Pull last commit app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 2 |
import json
|
| 3 |
import traceback
|
|
@@ -10,40 +23,54 @@ from litellm.router import Router
|
|
| 10 |
from aiolimiter import AsyncLimiter
|
| 11 |
import pandas as pd
|
| 12 |
import asyncio
|
|
|
|
| 13 |
import re
|
| 14 |
import nltk
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
nltk.download('stopwords')
|
| 17 |
nltk.download('punkt_tab')
|
| 18 |
nltk.download('wordnet')
|
| 19 |
|
| 20 |
-
from nltk.stem import WordNetLemmatizer
|
| 21 |
-
from nltk.corpus import stopwords
|
| 22 |
-
from nltk.tokenize import word_tokenize
|
| 23 |
-
|
| 24 |
-
import string
|
| 25 |
-
import subprocess
|
| 26 |
-
import requests
|
| 27 |
-
from dotenv import load_dotenv
|
| 28 |
-
|
| 29 |
-
load_dotenv()
|
| 30 |
-
|
| 31 |
-
import os
|
| 32 |
-
from lxml import etree
|
| 33 |
-
import zipfile
|
| 34 |
-
import io
|
| 35 |
-
import warnings
|
| 36 |
-
|
| 37 |
warnings.filterwarnings("ignore")
|
| 38 |
|
| 39 |
-
from bs4 import BeautifulSoup
|
| 40 |
-
|
| 41 |
app = FastAPI(title="Requirements Extractor")
|
| 42 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 43 |
-
app.add_middleware(CORSMiddleware, allow_credentials=True, allow_headers=[
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
limiter_mapping = {
|
| 49 |
model["model_name"]: AsyncLimiter(model["litellm_params"]["rpm"], 60)
|
|
@@ -56,15 +83,18 @@ NSMAP = {
|
|
| 56 |
'v': 'urn:schemas-microsoft-com:vml'
|
| 57 |
}
|
| 58 |
|
|
|
|
| 59 |
def lemma(text: str):
|
| 60 |
stop_words = set(stopwords.words('english'))
|
| 61 |
txt = text.translate(str.maketrans('', '', string.punctuation)).strip()
|
| 62 |
-
tokens = [token for token in word_tokenize(
|
|
|
|
| 63 |
return [lemmatizer.lemmatize(token) for token in tokens]
|
| 64 |
|
|
|
|
| 65 |
def get_docx_archive(url: str) -> zipfile.ZipFile:
|
| 66 |
"""Récupère le docx depuis l'URL et le retourne comme objet ZipFile"""
|
| 67 |
-
if not url.endswith("zip"):
|
| 68 |
raise ValueError("URL doit pointer vers un fichier ZIP")
|
| 69 |
doc_id = os.path.splitext(os.path.basename(url))[0]
|
| 70 |
resp = requests.get(url, verify=False, headers={
|
|
@@ -84,7 +114,7 @@ def get_docx_archive(url: str) -> zipfile.ZipFile:
|
|
| 84 |
|
| 85 |
with open(input_path, "wb") as f:
|
| 86 |
f.write(docx_bytes)
|
| 87 |
-
|
| 88 |
subprocess.run([
|
| 89 |
"libreoffice",
|
| 90 |
"--headless",
|
|
@@ -98,17 +128,19 @@ def get_docx_archive(url: str) -> zipfile.ZipFile:
|
|
| 98 |
|
| 99 |
os.remove(input_path)
|
| 100 |
os.remove(output_path)
|
| 101 |
-
|
| 102 |
return zipfile.ZipFile(io.BytesIO(docx_bytes))
|
| 103 |
|
| 104 |
raise ValueError("Aucun fichier docx/doc trouvé dans l'archive")
|
| 105 |
|
|
|
|
| 106 |
def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree:
|
| 107 |
"""Parse le document.xml principal"""
|
| 108 |
xml_bytes = docx_zip.read('word/document.xml')
|
| 109 |
parser = etree.XMLParser(remove_blank_text=True)
|
| 110 |
return etree.fromstring(xml_bytes, parser=parser)
|
| 111 |
|
|
|
|
| 112 |
def clean_document_xml(root: etree._Element) -> None:
|
| 113 |
