Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import List, Optional, Tuple, Union | |
| import cv2 | |
| import PIL | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import ( | |
| FromSingleFileMixin, | |
| IPAdapterMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ) | |
| from diffusers.models import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| ImageProjection, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_output import ( | |
| StableDiffusionXLPipelineOutput, | |
| ) | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| def latents_to_rgb(latents): | |
| weights = ((60, -60, 25, -70), (60, -5, 15, -50), (60, 10, -5, -35)) | |
| weights_tensor = torch.t( | |
| torch.tensor(weights, dtype=latents.dtype).to(latents.device) | |
| ) | |
| biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to( | |
| latents.device | |
| ) | |
| rgb_tensor = torch.einsum( | |
| "...lxy,lr -> ...rxy", latents, weights_tensor | |
| ) + biases_tensor.unsqueeze(-1).unsqueeze(-1) | |
| image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy() | |
| image_array = image_array.transpose(1, 2, 0) # Change the order of dimensions | |
| denoised_image = cv2.fastNlMeansDenoisingColored(image_array, None, 10, 10, 7, 21) | |
| blurred_image = cv2.GaussianBlur(denoised_image, (5, 5), 0) | |
| final_image = PIL.Image.fromarray(blurred_image) | |
| width, height = final_image.size | |
| final_image = final_image.resize( | |
| (width * 8, height * 8), PIL.Image.Resampling.LANCZOS | |
| ) | |
| return final_image | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| **kwargs, | |
| ): | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class StableDiffusionXLRecolorPipeline( | |
| DiffusionPipeline, | |
| StableDiffusionMixin, | |
| TextualInversionLoaderMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| IPAdapterMixin, | |
| FromSingleFileMixin, | |
| ): | |
| # leave controlnet out on purpose because it iterates with unet | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" | |
| _optional_components = [ | |
| "tokenizer", | |
| "tokenizer_2", | |
| "text_encoder", | |
| "text_encoder_2", | |
| "feature_extractor", | |
| "image_encoder", | |
| ] | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "add_text_embeds", | |
| "add_time_ids", | |
| "negative_pooled_prompt_embeds", | |
| "negative_add_time_ids", | |
| ] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| controlnet: Union[ | |
| ControlNetModel, | |
| List[ControlNetModel], | |
| Tuple[ControlNetModel], | |
| MultiControlNetModel, | |
| ], | |
| scheduler: KarrasDiffusionSchedulers, | |
| force_zeros_for_empty_prompt: bool = True, | |
| add_watermarker: Optional[bool] = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| ): | |
| super().__init__() | |
| if isinstance(controlnet, (list, tuple)): | |
| controlnet = MultiControlNetModel(controlnet) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True | |
| ) | |
| self.control_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, | |
| do_convert_rgb=True, | |
| do_normalize=False, | |
| ) | |
| self.register_to_config( | |
| force_zeros_for_empty_prompt=force_zeros_for_empty_prompt | |
| ) | |
| def encode_prompt( | |
| self, | |
| prompt: str, | |
| negative_prompt: Optional[str] = None, | |
| device: Optional[torch.device] = None, | |
| do_classifier_free_guidance: bool = True, | |
| ): | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| # Define tokenizers and text encoders | |
| tokenizers = ( | |
| [self.tokenizer, self.tokenizer_2] | |
| if self.tokenizer is not None | |
| else [self.tokenizer_2] | |
| ) | |
| text_encoders = ( | |
| [self.text_encoder, self.text_encoder_2] | |
| if self.text_encoder is not None | |
| else [self.text_encoder_2] | |
| ) | |
| prompt_2 = prompt | |
| # textual inversion: process multi-vector tokens if necessary | |
| prompt_embeds_list = [] | |
| prompts = [prompt, prompt_2] | |
| for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device), output_hidden_states=True | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| # get unconditional embeddings for classifier free guidance | |
| negative_prompt_embeds = None | |
| negative_pooled_prompt_embeds = None | |
| if do_classifier_free_guidance: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
| # normalize str to list | |
| negative_prompt = [negative_prompt] | |
| negative_prompt_2 = negative_prompt | |
| uncond_tokens: List[str] | |
| uncond_tokens = [negative_prompt, negative_prompt_2] | |
| negative_prompt_embeds_list = [] | |
