Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import AutoencoderKL, TCDScheduler | |
| from diffusers.models.model_loading_utils import load_state_dict | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import hf_hub_download | |
| from controlnet_union import ControlNetModel_Union | |
| from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
| MODELS = { | |
| "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
| } | |
| config_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="config_promax.json", | |
| ) | |
| config = ControlNetModel_Union.load_config(config_file) | |
| controlnet_model = ControlNetModel_Union.from_config(config) | |
| model_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="diffusion_pytorch_model_promax.safetensors", | |
| ) | |
| state_dict = load_state_dict(model_file) | |
| model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
| controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
| ) | |
| model.to(device="cuda", dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V5.0_Lightning", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| variant="fp16", | |
| ).to("cuda") | |
| pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
| def fill_image(prompt, image, model_selection, paste_back): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt(prompt, "cuda", True) | |
| source = image["background"] | |
| mask = image["layers"][0] | |
| alpha_channel = mask.split()[3] | |
| binary_mask = alpha_channel.point(lambda p: p > 0 and 255) | |
| cnet_image = source.copy() | |
| cnet_image.paste(0, (0, 0), binary_mask) | |
| for image in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| ): | |
| yield image, cnet_image | |
| print(f"{model_selection=}") | |
| print(f"{paste_back=}") | |
| if paste_back: | |
| image = image.convert("RGBA") | |
| cnet_image.paste(image, (0, 0), binary_mask) | |
| else: | |
| cnet_image = image | |
| yield source, cnet_image | |
| def clear_result(): | |
| return gr.update(value=None) | |
| title = """<h1 align="center">Diffusers Fast Inpaint</h1> | |
| <div align="center">Draw the mask over the subject you want to erase or change and write what you want to inpaint it with.</div> | |
| <div align="center">This is a lighting model with almost no CFG and 12 steps, so don't expect high quality generations.</div> | |
| <div align="center">This space is a PoC made for the guide <a href='https://huggingface.co/blog/OzzyGT/diffusers-image-fill'>Diffusers Image Fill</a>.</div> | |
| """ | |
| with gr.Blocks() as demo: | |
| gr.HTML(title) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| info="Describe what to inpaint the mask with", | |
| lines=3, | |
| ) | |
| with gr.Column(): | |
| model_selection = gr.Dropdown( | |
| choices=list(MODELS.keys()), | |
| value="RealVisXL V5.0 Lightning", | |
| label="Model", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| run_button = gr.Button("Generate") | |
| with gr.Column(): | |
| paste_back = gr.Checkbox(True, label="Paste back original") | |
| with gr.Row(): | |
| input_image = gr.ImageMask( | |
| type="pil", label="Input Image", crop_size=(1024, 1024), layers=False | |
| ) | |
| result = ImageSlider( | |
| interactive=False, | |
| label="Generated Image", | |
| ) | |
| use_as_input_button = gr.Button("Use as Input Image", visible=False) | |
| def use_output_as_input(output_image): | |
| return gr.update(value=output_image[1]) | |
| use_as_input_button.click( | |
| fn=use_output_as_input, inputs=[result], outputs=[input_image] | |
| ) | |
| run_button.click( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| ).then( | |
| fn=lambda: gr.update(visible=False), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| ).then( | |
| fn=fill_image, | |
| inputs=[prompt, input_image, model_selection, paste_back], | |
| outputs=result, | |
| ).then( | |
| fn=lambda: gr.update(visible=True), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| ) | |
| prompt.submit( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| ).then( | |
| fn=lambda: gr.update(visible=False), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| ).then( | |
| fn=fill_image, | |
| inputs=[prompt, input_image, model_selection, paste_back], | |
| outputs=result, | |
| ).then( | |
| fn=lambda: gr.update(visible=True), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| ) | |
| demo.queue(max_size=12).launch(share=False) | |