"""Nettoie le XML en modifiant l'arbre directement"""
|
| 114 |
# Suppression des balises <w:del> et leur contenu
|
|
@@ -116,7 +148,7 @@ def clean_document_xml(root: etree._Element) -> None:
|
|
| 116 |
parent = del_elem.getparent()
|
| 117 |
if parent is not None:
|
| 118 |
parent.remove(del_elem)
|
| 119 |
-
|
| 120 |
# Désencapsulation des balises <w:ins>
|
| 121 |
for ins_elem in root.xpath('//w:ins', namespaces=NSMAP):
|
| 122 |
parent = ins_elem.getparent()
|
|
@@ -125,7 +157,7 @@ def clean_document_xml(root: etree._Element) -> None:
|
|
| 125 |
parent.insert(index, child)
|
| 126 |
index += 1
|
| 127 |
parent.remove(ins_elem)
|
| 128 |
-
|
| 129 |
# Nettoyage des commentaires
|
| 130 |
for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']:
|
| 131 |
for elem in root.xpath(f'//{tag}', namespaces=NSMAP):
|
|
@@ -133,16 +165,17 @@ def clean_document_xml(root: etree._Element) -> None:
|
|
| 133 |
if parent is not None:
|
| 134 |
parent.remove(elem)
|
| 135 |
|
|
|
|
| 136 |
def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> bytes:
|
| 137 |
"""Crée un nouveau docx avec le XML modifié"""
|
| 138 |
output = io.BytesIO()
|
| 139 |
-
|
| 140 |
with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip:
|
| 141 |
# Copier tous les fichiers non modifiés
|
| 142 |
for file in original_zip.infolist():
|
| 143 |
if file.filename != 'word/document.xml':
|
| 144 |
new_zip.writestr(file, original_zip.read(file.filename))
|
| 145 |
-
|
| 146 |
# Ajouter le document.xml modifié
|
| 147 |
xml_str = etree.tostring(
|
| 148 |
modified_root,
|
|
@@ -151,10 +184,11 @@ def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._El
|
|
| 151 |
pretty_print=True
|
| 152 |
)
|
| 153 |
new_zip.writestr('word/document.xml', xml_str)
|
| 154 |
-
|
| 155 |
output.seek(0)
|
| 156 |
return output.getvalue()
|
| 157 |
|
|
|
|
| 158 |
def docx_to_txt(doc_id: str, url: str):
|
| 159 |
docx_zip = get_docx_archive(url)
|
| 160 |
root = parse_document_xml(docx_zip)
|
|
@@ -165,7 +199,7 @@ def docx_to_txt(doc_id: str, url: str):
|
|
| 165 |
output_path = f"/tmp/{doc_id}_cleaned.txt"
|
| 166 |
with open(input_path, "wb") as f:
|
| 167 |
f.write(modified_bytes)
|
| 168 |
-
|
| 169 |
subprocess.run([
|
| 170 |
"libreoffice",
|
| 171 |
"--headless",
|
|
@@ -181,18 +215,20 @@ def docx_to_txt(doc_id: str, url: str):
|
|
| 181 |
os.remove(output_path)
|
| 182 |
return txt_data
|
| 183 |
|
|
|
|
| 184 |
@app.get("/")
|
| 185 |
def render_page():
|
| 186 |
return FileResponse("index.html")
|
| 187 |
|
|
|
|
| 188 |
@app.post("/get_meetings", response_model=MeetingsResponse)
|
| 189 |
def get_meetings(req: MeetingsRequest):
|
| 190 |
working_group = req.working_group
|
| 191 |
tsg = re.sub(r"\d+", "", working_group)
|
| 192 |
wg_number = re.search(r"\d", working_group).group(0)
|
| 193 |
-
|
| 194 |
url = "https://www.3gpp.org/ftp/tsg_" + tsg
|
| 195 |
-
|
| 196 |
resp = requests.get(url, verify=False)
|
| 197 |
soup = BeautifulSoup(resp.text, "html.parser")
|
| 198 |
meeting_folders = []
|
|
@@ -205,22 +241,27 @@ def get_meetings(req: MeetingsRequest):
|
|
| 205 |
break
|
| 206 |
|
| 207 |