| for negative_prompt, tokenizer, text_encoder in zip( | |
| uncond_tokens, tokenizers, text_encoders | |
| ): | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = tokenizer( | |
| negative_prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
| negative_prompt_embeds_list.append(negative_prompt_embeds) | |
| negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to( | |
| dtype=self.text_encoder_2.dtype, device=device | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.view( | |
| batch_size, seq_len, -1 | |
| ) | |
| pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) | |
| if do_classifier_free_guidance: | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.view( | |
| bs_embed, -1 | |
| ) | |
| return ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
| def encode_image( | |
| self, image, device, num_images_per_prompt, output_hidden_states=None | |
| ): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| if output_hidden_states: | |
| image_enc_hidden_states = self.image_encoder( | |
| image, output_hidden_states=True | |
| ).hidden_states[-2] | |
| image_enc_hidden_states = image_enc_hidden_states.repeat_interleave( | |
| num_images_per_prompt, dim=0 | |
| ) | |
| uncond_image_enc_hidden_states = self.image_encoder( | |
| torch.zeros_like(image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_enc_hidden_states = ( | |
| uncond_image_enc_hidden_states.repeat_interleave( | |
| num_images_per_prompt, dim=0 | |
| ) | |
| ) | |
| return image_enc_hidden_states, uncond_image_enc_hidden_states | |
| else: | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_embeds = torch.zeros_like(image_embeds) | |
| return image_embeds, uncond_image_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, | |
| ip_adapter_image, | |
| device, | |
| do_classifier_free_guidance, | |
| ): | |
| image_embeds = [] | |
| if do_classifier_free_guidance: | |
| negative_image_embeds = [] | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != len( | |
| self.unet.encoder_hid_proj.image_projection_layers | |
| ): | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
| ) | |
| for single_ip_adapter_image, image_proj_layer in zip( | |
| ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | |
| ): | |
| output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | |
| single_image_embeds, single_negative_image_embeds = self.encode_image( | |
| single_ip_adapter_image, device, 1, output_hidden_state | |
| ) | |
| image_embeds.append(single_image_embeds[None, :]) | |
| if do_classifier_free_guidance: | |
| negative_image_embeds.append(single_negative_image_embeds[None, :]) | |
| ip_adapter_image_embeds = [] | |
| for i, single_image_embeds in enumerate(image_embeds): | |
| if do_classifier_free_guidance: | |
| single_image_embeds = torch.cat( | |
| [negative_image_embeds[i], single_image_embeds], dim=0 | |
| ) | |
| single_image_embeds = single_image_embeds.to(device=device) | |
| ip_adapter_image_embeds.append(single_image_embeds) | |
| return ip_adapter_image_embeds | |
| def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False): | |
| image = self.control_image_processor.preprocess(image).to(dtype=torch.float32) | |
| image_batch_size = image.shape[0] | |
| image = image.repeat_interleave(image_batch_size, dim=0) | |
| image = image.to(device=device, dtype=dtype) | |
| if do_classifier_free_guidance: | |
| image = torch.cat([image] * 2) | |
| return image | |
| def prepare_latents( | |
| self, batch_size, num_channels_latents, height, width, dtype, device | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| latents = randn_tensor(shape, device=device, dtype=dtype) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
| def denoising_end(self): | |
| return self._denoising_end | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def __call__( | |
| self, | |
| image: PipelineImageInput = None, | |
| num_inference_steps: int = 8, | |
| guidance_scale: float = 2.0, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
| control_guidance_start: Union[float, List[float]] = 0.0, | |
| control_guidance_end: Union[float, List[float]] = 1.0, | |
| **kwargs, | |
| ): | |
| controlnet = self.controlnet | |
| # align format for control guidance | |
| if not isinstance(control_guidance_start, list) and isinstance( | |
| control_guidance_end, list | |
| ): | |
| control_guidance_start = len(control_guidance_end) * [ | |
| control_guidance_start | |
| ] | |
| elif not isinstance(control_guidance_end, list) and isinstance( | |
| control_guidance_start, list | |
| ): | |
