Spaces:
Sleeping
Sleeping
Duplicate from OrganizedProgrammers/PDFAISS-2.3.1
Browse filesCo-authored-by: Alma atla <Almaatla@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +13 -0
- app.py +355 -0
- requirements.txt +8 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: PDFAISS 2.3
|
| 3 |
+
emoji: 🏃
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.29.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
duplicated_from: OrganizedProgrammers/PDFAISS-2.3.1
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import langchain
|
| 2 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 3 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 4 |
+
from langchain.document_loaders import UnstructuredPDFLoader,UnstructuredWordDocumentLoader
|
| 5 |
+
from langchain.indexes import VectorstoreIndexCreator
|
| 6 |
+
from langchain.vectorstores import FAISS
|
| 7 |
+
from langchain import HuggingFaceHub
|
| 8 |
+
from langchain import PromptTemplate
|
| 9 |
+
from langchain.chat_models import ChatOpenAI
|
| 10 |
+
from zipfile import ZipFile
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import openpyxl
|
| 13 |
+
import os
|
| 14 |
+
import shutil
|
| 15 |
+
from langchain.schema import Document
|
| 16 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 17 |
+
import tiktoken
|
| 18 |
+
import secrets
|
| 19 |
+
import openai
|
| 20 |
+
import time
|
| 21 |
+
|
| 22 |
+
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
| 23 |
+
|
| 24 |
+
# create the length function
|
| 25 |
+
def tiktoken_len(text):
|
| 26 |
+
tokens = tokenizer.encode(
|
| 27 |
+
text,
|
| 28 |
+
disallowed_special=()
|
| 29 |
+
)
|
| 30 |
+
return len(tokens)
|
| 31 |
+
|
| 32 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 33 |
+
chunk_size=600,
|
| 34 |
+
chunk_overlap=200,
|
| 35 |
+
length_function=tiktoken_len,
|
| 36 |
+
separators=["\n\n", "\n", " ", ""]
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 40 |
+
foo = Document(page_content='foo is fou!',metadata={"source":'foo source'})
|
| 41 |
+
|
| 42 |
+
def reset_database(ui_session_id):
|
| 43 |
+
session_id = f"PDFAISS-{ui_session_id}"
|
| 44 |
+
if 'drive' in session_id:
|
| 45 |
+
print("RESET DATABASE: session_id contains 'drive' !!")
|
| 46 |
+
return None
|
| 47 |
+
|
| 48 |
+
try:
|
| 49 |
+
shutil.rmtree(session_id)
|
| 50 |
+
except:
|
| 51 |
+
print(f'no {session_id} directory present')
|
| 52 |
+
|
| 53 |
+
try:
|
| 54 |
+
os.remove(f"{session_id}.zip")
|
| 55 |
+
except:
|
| 56 |
+
print("no {session_id}.zip present")
|
| 57 |
+
|
| 58 |
+
return None
|
| 59 |
+
|
| 60 |
+
def is_duplicate(split_docs,db):
|
| 61 |
+
epsilon=0.0
|
| 62 |
+
print(f"DUPLICATE: Treating: {split_docs[0].metadata['source'].split('/')[-1]}")
|
| 63 |
+
for i in range(min(3,len(split_docs))):
|
| 64 |
+
query = split_docs[i].page_content
|
| 65 |
+
docs = db.similarity_search_with_score(query,k=1)
|
| 66 |
+
_ , score = docs[0]
|
| 67 |
+
epsilon += score
|
| 68 |
+
print(f"DUPLICATE: epsilon: {epsilon}")
|
| 69 |
+
return epsilon < 0.1
|
| 70 |
+
|
| 71 |
+
def merge_split_docs_to_db(split_docs,db,progress,progress_step=0.1):
|
| 72 |
+
progress(progress_step,desc="merging docs")
|
| 73 |
+
if len(split_docs)==0:
|
| 74 |
+
print("MERGE to db: NO docs!!")