url += "/" + selected_folder
|
| 208 |
-
|
| 209 |
|
| 210 |
if selected_folder:
|
| 211 |
resp = requests.get(url, verify=False)
|
| 212 |
soup = BeautifulSoup(resp.text, "html.parser")
|
| 213 |
-
meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text(
|
| 214 |
-
|
| 215 |
-
|
|
|
|
|
|
|
| 216 |
return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders)))
|
| 217 |
|
|
|
|
| 218 |
@app.post("/get_dataframe", response_model=DataResponse)
|
| 219 |
def get_change_request_dataframe(req: DataRequest):
|
| 220 |
working_group = req.working_group
|
| 221 |
tsg = re.sub(r"\d+", "", working_group)
|
| 222 |
wg_number = re.search(r"\d", working_group).group(0)
|
| 223 |
url = "https://www.3gpp.org/ftp/tsg_" + tsg
|
|
|
|
|
|
|
| 224 |
resp = requests.get(url, verify=False)
|
| 225 |
soup = BeautifulSoup(resp.text, "html.parser")
|
| 226 |
wg_folders = [item.get_text() for item in soup.select("tr td a")]
|
|
@@ -233,18 +274,21 @@ def get_change_request_dataframe(req: DataRequest):
|
|
| 233 |
url += "/" + selected_folder + "/" + req.meeting + "/docs"
|
| 234 |
resp = requests.get(url, verify=False)
|
| 235 |
soup = BeautifulSoup(resp.text, "html.parser")
|
| 236 |
-
files = [item.get_text() for item in soup.select("tr td a")
|
|
|
|
| 237 |
|
| 238 |
def gen_url(tdoc: str):
|
| 239 |
return f"{url}/{tdoc}.zip"
|
| 240 |
|
| 241 |
df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23"))
|
| 242 |
-
filtered_df = df[(((df["Type"] == "CR") & ((df["CR category"] == "B") | (df["CR category"] == "C"))) | (df["Type"] == "pCR")) & ~(
|
|
|
|
| 243 |
filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url)
|
| 244 |
|
| 245 |
df = filtered_df.fillna("")
|
| 246 |
return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records"))
|
| 247 |
|
|
|
|
| 248 |
@app.post("/download_tdocs")
|
| 249 |
def download_tdocs(req: DownloadRequest):
|
| 250 |
documents = req.documents
|
|
@@ -290,13 +334,17 @@ def download_tdocs(req: DownloadRequest):
|
|
| 290 |
media_type="application/zip"
|
| 291 |
)
|
| 292 |
|
|
|
|
| 293 |
@app.post("/generate_requirements", response_model=RequirementsResponse)
|
| 294 |
async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks):
|
| 295 |
documents = req.documents
|
| 296 |
n_docs = len(documents)
|
|
|
|
|
|
|
|
|
|
| 297 |
def prompt(doc_id, full):
|
| 298 |
return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"
|
| 299 |
-
|
| 300 |
async def process_document(doc):
|
| 301 |
doc_id = doc.document
|
| 302 |
url = doc.url
|
|
@@ -305,13 +353,14 @@ async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks):
|
|
| 305 |
except Exception as e:
|
| 306 |
traceback.print_exception(e)
|
| 307 |
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
|
| 308 |
-
|
| 309 |
try:
|
| 310 |
model_used = "gemini-v2" # À adapter si fallback activé
|
| 311 |
async with limiter_mapping[model_used]:
|
| 312 |
resp_ai = await llm_router.acompletion(
|
| 313 |
model=model_used,
|
| 314 |
-
messages=[
|
|
|
|
| 315 |
response_format=RequirementsResponse
|
| 316 |
)
|
| 317 |
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
|
|
