Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Depth estimator
Browse files- annotator/midas/__init__.py +38 -0
 - annotator/midas/api.py +169 -0
 - annotator/midas/midas/__init__.py +0 -0
 - annotator/midas/midas/base_model.py +16 -0
 - annotator/midas/midas/blocks.py +342 -0
 - annotator/midas/midas/dpt_depth.py +109 -0
 - annotator/midas/midas/midas_net.py +76 -0
 - annotator/midas/midas/midas_net_custom.py +128 -0
 - annotator/midas/midas/transforms.py +234 -0
 - annotator/midas/midas/vit.py +491 -0
 - annotator/midas/utils.py +189 -0
 
    	
        annotator/midas/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,38 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import cv2
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            from einops import rearrange
         
     | 
| 6 | 
         
            +
            from .api import MiDaSInference
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            class MidasDetector:
         
     | 
| 10 | 
         
            +
                def __init__(self):
         
     | 
| 11 | 
         
            +
                    self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1):
         
     | 
| 14 | 
         
            +
                    assert input_image.ndim == 3
         
     | 
| 15 | 
         
            +
                    image_depth = input_image
         
     | 
| 16 | 
         
            +
                    with torch.no_grad():
         
     | 
| 17 | 
         
            +
                        image_depth = torch.from_numpy(image_depth).float().cuda()
         
     | 
| 18 | 
         
            +
                        image_depth = image_depth / 127.5 - 1.0
         
     | 
| 19 | 
         
            +
                        image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
         
     | 
| 20 | 
         
            +
                        depth = self.model(image_depth)[0]
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                        depth_pt = depth.clone()
         
     | 
| 23 | 
         
            +
                        depth_pt -= torch.min(depth_pt)
         
     | 
| 24 | 
         
            +
                        depth_pt /= torch.max(depth_pt)
         
     | 
| 25 | 
         
            +
                        depth_pt = depth_pt.cpu().numpy()
         
     | 
| 26 | 
         
            +
                        depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                        depth_np = depth.cpu().numpy()
         
     | 
| 29 | 
         
            +
                        x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
         
     | 
| 30 | 
         
            +
                        y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
         
     | 
| 31 | 
         
            +
                        z = np.ones_like(x) * a
         
     | 
| 32 | 
         
            +
                        x[depth_pt < bg_th] = 0
         
     | 
| 33 | 
         
            +
                        y[depth_pt < bg_th] = 0
         
     | 
| 34 | 
         
            +
                        normal = np.stack([x, y, z], axis=2)
         
     | 
| 35 | 
         
            +
                        normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
         
     | 
| 36 | 
         
            +
                        normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                        return depth_image, normal_image
         
     | 
    	
        annotator/midas/api.py
    ADDED
    
    | 
         @@ -0,0 +1,169 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # based on https://github.com/isl-org/MiDaS
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import cv2
         
     | 
| 4 | 
         
            +
            import os
         
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            import torch.nn as nn
         
     | 
| 7 | 
         
            +
            from torchvision.transforms import Compose
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from .midas.dpt_depth import DPTDepthModel
         
     | 
| 10 | 
         
            +
            from .midas.midas_net import MidasNet
         
     | 
| 11 | 
         
            +
            from .midas.midas_net_custom import MidasNet_small
         
     | 
| 12 | 
         
            +
            from .midas.transforms import Resize, NormalizeImage, PrepareForNet
         
     | 
| 13 | 
         
            +
            from annotator.util import annotator_ckpts_path
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            ISL_PATHS = {
         
     | 
| 17 | 
         
            +
                "dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
         
     | 
| 18 | 
         
            +
                "dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
         
     | 
| 19 | 
         
            +
                "midas_v21": "",
         
     | 
| 20 | 
         
            +
                "midas_v21_small": "",
         
     | 
| 21 | 
         
            +
            }
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            def disabled_train(self, mode=True):
         
     | 
| 27 | 
         
            +
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 28 | 
         
            +
                does not change anymore."""
         