|
| 75 |
+
return
|
| 76 |
+
|
| 77 |
+
filename = split_docs[0].metadata['source']
|
| 78 |
+
if is_duplicate(split_docs,db):
|
| 79 |
+
print(f"MERGE: Document is duplicated: {filename}")
|
| 80 |
+
return
|
| 81 |
+
print(f"MERGE: number of split docs: {len(split_docs)}")
|
| 82 |
+
batch = 10
|
| 83 |
+
for i in range(0, len(split_docs), batch):
|
| 84 |
+
progress(i/len(split_docs),desc=f"added {i} chunks of {len(split_docs)} chunks")
|
| 85 |
+
db1 = FAISS.from_documents(split_docs[i:i+batch], embeddings)
|
| 86 |
+
db.merge_from(db1)
|
| 87 |
+
return db
|
| 88 |
+
|
| 89 |
+
def merge_pdf_to_db(filename,db,progress,progress_step=0.1):
|
| 90 |
+
progress_step+=0.05
|
| 91 |
+
progress(progress_step,'unpacking pdf')
|
| 92 |
+
doc = UnstructuredPDFLoader(filename).load()
|
| 93 |
+
doc[0].metadata['source'] = filename.split('/')[-1]
|
| 94 |
+
split_docs = text_splitter.split_documents(doc)
|
| 95 |
+
progress_step+=0.3
|
| 96 |
+
progress(progress_step,'docx unpacked')
|
| 97 |
+
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
|
| 98 |
+
|
| 99 |
+
def merge_docx_to_db(filename,db,progress,progress_step=0.1):
|
| 100 |
+
progress_step+=0.05
|
| 101 |
+
progress(progress_step,'unpacking docx')
|
| 102 |
+
doc = UnstructuredWordDocumentLoader(filename).load()
|
| 103 |
+
doc[0].metadata['source'] = filename.split('/')[-1]
|
| 104 |
+
split_docs = text_splitter.split_documents(doc)
|
| 105 |
+
progress_step+=0.3
|
| 106 |
+
progress(progress_step,'docx unpacked')
|
| 107 |
+
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
|
| 108 |
+
|
| 109 |
+
def merge_txt_to_db(filename,db,progress,progress_step=0.1):
|
| 110 |
+
progress_step+=0.05
|
| 111 |
+
progress(progress_step,'unpacking txt')
|
| 112 |
+
with open(filename) as f:
|
| 113 |
+
docs = text_splitter.split_text(f.read())
|
| 114 |
+
split_docs = [Document(page_content=doc,metadata={'source':filename.split('/')[-1]}) for doc in docs]
|
| 115 |
+
progress_step+=0.3
|
| 116 |
+
progress(progress_step,'txt unpacked')
|
| 117 |
+
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
|
| 118 |
+
|
| 119 |
+
def unpack_zip_file(filename,db,progress):
|
| 120 |
+
with ZipFile(filename, 'r') as zipObj:
|
| 121 |
+
contents = zipObj.namelist()
|
| 122 |
+
print(f"unpack zip: contents: {contents}")
|
| 123 |
+
tmp_directory = filename.split('/')[-1].split('.')[-2]
|
| 124 |
+
shutil.unpack_archive(filename, tmp_directory)
|
| 125 |
+
|
| 126 |
+
if 'index.faiss' in [item.lower() for item in contents]:
|
| 127 |
+
db2 = FAISS.load_local(tmp_directory, embeddings)
|
| 128 |
+
db.merge_from(db2)
|
| 129 |
+
return db
|
| 130 |
+
|
| 131 |
+
for file in contents:
|
| 132 |
+
if file.lower().endswith('.docx'):
|
| 133 |
+
db = merge_docx_to_db(f"{tmp_directory}/{file}",db,progress)
|
| 134 |
+
if file.lower().endswith('.pdf'):
|
| 135 |
+
db = merge_pdf_to_db(f"{tmp_directory}/{file}",db,progress)
|
| 136 |
+
if file.lower().endswith('.txt'):
|
| 137 |
+
db = merge_txt_to_db(f"{tmp_directory}/{file}",db,progress)
|
| 138 |
+
return db
|
| 139 |
+
|
| 140 |
+
def add_files_to_zip(session_id):
|
| 141 |
+
zip_file_name = f"{session_id}.zip"
|
| 142 |
+
with ZipFile(zip_file_name, "w") as zipObj:
|
| 143 |
+
for root, dirs, files in os.walk(session_id):
|
| 144 |
+
for file_name in files:
|
| 145 |
+
file_path = os.path.join(root, file_name)
|
| 146 |
+
arcname = os.path.relpath(file_path, session_id)
|
| 147 |
+
zipObj.write(file_path, arcname)
|
| 148 |
+
|
| 149 |
+
## Summary functions ##
|
| 150 |
+
|
| 151 |
+