@@ -322,7 +371,8 @@ async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks):
|
|
| 322 |
async with limiter_mapping[model_used]:
|
| 323 |
resp_ai = await llm_router.acompletion(
|
| 324 |
model=model_used,
|
| 325 |
-
messages=[
|
|
|
|
| 326 |
response_format=RequirementsResponse
|
| 327 |
)
|
| 328 |
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
|
|
@@ -332,46 +382,50 @@ async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks):
|
|
| 332 |
else:
|
| 333 |
traceback.print_exception(e)
|
| 334 |
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
|
| 335 |
-
|
| 336 |
async def process_batch(batch):
|
| 337 |
results = await asyncio.gather(*(process_document(doc) for doc in batch))
|
| 338 |
return [item for sublist in results for item in sublist]
|
| 339 |
-
|
| 340 |
all_requirements = []
|
| 341 |
-
|
| 342 |
if n_docs <= 30:
|
| 343 |
batch_results = await process_batch(documents)
|
| 344 |
all_requirements.extend(batch_results)
|
| 345 |
else:
|
| 346 |
batch_size = 30
|
| 347 |
-
batches = [documents[i:i + batch_size]
|
| 348 |
-
|
|
|
|
| 349 |
for i, batch in enumerate(batches):
|
| 350 |
batch_results = await process_batch(batch)
|
| 351 |
all_requirements.extend(batch_results)
|
| 352 |
-
|
| 353 |
if i < len(batches) - 1:
|
| 354 |
background_tasks.add_task(asyncio.sleep, 60)
|
| 355 |
return RequirementsResponse(requirements=all_requirements)
|
| 356 |
|
|
|
|
| 357 |
@app.post("/get_reqs_from_query", response_model=ReqSearchResponse)
|
| 358 |
def find_requirements_from_problem_description(req: ReqSearchRequest):
|
| 359 |
requirements = req.requirements
|
| 360 |
query = req.query
|
| 361 |
|
| 362 |
-
requirements_text = "\n".join(
|
| 363 |
-
|
| 364 |
print("Called the LLM")
|
| 365 |
resp_ai = llm_router.completion(
|
| 366 |
model="gemini-v2",
|
| 367 |
-
messages=[{"role":"user","content": f"Given all the requirements : \n {requirements_text} \n and the problem description \"{query}\", return a list of 'Selection ID' for the most relevant corresponding requirements that reference or best cover the problem. If none of the requirements covers the problem, simply return an empty list"}],
|
| 368 |
response_format=ReqSearchLLMResponse
|
| 369 |
)
|
| 370 |
print("Answered")
|
| 371 |
print(resp_ai.choices[0].message.content)
|
| 372 |
-
|
| 373 |
-
out_llm = ReqSearchLLMResponse.model_validate_json(
|
|
|
|
| 374 |
if max(out_llm) > len(requirements) - 1:
|
| 375 |
-
raise HTTPException(
|
|
|
|
| 376 |
|
| 377 |
-
return ReqSearchResponse(requirements=[requirements[i] for i in out_llm])
|
|
|
|
| 1 |
+
from bs4 import BeautifulSoup
|
| 2 |
+
import warnings
|
| 3 |
+
import io
|
| 4 |
+
import zipfile
|
| 5 |
+
from lxml import etree
|
| 6 |
+
import os
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
import requests
|
| 9 |
+
import subprocess
|
| 10 |
+
import string
|
| 11 |
+
from nltk.tokenize import word_tokenize
|
| 12 |
+
from nltk.corpus import stopwords
|
| 13 |
+
from nltk.stem import WordNetLemmatizer
|
| 14 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 15 |
import json
|
| 16 |
import traceback
|
|
|
|
| 23 |
from aiolimiter import AsyncLimiter