     | 
| 29 | 
         
            +
                return self
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            def load_midas_transform(model_type):
         
     | 
| 33 | 
         
            +
                # https://github.com/isl-org/MiDaS/blob/master/run.py
         
     | 
| 34 | 
         
            +
                # load transform only
         
     | 
| 35 | 
         
            +
                if model_type == "dpt_large":  # DPT-Large
         
     | 
| 36 | 
         
            +
                    net_w, net_h = 384, 384
         
     | 
| 37 | 
         
            +
                    resize_mode = "minimal"
         
     | 
| 38 | 
         
            +
                    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                elif model_type == "dpt_hybrid":  # DPT-Hybrid
         
     | 
| 41 | 
         
            +
                    net_w, net_h = 384, 384
         
     | 
| 42 | 
         
            +
                    resize_mode = "minimal"
         
     | 
| 43 | 
         
            +
                    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                elif model_type == "midas_v21":
         
     | 
| 46 | 
         
            +
                    net_w, net_h = 384, 384
         
     | 
| 47 | 
         
            +
                    resize_mode = "upper_bound"
         
     | 
| 48 | 
         
            +
                    normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                elif model_type == "midas_v21_small":
         
     | 
| 51 | 
         
            +
                    net_w, net_h = 256, 256
         
     | 
| 52 | 
         
            +
                    resize_mode = "upper_bound"
         
     | 
| 53 | 
         
            +
                    normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                else:
         
     | 
| 56 | 
         
            +
                    assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                transform = Compose(
         
     | 
| 59 | 
         
            +
                    [
         
     | 
| 60 | 
         
            +
                        Resize(
         
     | 
| 61 | 
         
            +
                            net_w,
         
     | 
| 62 | 
         
            +
                            net_h,
         
     | 
| 63 | 
         
            +
                            resize_target=None,
         
     | 
| 64 | 
         
            +
                            keep_aspect_ratio=True,
         
     | 
| 65 | 
         
            +
                            ensure_multiple_of=32,
         
     | 
| 66 | 
         
            +
                            resize_method=resize_mode,
         
     | 
| 67 | 
         
            +
                            image_interpolation_method=cv2.INTER_CUBIC,
         
     | 
| 68 | 
         
            +
                        ),
         
     | 
| 69 | 
         
            +
                        normalization,
         
     | 
| 70 | 
         
            +
                        PrepareForNet(),
         
     | 
| 71 | 
         
            +
                    ]
         
     | 
| 72 | 
         
            +
                )
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                return transform
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            def load_model(model_type):
         
     | 
| 78 | 
         
            +
                # https://github.com/isl-org/MiDaS/blob/master/run.py
         
     | 
| 79 | 
         
            +
                # load network
         
     | 
| 80 | 
         
            +
                model_path = ISL_PATHS[model_type]
         
     | 
| 81 | 
         
            +
                if model_type == "dpt_large":  # DPT-Large
         
     | 
| 82 | 
         
            +
                    model = DPTDepthModel(
         
     | 
| 83 | 
         
            +
                        path=model_path,
         
     | 
| 84 | 
         
            +
                        backbone="vitl16_384",
         
     | 
| 85 | 
         
            +
                        non_negative=True,
         
     | 
| 86 | 
         
            +
                    )
         
     | 
| 87 | 
         
            +
                    net_w, net_h = 384, 384
         
     | 
| 88 | 
         
            +
                    resize_mode = "minimal"
         
     | 
| 89 | 
         
            +
                    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                elif model_type == "dpt_hybrid":  # DPT-Hybrid
         
     | 
| 92 | 
         
            +
                    if not os.path.exists(model_path):
         
     | 
| 93 | 
         
            +
                        from basicsr.utils.download_util import load_file_from_url
         
     | 
| 94 | 
         
            +
                        load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                    model = DPTDepthModel(
         
     | 
| 97 | 
         
            +
                        path=model_path,
         
     | 
| 98 | 
         
            +
                        backbone="vitb_rn50_384",
         
     | 
| 99 | 
         
            +
                        non_negative=True,
         
     | 
| 100 | 
         
            +
                    )
         
     | 
| 101 | 
         
            +
                    net_w, net_h = 384, 384
         
     | 
| 102 | 
         
            +
                    resize_mode = "minimal"
         
     | 
| 103 | 
         
            +
                    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                elif model_type == "midas_v21":
         