| control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
| elif not isinstance(control_guidance_start, list) and not isinstance( | |
| control_guidance_end, list | |
| ): | |
| mult = ( | |
| len(controlnet.nets) | |
| if isinstance(controlnet, MultiControlNetModel) | |
| else 1 | |
| ) | |
| control_guidance_start, control_guidance_end = ( | |
| mult * [control_guidance_start], | |
| mult * [control_guidance_end], | |
| ) | |
| self._guidance_scale = guidance_scale | |
| # 2. Define call parameters | |
| batch_size = 1 | |
| device = self._execution_device | |
| if isinstance(controlnet, MultiControlNetModel) and isinstance( | |
| controlnet_conditioning_scale, float | |
| ): | |
| controlnet_conditioning_scale = [controlnet_conditioning_scale] * len( | |
| controlnet.nets | |
| ) | |
| # 3.2 Encode ip_adapter_image | |
| if ip_adapter_image is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| device, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 4. Prepare image | |
| if isinstance(controlnet, ControlNetModel): | |
| image = self.prepare_image( | |
| image=image, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| ) | |
| height, width = image.shape[-2:] | |
| elif isinstance(controlnet, MultiControlNetModel): | |
| images = [] | |
| for image_ in image: | |
| image_ = self.prepare_image( | |
| image=image_, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| ) | |
| images.append(image_) | |
| image = images | |
| height, width = image[0].shape[-2:] | |
| else: | |
| assert False | |
| # 5. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| ) | |
| # 7.1 Create tensor stating which controlnets to keep | |
| controlnet_keep = [] | |
| for i in range(len(timesteps)): | |
| keeps = [ | |
| 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
| for s, e in zip(control_guidance_start, control_guidance_end) | |
| ] | |
| controlnet_keep.append( | |
| keeps[0] if isinstance(controlnet, ControlNetModel) else keeps | |
| ) | |
| # 7.2 Prepare added time ids & embeddings | |
| add_text_embeds = pooled_prompt_embeds | |
| add_time_ids = negative_add_time_ids = torch.tensor( | |
| image[0].shape[-2:] + torch.Size([0, 0]) + image[0].shape[-2:] | |
| ).unsqueeze(0) | |
| negative_add_time_ids = add_time_ids | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat( | |
| [negative_pooled_prompt_embeds, add_text_embeds], dim=0 | |
| ) | |
| add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device) | |
| added_cond_kwargs = { | |
| "text_embeds": add_text_embeds, | |
| "time_ids": add_time_ids, | |
| } | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) | |
| if self.do_classifier_free_guidance | |
| else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| # controlnet(s) inference | |
| control_model_input = latent_model_input | |
| controlnet_prompt_embeds = prompt_embeds | |
| controlnet_added_cond_kwargs = added_cond_kwargs | |
| if isinstance(controlnet_keep[i], list): | |
| cond_scale = [ | |
| c * s | |
| for c, s in zip( | |
| controlnet_conditioning_scale, controlnet_keep[i] | |
| ) | |
| ] | |
| else: | |
| controlnet_cond_scale = controlnet_conditioning_scale | |
| if isinstance(controlnet_cond_scale, list): | |
| controlnet_cond_scale = controlnet_cond_scale[0] | |
| cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| control_model_input, | |
| t, | |
| encoder_hidden_states=controlnet_prompt_embeds, | |
| controlnet_cond=image, | |
| conditioning_scale=cond_scale, | |
| guess_mode=False, | |
| added_cond_kwargs=controlnet_added_cond_kwargs, | |
| return_dict=False, | |
| ) | |
| if ip_adapter_image is not None: | |
| added_cond_kwargs["image_embeds"] = image_embeds | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=None, | |
| cross_attention_kwargs={}, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, return_dict=False | |
| )[0] | |
| if i == 2: | |
| prompt_embeds = prompt_embeds[-1:] | |
| add_text_embeds = add_text_embeds[-1:] | |
| add_time_ids = add_time_ids[-1:] | |
| added_cond_kwargs = { | |
| "text_embeds": add_text_embeds, | |
| "time_ids": add_time_ids, | |
| } | |
| controlnet_prompt_embeds = prompt_embeds | |
| controlnet_added_cond_kwargs = added_cond_kwargs | |
| image = [single_image[-1:] for single_image in image] | |
| self._guidance_scale = 0.0 | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| yield latents_to_rgb(latents) | |
| latents = latents / self.vae.config.scaling_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image)[0] | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| yield image | |