|
| 24 |
import pandas as pd
|
| 25 |
import asyncio
|
| 26 |
+
import logging
|
| 27 |
import re
|
| 28 |
import nltk
|
| 29 |
|
| 30 |
+
load_dotenv()
|
| 31 |
+
|
| 32 |
+
logging.basicConfig(
|
| 33 |
+
level=logging.INFO,
|
| 34 |
+
format='[%(asctime)s][%(levelname)s][%(filename)s:%(lineno)d]: %(message)s',
|
| 35 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
nltk.download('stopwords')
|
| 39 |
nltk.download('punkt_tab')
|
| 40 |
nltk.download('wordnet')
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
warnings.filterwarnings("ignore")
|
| 43 |
|
|
|
|
|
|
|
| 44 |
app = FastAPI(title="Requirements Extractor")
|
| 45 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 46 |
+
app.add_middleware(CORSMiddleware, allow_credentials=True, allow_headers=[
|
| 47 |
+
"*"], allow_methods=["*"], allow_origins=["*"])
|
| 48 |
+
|
| 49 |
+
llm_router = Router(model_list=[
|
| 50 |
+
{
|
| 51 |
+
"model_name": "gemini-v1",
|
| 52 |
+
"litellm_params":
|
| 53 |
+
{
|
| 54 |
+
"model": "gemini/gemini-2.0-flash",
|
| 55 |
+
"api_key": os.environ.get("GEMINI"),
|
| 56 |
+
"max_retries": 10,
|
| 57 |
+
"rpm": 15,
|
| 58 |
+
"allowed_fails": 1,
|
| 59 |
+
"cooldown": 30,
|
| 60 |
+
}
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"model_name": "gemini-v2",
|
| 64 |
+
"litellm_params":
|
| 65 |
+
{
|
| 66 |
+
"model": "gemini/gemini-2.5-flash",
|
| 67 |
+
"api_key": os.environ.get("GEMINI"),
|
| 68 |
+
"max_retries": 10,
|
| 69 |
+
"rpm": 10,
|
| 70 |
+
"allowed_fails": 1,
|
| 71 |
+
"cooldown": 30,
|
| 72 |
+
}
|
| 73 |
+
}], fallbacks=[{"gemini-v2": ["gemini-v1"]}], num_retries=10, retry_after=30)
|
| 74 |
|
| 75 |
limiter_mapping = {
|
| 76 |
model["model_name"]: AsyncLimiter(model["litellm_params"]["rpm"], 60)
|
|
|
|
| 83 |
'v': 'urn:schemas-microsoft-com:vml'
|
| 84 |
}
|
| 85 |
|
| 86 |
+
|
| 87 |
def lemma(text: str):
|
| 88 |
stop_words = set(stopwords.words('english'))
|
| 89 |
txt = text.translate(str.maketrans('', '', string.punctuation)).strip()
|
| 90 |
+
tokens = [token for token in word_tokenize(
|
| 91 |
+
txt.lower()) if token not in stop_words]
|
| 92 |
return [lemmatizer.lemmatize(token) for token in tokens]
|
| 93 |
|
| 94 |
+
|
| 95 |
def get_docx_archive(url: str) -> zipfile.ZipFile:
|
| 96 |
"""Récupère le docx depuis l'URL et le retourne comme objet ZipFile"""
|
| 97 |
+
if not url.endswith("zip"):
|
| 98 |
raise ValueError("URL doit pointer vers un fichier ZIP")
|
| 99 |
doc_id = os.path.splitext(os.path.basename(url))[0]
|
| 100 |
resp = requests.get(url, verify=False, headers={
|
|
|
|
| 114 |
|
| 115 |
with open(input_path, "wb") as f:
|
| 116 |
f.write(docx_bytes)
|
| 117 |
+
|
| 118 |
subprocess.run([
|
| 119 |
"libreoffice",
|
| 120 |
"--headless",
|
|
|
|
| 128 |
|
| 129 |
os.remove(input_path)
|
| 130 |
os.remove(output_path)
|
| 131 |
+
|
| 132 |
return zipfile.ZipFile(io.BytesIO(docx_bytes))
|
| 133 |
|
| 134 |
raise ValueError("Aucun fichier docx/doc trouvé dans l'archive")
|
| 135 |
|
| 136 |
+
|
| 137 |
def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree:
|
| 138 |
"""Parse le document.xml principal"""
|