     | 
| 106 | 
         
            +
                    model = MidasNet(model_path, non_negative=True)
         
     | 
| 107 | 
         
            +
                    net_w, net_h = 384, 384
         
     | 
| 108 | 
         
            +
                    resize_mode = "upper_bound"
         
     | 
| 109 | 
         
            +
                    normalization = NormalizeImage(
         
     | 
| 110 | 
         
            +
                        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
         
     | 
| 111 | 
         
            +
                    )
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                elif model_type == "midas_v21_small":
         
     | 
| 114 | 
         
            +
                    model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
         
     | 
| 115 | 
         
            +
                                           non_negative=True, blocks={'expand': True})
         
     | 
| 116 | 
         
            +
                    net_w, net_h = 256, 256
         
     | 
| 117 | 
         
            +
                    resize_mode = "upper_bound"
         
     | 
| 118 | 
         
            +
                    normalization = NormalizeImage(
         
     | 
| 119 | 
         
            +
                        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
         
     | 
| 120 | 
         
            +
                    )
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                else:
         
     | 
| 123 | 
         
            +
                    print(f"model_type '{model_type}' not implemented, use: --model_type large")
         
     | 
| 124 | 
         
            +
                    assert False
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                transform = Compose(
         
     | 
| 127 | 
         
            +
                    [
         
     | 
| 128 | 
         
            +
                        Resize(
         
     | 
| 129 | 
         
            +
                            net_w,
         
     | 
| 130 | 
         
            +
                            net_h,
         
     | 
| 131 | 
         
            +
                            resize_target=None,
         
     | 
| 132 | 
         
            +
                            keep_aspect_ratio=True,
         
     | 
| 133 | 
         
            +
                            ensure_multiple_of=32,
         
     | 
| 134 | 
         
            +
                            resize_method=resize_mode,
         
     | 
| 135 | 
         
            +
                            image_interpolation_method=cv2.INTER_CUBIC,
         
     | 
| 136 | 
         
            +
                        ),
         
     | 
| 137 | 
         
            +
                        normalization,
         
     | 
| 138 | 
         
            +
                        PrepareForNet(),
         
     | 
| 139 | 
         
            +
                    ]
         
     | 
| 140 | 
         
            +
                )
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                return model.eval(), transform
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            class MiDaSInference(nn.Module):
         
     | 
| 146 | 
         
            +
                MODEL_TYPES_TORCH_HUB = [
         
     | 
| 147 | 
         
            +
                    "DPT_Large",
         
     | 
| 148 | 
         
            +
                    "DPT_Hybrid",
         
     | 
| 149 | 
         
            +
                    "MiDaS_small"
         
     | 
| 150 | 
         
            +
                ]
         
     | 
| 151 | 
         
            +
                MODEL_TYPES_ISL = [
         
     | 
| 152 | 
         
            +
                    "dpt_large",
         
     | 
| 153 | 
         
            +
                    "dpt_hybrid",
         
     | 
| 154 | 
         
            +
                    "midas_v21",
         
     | 
| 155 | 
         
            +
                    "midas_v21_small",
         
     | 
| 156 | 
         
            +
                ]
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                def __init__(self, model_type):
         
     | 
| 159 | 
         
            +
                    super().__init__()
         
     | 
| 160 | 
         
            +
                    assert (model_type in self.MODEL_TYPES_ISL)
         
     | 
| 161 | 
         
            +
                    model, _ = load_model(model_type)
         
     | 
| 162 | 
         
            +
                    self.model = model
         
     | 
| 163 | 
         
            +
                    self.model.train = disabled_train
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                def forward(self, x):
         
     | 
| 166 | 
         
            +
                    with torch.no_grad():
         
     | 
| 167 | 
         
            +
                        prediction = self.model(x)
         
     | 
| 168 | 
         
            +
                    return prediction
         
     | 
| 169 | 
         
            +
             
     | 
    	
        annotator/midas/midas/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        annotator/midas/midas/base_model.py
    ADDED
    
    | 
         @@ -0,0 +1,16 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            class BaseModel(torch.nn.Module):
         
     | 
| 5 | 
         
            +
                def load(self, path):
         
