 29 |
+
|
| 30 |
+
return f"{self.main_ftp_url}/{main_tsg}/05-CONTRIBUTIONS/{workgroup}"
|
| 31 |
+
|
| 32 |
+
def get_docs_from_url(self, url):
|
| 33 |
+
try:
|
| 34 |
+
response = self.session.get(url, verify=False, timeout=15)
|
| 35 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
| 36 |
+
return [item.get_text() for item in soup.select("tr td a")]
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Error accessing {url}: {e}")
|
| 39 |
+
return []
|
| 40 |
+
|
| 41 |
+
def search_document(self, doc_id: str):
|
| 42 |
+
original = doc_id
|
| 43 |
+
|
| 44 |
+
main_tsg, workgroup, doc = self.get_workgroup(doc_id)
|
| 45 |
+
urls = []
|
| 46 |
+
if main_tsg:
|
| 47 |
+
wg_url = self.find_workgroup_url(main_tsg, workgroup)
|
| 48 |
+
print(wg_url)
|
| 49 |
+
if wg_url:
|
| 50 |
+
files = self.get_docs_from_url(wg_url)
|
| 51 |
+
print(files)
|
| 52 |
+
for f in files:
|
| 53 |
+
if doc in f.lower() or original in f:
|
| 54 |
+
print(f)
|
| 55 |
+
doc_url = f"{wg_url}/{f}"
|
| 56 |
+
urls.append(doc_url)
|
| 57 |
+
return urls[0] if len(urls) == 1 else urls[-2] if len(urls) > 1 else f"Document {doc_id} not found"
|
| 58 |
+
|
| 59 |
+
class ETSISpecFinder:
|
| 60 |
+
def __init__(self):
|
| 61 |
+
self.main_url = "https://www.etsi.org/deliver/etsi_ts"
|
| 62 |
+
self.headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0 Safari/537.36"}
|
| 63 |
+
|
| 64 |
+
def get_spec_path(self, doc_id: str):
|
| 65 |
+
if "-" in doc_id:
|
| 66 |
+
position, part = doc_id.split("-")
|
| 67 |
+
else:
|
| 68 |
+
position, part = doc_id, None
|
| 69 |
+
|
| 70 |
+
position = position.replace(" ", "")
|
| 71 |
+
if part:
|
| 72 |
+
if len(part) == 1:
|
| 73 |
+
part = "0" + part
|
| 74 |
+
spec_folder = position + part if part is not None else position
|
| 75 |
+
return f"{int(position) - (int(position)%100)}_{int(position) - (int(position)%100) + 99}/{spec_folder}"
|
| 76 |
+
|
| 77 |
+
def get_docs_from_url(self, url):
|
| 78 |
+
try:
|
| 79 |
+
response = requests.get(url, verify=False, timeout=15)
|
| 80 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
| 81 |
+
docs = [item.get_text() for item in soup.find_all("a")][1:]
|
| 82 |
+
return docs
|
| 83 |
+
except Exception as e:
|
| 84 |
+
print(f"Error accessing {url}: {e}")
|
| 85 |
+
return []
|
| 86 |
+
|
| 87 |
+
def search_document(self, doc_id: str):
|
| 88 |
+
# Example : 103 666[-2 opt]
|
| 89 |
+
original = doc_id
|
| 90 |
+
|
| 91 |
+
url = f"{self.main_url}/{self.get_spec_path(original)}/"
|
| 92 |
+
print(url)
|
| 93 |
+
|
| 94 |
+
releases = self.get_docs_from_url(url)
|
| 95 |
+
files = self.get_docs_from_url(url + releases[-1])
|
| 96 |
+
for f in files:
|
| 97 |
+
if f.endswith(".pdf"):
|
| 98 |
+
return url + releases[-1] + "/" + f
|
| 99 |
+
|
| 100 |
+
return f"Specification {doc_id} not found"
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
requests
|
| 4 |
+
beautifulsoup4
|
| 5 |
+
pydantic
|
| 6 |
+
numpy
|
| 7 |
+
pandas
|
| 8 |
+
lxml
|
| 9 |
+
python-dotenv
|
| 10 |
+
scikit-learn
|
| 11 |
+
nltk
|
| 12 |
+
bm25s[full]
|
| 13 |
+
jax[cpu]
|
| 14 |
+
datasets
|
schemas.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pydantic import BaseModel
|
| 2 |
+
from typing import *
|
| 3 |
+
|
| 4 |
+
class DocRequest(BaseModel):
|
| 5 |
+
doc_id: str
|
| 6 |
+
|
| 7 |
+
class DocResponse(BaseModel):
|
| 8 |
+
doc_id: str
|
| 9 |
+
url: str
|
| 10 |
+
version: Optional[str] = None
|
| 11 |
+
scope: Optional[str] = None
|
| 12 |
+
search_time: float
|
| 13 |
+
|
| 14 |
+
class BatchDocRequest(BaseModel):
|
| 15 |
+
doc_ids: List[str]
|
| 16 |
+
|
| 17 |
+
class BatchDocResponse(BaseModel):
|
| 18 |
+
results: Dict[str, str]
|
| 19 |
+
missing: List[str]
|
| 20 |
+
search_time: float
|
| 21 |
+
|
| 22 |
+
class BM25KeywordRequest(BaseModel):
|
| 23 |
+
keywords: Optional[str] = ""
|
| 24 |
+
source: Optional[Literal["3GPP", "ETSI", "all"]] = "all"
|
| 25 |
+
threshold: Optional[int] = 60
|
| 26 |
+
spec_type: Optional[Literal["TS", "TR"]] = None
|
| 27 |
+
|
| 28 |
+
class KeywordRequest(BaseModel):
|
| 29 |
+
keywords: Optional[str] = ""
|
| 30 |
+
search_mode: Literal["quick", "deep"]
|
| 31 |
+
case_sensitive: Optional[bool] = False
|
| 32 |
+
source: Optional[Literal["3GPP", "ETSI", "all"]] = "all"
|
| 33 |
+
spec_type: Optional[Literal["TS", "TR"]] = None
|
| 34 |
+
mode: Optional[Literal["and", "or"]] = "and"
|
| 35 |
+
|
| 36 |
+
class KeywordResponse(BaseModel):
|
| 37 |
+
results: List[Dict[str, Any]]
|
| 38 |
+
search_time: float
|