| 139 |
xml_bytes = docx_zip.read('word/document.xml')
|
| 140 |
parser = etree.XMLParser(remove_blank_text=True)
|
| 141 |
return etree.fromstring(xml_bytes, parser=parser)
|
| 142 |
|
| 143 |
+
|
| 144 |
def clean_document_xml(root: etree._Element) -> None:
|
| 145 |
"""Nettoie le XML en modifiant l'arbre directement"""
|
| 146 |
# Suppression des balises <w:del> et leur contenu
|
|
|
|
| 148 |
parent = del_elem.getparent()
|
| 149 |
if parent is not None:
|
| 150 |
parent.remove(del_elem)
|
| 151 |
+
|
| 152 |
# Désencapsulation des balises <w:ins>
|
| 153 |
for ins_elem in root.xpath('//w:ins', namespaces=NSMAP):
|
| 154 |
parent = ins_elem.getparent()
|
|
|
|
| 157 |
parent.insert(index, child)
|
| 158 |
index += 1
|
| 159 |
parent.remove(ins_elem)
|
| 160 |
+
|
| 161 |
# Nettoyage des commentaires
|
| 162 |
for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']:
|
| 163 |
for elem in root.xpath(f'//{tag}', namespaces=NSMAP):
|
|
|
|
| 165 |
if parent is not None:
|
| 166 |
parent.remove(elem)
|
| 167 |
|
| 168 |
+
|
| 169 |
def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> bytes:
|
| 170 |
"""Crée un nouveau docx avec le XML modifié"""
|
| 171 |
output = io.BytesIO()
|
| 172 |
+
|
| 173 |
with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip:
|
| 174 |
# Copier tous les fichiers non modifiés
|
| 175 |
for file in original_zip.infolist():
|
| 176 |
if file.filename != 'word/document.xml':
|
| 177 |
new_zip.writestr(file, original_zip.read(file.filename))
|
| 178 |
+
|
| 179 |
# Ajouter le document.xml modifié
|
| 180 |
xml_str = etree.tostring(
|
| 181 |
modified_root,
|
|
|
|
| 184 |
pretty_print=True
|
| 185 |
)
|
| 186 |
new_zip.writestr('word/document.xml', xml_str)
|
| 187 |
+
|
| 188 |
output.seek(0)
|
| 189 |
return output.getvalue()
|
| 190 |
|
| 191 |
+
|
| 192 |
def docx_to_txt(doc_id: str, url: str):
|
| 193 |
docx_zip = get_docx_archive(url)
|
| 194 |
root = parse_document_xml(docx_zip)
|
|
|
|
| 199 |
output_path = f"/tmp/{doc_id}_cleaned.txt"
|
| 200 |
with open(input_path, "wb") as f:
|
| 201 |
f.write(modified_bytes)
|
| 202 |
+
|
| 203 |
subprocess.run([
|
| 204 |
"libreoffice",
|
| 205 |
"--headless",
|
|
|
|
| 215 |
os.remove(output_path)
|
| 216 |
return txt_data
|
| 217 |
|
| 218 |
+
|
| 219 |
@app.get("/")
|
| 220 |
def render_page():
|
| 221 |
return FileResponse("index.html")
|
| 222 |
|
| 223 |
+
|
| 224 |
@app.post("/get_meetings", response_model=MeetingsResponse)
|
| 225 |
def get_meetings(req: MeetingsRequest):
|
| 226 |
working_group = req.working_group
|
| 227 |
tsg = re.sub(r"\d+", "", working_group)
|
| 228 |
wg_number = re.search(r"\d", working_group).group(0)
|
| 229 |
+
logging.debug(tsg, wg_number)
|
| 230 |
url = "https://www.3gpp.org/ftp/tsg_" + tsg
|
| 231 |
+
logging.debug(url)
|
| 232 |
resp = requests.get(url, verify=False)
|
| 233 |
soup = BeautifulSoup(resp.text, "html.parser")
|
| 234 |
meeting_folders = []
|
|
|
|
| 241 |
break
|
| 242 |
|
| 243 |
url += "/" + selected_folder
|
| 244 |
+
logging.debug(url)
|
| 245 |
|
| 246 |
if selected_folder:
|
| 247 |
resp = requests.get(url, verify=False)
|
| 248 |