     | 
| 6 | 
         
            +
                    """Load model from file.
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
                    Args:
         
     | 
| 9 | 
         
            +
                        path (str): file path
         
     | 
| 10 | 
         
            +
                    """
         
     | 
| 11 | 
         
            +
                    parameters = torch.load(path, map_location=torch.device('cpu'))
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                    if "optimizer" in parameters:
         
     | 
| 14 | 
         
            +
                        parameters = parameters["model"]
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                    self.load_state_dict(parameters)
         
     | 
    	
        annotator/midas/midas/blocks.py
    ADDED
    
    | 
         @@ -0,0 +1,342 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from .vit import (
         
     | 
| 5 | 
         
            +
                _make_pretrained_vitb_rn50_384,
         
     | 
| 6 | 
         
            +
                _make_pretrained_vitl16_384,
         
     | 
| 7 | 
         
            +
                _make_pretrained_vitb16_384,
         
     | 
| 8 | 
         
            +
                forward_vit,
         
     | 
| 9 | 
         
            +
            )
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
         
     | 
| 12 | 
         
            +
                if backbone == "vitl16_384":
         
     | 
| 13 | 
         
            +
                    pretrained = _make_pretrained_vitl16_384(
         
     | 
| 14 | 
         
            +
                        use_pretrained, hooks=hooks, use_readout=use_readout
         
     | 
| 15 | 
         
            +
                    )
         
     | 
| 16 | 
         
            +
                    scratch = _make_scratch(
         
     | 
| 17 | 
         
            +
                        [256, 512, 1024, 1024], features, groups=groups, expand=expand
         
     | 
| 18 | 
         
            +
                    )  # ViT-L/16 - 85.0% Top1 (backbone)
         
     | 
| 19 | 
         
            +
                elif backbone == "vitb_rn50_384":
         
     | 
| 20 | 
         
            +
                    pretrained = _make_pretrained_vitb_rn50_384(
         
     | 
| 21 | 
         
            +
                        use_pretrained,
         
     | 
| 22 | 
         
            +
                        hooks=hooks,
         
     | 
| 23 | 
         
            +
                        use_vit_only=use_vit_only,
         
     | 
| 24 | 
         
            +
                        use_readout=use_readout,
         
     | 
| 25 | 
         
            +
                    )
         
     | 
| 26 | 
         
            +
                    scratch = _make_scratch(
         
     | 
| 27 | 
         
            +
                        [256, 512, 768, 768], features, groups=groups, expand=expand
         
     | 
| 28 | 
         
            +
                    )  # ViT-H/16 - 85.0% Top1 (backbone)
         
     | 
| 29 | 
         
            +
                elif backbone == "vitb16_384":
         
     | 
| 30 | 
         
            +
                    pretrained = _make_pretrained_vitb16_384(
         
     | 
| 31 | 
         
            +
                        use_pretrained, hooks=hooks, use_readout=use_readout
         
     | 
| 32 | 
         
            +
                    )
         
     | 
| 33 | 
         
            +
                    scratch = _make_scratch(
         
     | 
| 34 | 
         
            +
                        [96, 192, 384, 768], features, groups=groups, expand=expand
         
     | 
| 35 | 
         
            +
                    )  # ViT-B/16 - 84.6% Top1 (backbone)
         
     | 
| 36 | 
         
            +
                elif backbone == "resnext101_wsl":
         
     | 
| 37 | 
         
            +
                    pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
         
     | 
| 38 | 
         
            +
                    scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand)     # efficientnet_lite3  
         
     | 
| 39 | 
         
            +
                elif backbone == "efficientnet_lite3":
         
     | 
| 40 | 
         
            +
                    pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
         
     | 
| 41 | 
         
            +
                    scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand)  # efficientnet_lite3     
         
     | 
| 42 | 
         
            +
                else:
         
     | 
| 43 | 
         
            +
                    print(f"Backbone '{backbone}' not implemented")
         
     | 
| 44 | 
         
            +
                    assert False
         
     | 
| 45 | 
         
            +
                    
         
     | 
| 46 | 
         
            +
                return pretrained, scratch
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            def _make_scratch(in_shape, out_shape, groups=1, expand=False):
         
