Spaces:
Sleeping
Sleeping
| import logging | |
| from typing import List, Dict, Any, Union, Optional | |
| from langchain_core.output_parsers import StrOutputParser | |
| from .config import settings | |
| from .llm_interface import get_llm, invoke_llm | |
| from .prompts import SUMMARIZER_PROMPT | |
| from .graph_operations import format_doc_for_llm # Reuse formatting | |
| # Import llmlingua if compression is used | |
| try: | |
| from llmlingua import PromptCompressor | |
| LLMLINGUA_AVAILABLE = True | |
| except ImportError: | |
| LLMLINGUA_AVAILABLE = False | |
| PromptCompressor = None # Define as None if not available | |
| logger = logging.getLogger(__name__) | |
| _compressor_cache = {} | |
| def get_compressor(method: str) -> Optional['PromptCompressor']: | |
| """Initializes and caches llmlingua compressor.""" | |
| if not LLMLINGUA_AVAILABLE: | |
| logger.warning("LLMLingua not installed, compression unavailable.") | |
| return None | |
| if method not in _compressor_cache: | |
| logger.info(f"Initializing LLMLingua compressor: {method}") | |
| try: | |
| # Adjust model names and params as needed | |
| if method == "llm_lingua2": | |
| model_name = "microsoft/llmlingua-2-xlm-roberta-large-meetingbank" | |
| use_llmlingua2 = True | |
| elif method == "llm_lingua": | |
| model_name = "microsoft/phi-2" # Requires ~8GB RAM | |
| use_llmlingua2 = False | |
| else: | |
| logger.error(f"Unsupported compression method: {method}") | |
| return None | |
| _compressor_cache[method] = PromptCompressor( | |
| model_name=model_name, | |
| use_llmlingua2=use_llmlingua2, | |
| device_map="cpu" # Or "cuda" if GPU available | |
| ) | |
| except Exception as e: | |
| logger.error(f"Failed to initialize LLMLingua compressor '{method}': {e}", exc_info=True) | |
| return None | |
| return _compressor_cache[method] | |
| def summarize_document(doc_content: str) -> str: | |
| """Summarizes a single document using the configured LLM.""" | |
| logger.debug("Summarizing document...") | |
| try: | |
| summarize_llm = get_llm(settings.summarize_llm_model) | |
| summarize_chain = SUMMARIZER_PROMPT | summarize_llm | StrOutputParser() | |
| summary = invoke_llm(summarize_chain, {"document": doc_content}) | |
| logger.debug("Summarization complete.") | |
| return summary | |
| except Exception as e: | |
| logger.error(f"Summarization failed: {e}", exc_info=True) | |
| return f"Error during summarization: {e}" # Return error message instead of failing | |
| def compress_document(doc_content: str) -> str: | |
| """Compresses a single document using LLMLingua.""" | |
| logger.debug(f"Compressing document using method: {settings.compression_method}...") | |
| if not settings.compression_method: | |
| logger.warning("Compression method not configured, skipping.") | |
| return doc_content | |
| compressor = get_compressor(settings.compression_method) | |
| if not compressor: | |
| logger.warning("Compressor not available, skipping compression.") | |
| return doc_content | |
| try: | |
| # Adjust compression parameters as needed | |
| # rate = settings.compress_rate or 0.5 | |
| # force_tokens = ['\n', '.', ',', '?', '!'] # Example tokens | |
| # context? instructions? question? | |
| # Simple compression for now: | |
| result = compressor.compress_prompt(doc_content, rate=settings.compress_rate or 0.5) | |
| compressed_text = result.get("compressed_prompt", doc_content) | |
| original_len = len(doc_content.split()) | |
| compressed_len = len(compressed_text.split()) | |
| logger.debug(f"Compression complete. Original words: {original_len}, Compressed words: {compressed_len}") | |
| return compressed_text | |
| except Exception as e: | |
| logger.error(f"Compression failed: {e}", exc_info=True) | |
| return f"Error during compression: {e}" # Return error message | |
| def process_documents( | |
| docs: List[Dict[str, Any]], | |
| processing_steps: List[Union[str, dict]] | |
| ) -> List[str]: | |
| """Processes a list of documents according to the specified steps.""" | |
| logger.info(f"Processing {len(docs)} documents with steps: {processing_steps}") | |
| if not docs: | |
| return [] | |
| processed_outputs = [] | |
| for i, doc in enumerate(docs): | |
| logger.info(f"Processing document {i+1}/{len(docs)}...") | |
| current_content = format_doc_for_llm(doc) # Start with formatted original doc | |
| for step in processing_steps: | |
| if step == "summarize": | |
| current_content = summarize_document(current_content) | |
| elif step == "compress": | |
| current_content = compress_document(current_content) | |
| elif isinstance(step, dict): | |
| # Placeholder for custom processing steps defined by dicts | |
| logger.warning(f"Custom processing step not implemented: {step}") | |
| # Add logic here if needed: extract params, call specific LLM/function | |
| pass | |
| else: | |
| logger.warning(f"Unknown processing step type: {step}") | |
| processed_outputs.append(current_content) # Add the final processed content for this doc | |
| logger.info("Document processing finished.") | |
| return processed_outputs |