soup = BeautifulSoup(resp.text, "html.parser")
|
| 249 |
+
meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text(
|
| 250 |
+
).startswith("TSG") or (item.get_text().startswith("CT") and "-" in item.get_text())]
|
| 251 |
+
all_meetings = [working_group + "#" + meeting.split("_", 1)[1].replace("_", " ").replace(
|
| 252 |
+
"-", " ") if meeting.startswith('TSG') else meeting.replace("-", "#") for meeting in meeting_folders]
|
| 253 |
+
|
| 254 |
return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders)))
|
| 255 |
|
| 256 |
+
|
| 257 |
@app.post("/get_dataframe", response_model=DataResponse)
|
| 258 |
def get_change_request_dataframe(req: DataRequest):
|
| 259 |
working_group = req.working_group
|
| 260 |
tsg = re.sub(r"\d+", "", working_group)
|
| 261 |
wg_number = re.search(r"\d", working_group).group(0)
|
| 262 |
url = "https://www.3gpp.org/ftp/tsg_" + tsg
|
| 263 |
+
logging.info("Fetching TDocs dataframe")
|
| 264 |
+
|
| 265 |
resp = requests.get(url, verify=False)
|
| 266 |
soup = BeautifulSoup(resp.text, "html.parser")
|
| 267 |
wg_folders = [item.get_text() for item in soup.select("tr td a")]
|
|
|
|
| 274 |
url += "/" + selected_folder + "/" + req.meeting + "/docs"
|
| 275 |
resp = requests.get(url, verify=False)
|
| 276 |
soup = BeautifulSoup(resp.text, "html.parser")
|
| 277 |
+
files = [item.get_text() for item in soup.select("tr td a")
|
| 278 |
+
if item.get_text().endswith(".xlsx")]
|
| 279 |
|
| 280 |
def gen_url(tdoc: str):
|
| 281 |
return f"{url}/{tdoc}.zip"
|
| 282 |
|
| 283 |
df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23"))
|
| 284 |
+
filtered_df = df[(((df["Type"] == "CR") & ((df["CR category"] == "B") | (df["CR category"] == "C"))) | (df["Type"] == "pCR")) & ~(
|
| 285 |
+
df["Uploaded"].isna())][["TDoc", "Title", "CR category", "Source", "Type", "Agenda item", "Agenda item description", "TDoc Status"]]
|
| 286 |
filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url)
|
| 287 |
|
| 288 |
df = filtered_df.fillna("")
|
| 289 |
return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records"))
|
| 290 |
|
| 291 |
+
|
| 292 |
@app.post("/download_tdocs")
|
| 293 |
def download_tdocs(req: DownloadRequest):
|
| 294 |
documents = req.documents
|
|
|
|
| 334 |
media_type="application/zip"
|
| 335 |
)
|
| 336 |
|
| 337 |
+
|
| 338 |
@app.post("/generate_requirements", response_model=RequirementsResponse)
|
| 339 |
async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks):
|
| 340 |
documents = req.documents
|
| 341 |
n_docs = len(documents)
|
| 342 |
+
|
| 343 |
+
logging.info("Generating requirements for documents: {}".format([doc.document for doc in documents]))
|
| 344 |
+
|
| 345 |
def prompt(doc_id, full):
|
| 346 |
return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"
|
| 347 |
+
|
| 348 |
async def process_document(doc):
|
| 349 |
doc_id = doc.document
|
| 350 |
url = doc.url
|
|
|
|
| 353 |
except Exception as e:
|
| 354 |
traceback.print_exception(e)
|
| 355 |
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
|
| 356 |
+
|
| 357 |
try:
|
| 358 |
model_used = "gemini-v2" # À adapter si fallback activé
|