     | 
| 50 | 
         
            +
                scratch = nn.Module()
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                out_shape1 = out_shape
         
     | 
| 53 | 
         
            +
                out_shape2 = out_shape
         
     | 
| 54 | 
         
            +
                out_shape3 = out_shape
         
     | 
| 55 | 
         
            +
                out_shape4 = out_shape
         
     | 
| 56 | 
         
            +
                if expand==True:
         
     | 
| 57 | 
         
            +
                    out_shape1 = out_shape
         
     | 
| 58 | 
         
            +
                    out_shape2 = out_shape*2
         
     | 
| 59 | 
         
            +
                    out_shape3 = out_shape*4
         
     | 
| 60 | 
         
            +
                    out_shape4 = out_shape*8
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                scratch.layer1_rn = nn.Conv2d(
         
     | 
| 63 | 
         
            +
                    in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
         
     | 
| 64 | 
         
            +
                )
         
     | 
| 65 | 
         
            +
                scratch.layer2_rn = nn.Conv2d(
         
     | 
| 66 | 
         
            +
                    in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
         
     | 
| 67 | 
         
            +
                )
         
     | 
| 68 | 
         
            +
                scratch.layer3_rn = nn.Conv2d(
         
     | 
| 69 | 
         
            +
                    in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
         
     | 
| 70 | 
         
            +
                )
         
     | 
| 71 | 
         
            +
                scratch.layer4_rn = nn.Conv2d(
         
     | 
| 72 | 
         
            +
                    in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
         
     | 
| 73 | 
         
            +
                )
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                return scratch
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
            def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
         
     | 
| 79 | 
         
            +
                efficientnet = torch.hub.load(
         
     | 
| 80 | 
         
            +
                    "rwightman/gen-efficientnet-pytorch",
         
     | 
| 81 | 
         
            +
                    "tf_efficientnet_lite3",
         
     | 
| 82 | 
         
            +
                    pretrained=use_pretrained,
         
     | 
| 83 | 
         
            +
                    exportable=exportable
         
     | 
| 84 | 
         
            +
                )
         
     | 
| 85 | 
         
            +
                return _make_efficientnet_backbone(efficientnet)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            def _make_efficientnet_backbone(effnet):
         
     | 
| 89 | 
         
            +
                pretrained = nn.Module()
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                pretrained.layer1 = nn.Sequential(
         
     | 
| 92 | 
         
            +
                    effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
         
     | 
| 93 | 
         
            +
                )
         
     | 
| 94 | 
         
            +
                pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
         
     | 
| 95 | 
         
            +
                pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
         
     | 
| 96 | 
         
            +
                pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                return pretrained
         
     | 
| 99 | 
         
            +
                
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            def _make_resnet_backbone(resnet):
         
     | 
| 102 | 
         
            +
                pretrained = nn.Module()
         
     | 
| 103 | 
         
            +
                pretrained.layer1 = nn.Sequential(
         
     | 
| 104 | 
         
            +
                    resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
         
     | 
| 105 | 
         
            +
                )
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                pretrained.layer2 = resnet.layer2
         
     | 
| 108 | 
         
            +
                pretrained.layer3 = resnet.layer3
         
     | 
| 109 | 
         
            +
                pretrained.layer4 = resnet.layer4
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                return pretrained
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            def _make_pretrained_resnext101_wsl(use_pretrained):
         
     | 
| 115 | 
         
            +
                resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
         
     | 
| 116 | 
         
            +
                return _make_resnet_backbone(resnet)
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
            class Interpolate(nn.Module):
         
     | 
| 121 | 
         
            +
                """Interpolation module.
         