## Load each doc from the vector store
|
| 152 |
+
def load_docs(ui_session_id):
|
| 153 |
+
session_id_global_db = f"PDFAISS-{ui_session_id}"
|
| 154 |
+
try:
|
| 155 |
+
db = FAISS.load_local(session_id_global_db,embeddings)
|
| 156 |
+
print("load_docs after loading global db:",session_id_global_db,len(db.index_to_docstore_id))
|
| 157 |
+
except:
|
| 158 |
+
return f"SESSION: {session_id_global_db} database does not exist","",""
|
| 159 |
+
docs = []
|
| 160 |
+
for i in range(1,len(db.index_to_docstore_id)):
|
| 161 |
+
docs.append(db.docstore.search(db.index_to_docstore_id[i]))
|
| 162 |
+
return docs
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# summarize with gpt 3.5 turbo
|
| 166 |
+
def summarize_gpt(doc,system='provide a summary of the following document: ', first_tokens=600):
|
| 167 |
+
doc = doc.replace('\n\n\n', '').replace('---', '').replace('...', '').replace('___', '')
|
| 168 |
+
encoded = tokenizer.encode(doc)
|
| 169 |
+
print("/n TOKENIZED : ", encoded)
|
| 170 |
+
decoded = tokenizer.decode(encoded[:min(first_tokens, len(encoded))])
|
| 171 |
+
print("/n DOC SHORTEN", min(first_tokens, len(encoded)), " : ", decoded)
|
| 172 |
+
completion = openai.ChatCompletion.create(
|
| 173 |
+
model="gpt-3.5-turbo",
|
| 174 |
+
messages=[
|
| 175 |
+
{"role": "system", "content": system},
|
| 176 |
+
{"role": "user", "content": decoded}
|
| 177 |
+
]
|
| 178 |
+
)
|
| 179 |
+
return completion.choices[0].message["content"]
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def summarize_docs_generator(apikey_input, session_id):
|
| 183 |
+
openai.api_key = apikey_input
|
| 184 |
+
docs=load_docs(session_id)
|
| 185 |
+
print("################# DOCS LOADED ##################", "docs type : ", type(docs[0]))
|
| 186 |
+
|
| 187 |
+
try:
|
| 188 |
+
fail = docs[0].page_content
|
| 189 |
+
except:
|
| 190 |
+
return docs[0]
|
| 191 |
+
|
| 192 |
+
source = ""
|
| 193 |
+
summaries = ""
|
| 194 |
+
i = 0
|
| 195 |
+
while i<len(docs):
|
| 196 |
+
doc = docs[i]
|
| 197 |
+
unique_doc = ""
|
| 198 |
+
if source != doc.metadata:
|
| 199 |
+
unique_doc = ''.join([doc.page_content for doc in docs[i:i+3]])
|
| 200 |
+
print("\n\n****Open AI API called****\n\n")
|
| 201 |
+
if i == 0:
|
| 202 |
+
try:
|
| 203 |
+
summary = summarize_gpt(unique_doc)
|
| 204 |
+
except:
|
| 205 |
+
return f"ERROR : Try checking the validity of the provided OpenAI API Key"
|
| 206 |
+
else:
|
| 207 |
+
try:
|
| 208 |
+
summary = summarize_gpt(unique_doc)
|
| 209 |
+
except:
|
| 210 |
+
print(f"ERROR : There was an error but it is not linked with the validity of api key, taking a 20s nap")
|
| 211 |
+
yield summaries + f"\n\n °°° OpenAI error, please wait 20 sec of cooldown. °°°"
|
| 212 |
+
time.sleep(20)
|
| 213 |
+
summary = summarize_gpt(unique_doc)
|
| 214 |
+
|
| 215 |
+
print("SUMMARY : ", summary)
|
| 216 |
+
summaries += f"Source : {doc.metadata['source'].split('/')[-1]}\n{summary} \n\n"
|
| 217 |
+
source = doc.metadata
|
| 218 |
+
yield summaries
|
| 219 |
+
i+=1
|
| 220 |
+
yield summaries
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def summarize_docs(apikey_input, session_id):
|
| 224 |
+
gen = summarize_docs_generator(apikey_input, session_id)
|
| 225 |
+
while True:
|
| 226 |
+
try:
|
| 227 |
+
yield str(next(gen))
|
| 228 |
+
except StopIteration:
|
| 229 |
+
return
|
| 230 |
+
|
| 231 |
+
#### UI Functions ####
|
| 232 |
+
|
| 233 |
+
def embed_files(files,ui_session_id,progress=gr.Progress(),progress_step=0.05):
|
| 234 |
+
print(files)
|
| 235 |
+
progress(progress_step,desc="Starting...")