| 359 |
async with limiter_mapping[model_used]:
|
| 360 |
resp_ai = await llm_router.acompletion(
|
| 361 |
model=model_used,
|
| 362 |
+
messages=[
|
| 363 |
+
{"role": "user", "content": prompt(doc_id, full)}],
|
| 364 |
response_format=RequirementsResponse
|
| 365 |
)
|
| 366 |
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
|
|
|
|
| 371 |
async with limiter_mapping[model_used]:
|
| 372 |
resp_ai = await llm_router.acompletion(
|
| 373 |
model=model_used,
|
| 374 |
+
messages=[
|
| 375 |
+
{"role": "user", "content": prompt(doc_id, full)}],
|
| 376 |
response_format=RequirementsResponse
|
| 377 |
)
|
| 378 |
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
|
|
|
|
| 382 |
else:
|
| 383 |
traceback.print_exception(e)
|
| 384 |
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
|
| 385 |
+
|
| 386 |
async def process_batch(batch):
|
| 387 |
results = await asyncio.gather(*(process_document(doc) for doc in batch))
|
| 388 |
return [item for sublist in results for item in sublist]
|
| 389 |
+
|
| 390 |
all_requirements = []
|
| 391 |
+
|
| 392 |
if n_docs <= 30:
|
| 393 |
batch_results = await process_batch(documents)
|
| 394 |
all_requirements.extend(batch_results)
|
| 395 |
else:
|
| 396 |
batch_size = 30
|
| 397 |
+
batches = [documents[i:i + batch_size]
|
| 398 |
+
for i in range(0, n_docs, batch_size)]
|
| 399 |
+
|
| 400 |
for i, batch in enumerate(batches):
|
| 401 |
batch_results = await process_batch(batch)
|
| 402 |
all_requirements.extend(batch_results)
|
| 403 |
+
|
| 404 |
if i < len(batches) - 1:
|
| 405 |
background_tasks.add_task(asyncio.sleep, 60)
|
| 406 |
return RequirementsResponse(requirements=all_requirements)
|
| 407 |
|
| 408 |
+
|
| 409 |
@app.post("/get_reqs_from_query", response_model=ReqSearchResponse)
|
| 410 |
def find_requirements_from_problem_description(req: ReqSearchRequest):
|
| 411 |
requirements = req.requirements
|
| 412 |
query = req.query
|
| 413 |
|
| 414 |
+
requirements_text = "\n".join(
|
| 415 |
+
[f"[Selection ID: {r.req_id} | Document: {r.document} | Context: {r.context} | Requirement: {r.requirement}]" for r in requirements])
|
| 416 |
print("Called the LLM")
|
| 417 |
resp_ai = llm_router.completion(
|
| 418 |
model="gemini-v2",
|
| 419 |
+
messages=[{"role": "user", "content": f"Given all the requirements : \n {requirements_text} \n and the problem description \"{query}\", return a list of 'Selection ID' for the most relevant corresponding requirements that reference or best cover the problem. If none of the requirements covers the problem, simply return an empty list"}],
|
| 420 |
response_format=ReqSearchLLMResponse
|
| 421 |
)
|
| 422 |
print("Answered")
|
| 423 |
print(resp_ai.choices[0].message.content)
|
| 424 |
+
|
| 425 |
+
out_llm = ReqSearchLLMResponse.model_validate_json(
|
| 426 |
+
resp_ai.choices[0].message.content).selected
|
| 427 |
if max(out_llm) > len(requirements) - 1:
|
| 428 |
+
raise HTTPException(
|
| 429 |
+
status_code=500, detail="LLM error : Generated a wrong index, please try again.")
|
| 430 |
|
| 431 |
+
return ReqSearchResponse(requirements=[requirements[i] for i in out_llm])
|