     | 
| 122 | 
         
            +
                """
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                def __init__(self, scale_factor, mode, align_corners=False):
         
     | 
| 125 | 
         
            +
                    """Init.
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                    Args:
         
     | 
| 128 | 
         
            +
                        scale_factor (float): scaling
         
     | 
| 129 | 
         
            +
                        mode (str): interpolation mode
         
     | 
| 130 | 
         
            +
                    """
         
     | 
| 131 | 
         
            +
                    super(Interpolate, self).__init__()
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    self.interp = nn.functional.interpolate
         
     | 
| 134 | 
         
            +
                    self.scale_factor = scale_factor
         
     | 
| 135 | 
         
            +
                    self.mode = mode
         
     | 
| 136 | 
         
            +
                    self.align_corners = align_corners
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                def forward(self, x):
         
     | 
| 139 | 
         
            +
                    """Forward pass.
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    Args:
         
     | 
| 142 | 
         
            +
                        x (tensor): input
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                    Returns:
         
     | 
| 145 | 
         
            +
                        tensor: interpolated data
         
     | 
| 146 | 
         
            +
                    """
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                    x = self.interp(
         
     | 
| 149 | 
         
            +
                        x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
         
     | 
| 150 | 
         
            +
                    )
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    return x
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
            class ResidualConvUnit(nn.Module):
         
     | 
| 156 | 
         
            +
                """Residual convolution module.
         
     | 
| 157 | 
         
            +
                """
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                def __init__(self, features):
         
     | 
| 160 | 
         
            +
                    """Init.
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    Args:
         
     | 
| 163 | 
         
            +
                        features (int): number of features
         
     | 
| 164 | 
         
            +
                    """
         
     | 
| 165 | 
         
            +
                    super().__init__()
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                    self.conv1 = nn.Conv2d(
         
     | 
| 168 | 
         
            +
                        features, features, kernel_size=3, stride=1, padding=1, bias=True
         
     | 
| 169 | 
         
            +
                    )
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                    self.conv2 = nn.Conv2d(
         
     | 
| 172 | 
         
            +
                        features, features, kernel_size=3, stride=1, padding=1, bias=True
         
     | 
| 173 | 
         
            +
                    )
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                def forward(self, x):
         
     | 
| 178 | 
         
            +
                    """Forward pass.
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                    Args:
         
     | 
| 181 | 
         
            +
                        x (tensor): input
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                    Returns:
         
     | 
| 184 | 
         
            +
                        tensor: output
         
     | 
| 185 | 
         
            +
                    """
         
     | 
| 186 | 
         
            +
                    out = self.relu(x)
         
     | 
| 187 | 
         
            +
                    out = self.conv1(out)
         
     | 
| 188 | 
         
            +
                    out = self.relu(out)
         
     | 
| 189 | 
         
            +
                    out = self.conv2(out)
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                    return out + x
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
            class FeatureFusionBlock(nn.Module):
         
     | 
| 195 | 
         
            +
                """Feature fusion block.
         
     | 
| 196 | 
         
            +
                """
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                def __init__(self, features):
         
     | 
| 199 | 
         
            +
                    """Init.
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    Args:
         
     | 
| 202 | 
         
            +
                        features (int): number of features
         
     | 
| 203 | 
         
            +
                    """
         
     | 
| 204 | 
         
            +
                    super(FeatureFusionBlock, self).__init__()
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                    self.resConfUnit1 = ResidualConvUnit(features)
         
     | 
| 207 | 
         
            +
                    self.resConfUnit2 = ResidualConvUnit(features)
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                def forward(self, *xs):
         
     | 
| 210 | 
         
            +
                    """Forward pass.
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    Returns:
         
     | 
| 213 | 
         
            +
                        tensor: output
         
     | 
| 214 | 
         
            +
                    """
         
     | 
| 215 | 
         
            +
                    output = xs[0]
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                    if len(xs) == 2:
         
     | 
| 218 | 
         
            +
                        output += self.resConfUnit1(xs[1])
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                    output = self.resConfUnit2(output)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    output = nn.functional.interpolate(
         
     | 
| 223 | 
         
            +
                        output, scale_factor=2, mode="bilinear", align_corners=True
         
     | 
| 224 | 
         
            +
                    )
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                    return output
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
            class ResidualConvUnit_custom(nn.Module):
         
     | 
| 232 | 
         
            +
                """Residual convolution module.
         