|
| 236 |
+
split_docs=[]
|
| 237 |
+
if len(ui_session_id)==0:
|
| 238 |
+
ui_session_id = secrets.token_urlsafe(16)
|
| 239 |
+
session_id = f"PDFAISS-{ui_session_id}"
|
| 240 |
+
|
| 241 |
+
try:
|
| 242 |
+
db = FAISS.load_local(session_id,embeddings)
|
| 243 |
+
except:
|
| 244 |
+
print(f"SESSION: {session_id} database does not exist, create a FAISS db")
|
| 245 |
+
db = FAISS.from_documents([foo], embeddings)
|
| 246 |
+
db.save_local(session_id)
|
| 247 |
+
print(f"SESSION: {session_id} database created")
|
| 248 |
+
|
| 249 |
+
print("EMBEDDED, before embeddeding: ",session_id,len(db.index_to_docstore_id))
|
| 250 |
+
for file_id,file in enumerate(files):
|
| 251 |
+
print("ID : ", file_id,"FILE : ", file)
|
| 252 |
+
file_type = file.name.split('.')[-1].lower()
|
| 253 |
+
source = file.name.split('/')[-1]
|
| 254 |
+
print(f"current file: {source}")
|
| 255 |
+
progress(file_id/len(files),desc=f"Treating {source}")
|
| 256 |
+
|
| 257 |
+
if file_type == 'pdf':
|
| 258 |
+
db2 = merge_pdf_to_db(file.name,db,progress)
|
| 259 |
+
|
| 260 |
+
if file_type == 'txt':
|
| 261 |
+
db2 = merge_txt_to_db(file.name,db,progress)
|
| 262 |
+
|
| 263 |
+
if file_type == 'docx':
|
| 264 |
+
db2 = merge_docx_to_db(file.name,db,progress)
|
| 265 |
+
|
| 266 |
+
if file_type == 'zip':
|
| 267 |
+
db2 = unpack_zip_file(file.name,db,progress)
|
| 268 |
+
|
| 269 |
+
if db2 != None:
|
| 270 |
+
db = db2
|
| 271 |
+
db.save_local(session_id)
|
| 272 |
+
### move file to store ###
|
| 273 |
+
progress(progress_step, desc = 'moving file to store')
|
| 274 |
+
directory_path = f"{session_id}/store/"
|
| 275 |
+
if not os.path.exists(directory_path):
|
| 276 |
+
os.makedirs(directory_path)
|
| 277 |
+
try:
|
| 278 |
+
shutil.move(file.name, directory_path)
|
| 279 |
+
except:
|
| 280 |
+
pass
|
| 281 |
+
|
| 282 |
+
### load the updated db and zip it ###
|
| 283 |
+
progress(progress_step, desc = 'loading db')
|
| 284 |
+
db = FAISS.load_local(session_id,embeddings)
|
| 285 |
+
print("EMBEDDED, after embeddeding: ",session_id,len(db.index_to_docstore_id))
|
| 286 |
+
progress(progress_step, desc = 'zipping db for download')
|
| 287 |
+
add_files_to_zip(session_id)
|
| 288 |
+
print(f"EMBEDDED: db zipped")
|
| 289 |
+
progress(progress_step, desc = 'db zipped')
|
| 290 |
+
return f"{session_id}.zip",ui_session_id
|
| 291 |
+
|
| 292 |
+
def display_docs(docs):
|
| 293 |
+
output_str = ''
|
| 294 |
+
for i, doc in enumerate(docs):
|
| 295 |
+
source = doc.metadata['source'].split('/')[-1]
|
| 296 |
+
output_str += f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n\n"
|
| 297 |
+
return output_str
|
| 298 |
+
|
| 299 |
+
def ask_gpt(query, apikey,history,ui_session_id):
|
| 300 |
+
session_id = f"PDFAISS-{ui_session_id}"
|
| 301 |
+
try:
|
| 302 |
+
db = FAISS.load_local(session_id,embeddings)
|
| 303 |
+
print("ASKGPT after loading",session_id,len(db.index_to_docstore_id))
|
| 304 |
+
except:
|
| 305 |
+
print(f"SESSION: {session_id} database does not exist")
|
| 306 |
+