     | 
| 233 | 
         
            +
                """
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                def __init__(self, features, activation, bn):
         
     | 
| 236 | 
         
            +
                    """Init.
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                    Args:
         
     | 
| 239 | 
         
            +
                        features (int): number of features
         
     | 
| 240 | 
         
            +
                    """
         
     | 
| 241 | 
         
            +
                    super().__init__()
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                    self.bn = bn
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    self.groups=1
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                    self.conv1 = nn.Conv2d(
         
     | 
| 248 | 
         
            +
                        features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
         
     | 
| 249 | 
         
            +
                    )
         
     | 
| 250 | 
         
            +
                    
         
     | 
| 251 | 
         
            +
                    self.conv2 = nn.Conv2d(
         
     | 
| 252 | 
         
            +
                        features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
         
     | 
| 253 | 
         
            +
                    )
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                    if self.bn==True:
         
     | 
| 256 | 
         
            +
                        self.bn1 = nn.BatchNorm2d(features)
         
     | 
| 257 | 
         
            +
                        self.bn2 = nn.BatchNorm2d(features)
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    self.activation = activation
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                    self.skip_add = nn.quantized.FloatFunctional()
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                def forward(self, x):
         
     | 
| 264 | 
         
            +
                    """Forward pass.
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                    Args:
         
     | 
| 267 | 
         
            +
                        x (tensor): input
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                    Returns:
         
     | 
| 270 | 
         
            +
                        tensor: output
         
     | 
| 271 | 
         
            +
                    """
         
     | 
| 272 | 
         
            +
                    
         
     | 
| 273 | 
         
            +
                    out = self.activation(x)
         
     | 
| 274 | 
         
            +
                    out = self.conv1(out)
         
     | 
| 275 | 
         
            +
                    if self.bn==True:
         
     | 
| 276 | 
         
            +
                        out = self.bn1(out)
         
     | 
| 277 | 
         
            +
                   
         
     | 
| 278 | 
         
            +
                    out = self.activation(out)
         
     | 
| 279 | 
         
            +
                    out = self.conv2(out)
         
     | 
| 280 | 
         
            +
                    if self.bn==True:
         
     | 
| 281 | 
         
            +
                        out = self.bn2(out)
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                    if self.groups > 1:
         
     | 
| 284 | 
         
            +
                        out = self.conv_merge(out)
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                    return self.skip_add.add(out, x)
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
                    # return out + x
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
            class FeatureFusionBlock_custom(nn.Module):
         
     | 
| 292 | 
         
            +
                """Feature fusion block.
         
     | 
| 293 | 
         
            +
                """
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
         
     | 
| 296 | 
         
            +
                    """Init.
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                    Args:
         
     | 
| 299 | 
         
            +
                        features (int): number of features
         
     | 
| 300 | 
         
            +
                    """
         
     | 
| 301 | 
         
            +
                    super(FeatureFusionBlock_custom, self).__init__()
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    self.deconv = deconv
         
     | 
| 304 | 
         
            +
                    self.align_corners = align_corners
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                    self.groups=1
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                    self.expand = expand
         
     | 
| 309 | 
         
            +
                    out_features = features
         
     | 
| 310 | 
         
            +
                    if self.expand==True:
         
     | 
| 311 | 
         
            +
                        out_features = features//2
         
     | 
| 312 | 
         
            +
                    
         
     | 
| 313 | 
         
            +
                    self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                    self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
         
     | 
| 316 | 
         
            +
                    self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
         
     | 
| 317 | 
         
            +
                    
         
     | 
| 318 | 
         
            +
                    self.skip_add = nn.quantized.FloatFunctional()
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                def forward(self, *xs):
         
     | 
| 321 | 
         
            +
                    """Forward pass.
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                    Returns:
         
     | 
| 324 | 
         
            +
                        tensor: output
         
     | 
| 325 | 
         
            +
                    """
         
     | 
| 326 | 
         
            +
                    output = xs[0]
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                    if len(xs) == 2:
         
     | 
| 329 | 
         
            +
                        res = self.resConfUnit1(xs[1])
         
     | 
| 330 | 
         
            +
                        output = self.skip_add.add(output, res)
         
     | 
| 331 | 
         
            +
                        # output += res
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                    output = self.resConfUnit2(output)
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                    output = nn.functional.interpolate(
         
     | 
| 336 | 
         
            +
                        output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
         
     | 
| 337 | 
         
            +
                    )
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                    output = self.out_conv(output)
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
                    return output
         