return f"SESSION: {session_id} database does not exist","",""
|
| 307 |
+
|
| 308 |
+
docs = db.similarity_search(query)
|
| 309 |
+
history += f"[query]\n{query}\n[answer]\n"
|
| 310 |
+
if(apikey==""):
|
| 311 |
+
history += f"None\n[references]\n{display_docs(docs)}\n\n"
|
| 312 |
+
return "No answer from GPT", display_docs(docs),history
|
| 313 |
+
else:
|
| 314 |
+
llm = ChatOpenAI(temperature=0, model_name = 'gpt-3.5-turbo', openai_api_key=apikey)
|
| 315 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
| 316 |
+
answer = chain.run(input_documents=docs, question=query, verbose=True)
|
| 317 |
+
history += f"{answer}\n[references]\n{display_docs(docs)}\n\n"
|
| 318 |
+
return answer,display_docs(docs),history
|
| 319 |
+
|
| 320 |
+
with gr.Blocks() as demo:
|
| 321 |
+
gr.Markdown("Upload your documents and question them.")
|
| 322 |
+
with gr.Accordion("Open to enter your API key", open=False):
|
| 323 |
+
apikey_input = gr.Textbox(placeholder="Type here your OpenAI API key to use Summarization and Q&A", label="OpenAI API Key",type='password')
|
| 324 |
+
with gr.Tab("Upload PDF & TXT"):
|
| 325 |
+
tb_session_id = gr.Textbox(label='session id')
|
| 326 |
+
docs_input = gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"])
|
| 327 |
+
db_output = gr.outputs.File(label="Download zipped database")
|
| 328 |
+
btn_generate_db = gr.Button("Generate database")
|
| 329 |
+
btn_reset_db = gr.Button("Reset database")
|
| 330 |
+
|
| 331 |
+
with gr.Tab("Summarize PDF"):
|
| 332 |
+
with gr.Column():
|
| 333 |
+
summary_output = gr.Textbox(label='Summarized files')
|
| 334 |
+
btn_summary = gr.Button("Summarize")
|
| 335 |
+
summary_output.style(show_copy_button=True)
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
with gr.Tab("Ask PDF"):
|
| 339 |
+
with gr.Column():
|
| 340 |
+
query_input = gr.Textbox(placeholder="Type your question", label="Question")
|
| 341 |
+
btn_askGPT = gr.Button("Answer")
|
| 342 |
+
answer_output = gr.Textbox(label='GPT 3.5 answer')
|
| 343 |
+
answer_output.style(show_copy_button=True)
|
| 344 |
+
sources = gr.Textbox(label='Sources')
|
| 345 |
+
sources.style(show_copy_button=True)
|
| 346 |
+
history = gr.Textbox(label='History')
|
| 347 |
+
history.style(show_copy_button=True)
|
| 348 |
+
|
| 349 |
+
btn_generate_db.click(embed_files, inputs=[docs_input,tb_session_id], outputs=[db_output,tb_session_id])
|
| 350 |
+
btn_reset_db.click(reset_database,inputs=[tb_session_id],outputs=[db_output])
|
| 351 |
+
btn_summary.click(summarize_docs, inputs=[apikey_input,tb_session_id], outputs=summary_output)
|
| 352 |
+
btn_askGPT.click(ask_gpt, inputs=[query_input,apikey_input,history,tb_session_id], outputs=[answer_output,sources,history])
|
| 353 |
+
|
| 354 |
+
demo.queue(concurrency_count=10)
|
| 355 |
+
demo.launch(debug=False,share=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
huggingface_hub
|
| 3 |
+
sentence_transformers
|
| 4 |
+
openai
|
| 5 |
+
unstructured==0.6.3
|
| 6 |
+
tiktoken
|
| 7 |
+
faiss-cpu
|
| 8 |
+
gradio
|