     | 
| 342 | 
         
            +
             
     | 
    	
        annotator/midas/midas/dpt_depth.py
    ADDED
    
    | 
         @@ -0,0 +1,109 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            from .base_model import BaseModel
         
     | 
| 6 | 
         
            +
            from .blocks import (
         
     | 
| 7 | 
         
            +
                FeatureFusionBlock,
         
     | 
| 8 | 
         
            +
                FeatureFusionBlock_custom,
         
     | 
| 9 | 
         
            +
                Interpolate,
         
     | 
| 10 | 
         
            +
                _make_encoder,
         
     | 
| 11 | 
         
            +
                forward_vit,
         
     | 
| 12 | 
         
            +
            )
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def _make_fusion_block(features, use_bn):
         
     | 
| 16 | 
         
            +
                return FeatureFusionBlock_custom(
         
     | 
| 17 | 
         
            +
                    features,
         
     | 
| 18 | 
         
            +
                    nn.ReLU(False),
         
     | 
| 19 | 
         
            +
                    deconv=False,
         
     | 
| 20 | 
         
            +
                    bn=use_bn,
         
     | 
| 21 | 
         
            +
                    expand=False,
         
     | 
| 22 | 
         
            +
                    align_corners=True,
         
     | 
| 23 | 
         
            +
                )
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            class DPT(BaseModel):
         
     | 
| 27 | 
         
            +
                def __init__(
         
     | 
| 28 | 
         
            +
                    self,
         
     | 
| 29 | 
         
            +
                    head,
         
     | 
| 30 | 
         
            +
                    features=256,
         
     | 
| 31 | 
         
            +
                    backbone="vitb_rn50_384",
         
     | 
| 32 | 
         
            +
                    readout="project",
         
     | 
| 33 | 
         
            +
                    channels_last=False,
         
     | 
| 34 | 
         
            +
                    use_bn=False,
         
     | 
| 35 | 
         
            +
                ):
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    super(DPT, self).__init__()
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                    self.channels_last = channels_last
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    hooks = {
         
     | 
| 42 | 
         
            +
                        "vitb_rn50_384": [0, 1, 8, 11],
         
     | 
| 43 | 
         
            +
                        "vitb16_384": [2, 5, 8, 11],
         
     | 
| 44 | 
         
            +
                        "vitl16_384": [5, 11, 17, 23],
         
     | 
| 45 | 
         
            +
                    }
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                    # Instantiate backbone and reassemble blocks
         
     | 
| 48 | 
         
            +
                    self.pretrained, self.scratch = _make_encoder(
         
     | 
| 49 | 
         
            +
                        backbone,
         
     | 
| 50 | 
         
            +
                        features,
         
     | 
| 51 | 
         
            +
                        False, # Set to true of you want to train from scratch, uses ImageNet weights
         
     | 
| 52 | 
         
            +
                        groups=1,
         
     | 
| 53 | 
         
            +
                        expand=False,
         
     | 
| 54 | 
         
            +
                        exportable=False,
         
     | 
| 55 | 
         
            +
                        hooks=hooks[backbone],
         
     | 
| 56 | 
         
            +
                        use_readout=readout,
         
     | 
| 57 | 
         
            +
                    )
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
         
     | 
| 60 | 
         
            +
                    self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
         
     | 
| 61 | 
         
            +
                    self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
         
     | 
| 62 | 
         
            +
                    self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    self.scratch.output_conv = head
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                def forward(self, x):
         
     | 
| 68 | 
         
            +
                    if self.channels_last == True:
         
     | 
| 69 | 
         
            +
                        x.contiguous(memory_format=torch.channels_last)
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                    layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                    layer_1_rn = self.scratch.layer1_rn(layer_1)
         
     | 
| 74 | 
         
            +
                    layer_2_rn = self.scratch.layer2_rn(layer_2)
         
     | 
| 75 | 
         
            +
                    layer_3_rn = self.scratch.layer3_rn(layer_3)
         
     | 
| 76 | 
         
            +
                    layer_4_rn = self.scratch.layer4_rn(layer_4)
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    path_4 = self.scratch.refinenet4(layer_4_rn)
         
     | 
| 79 | 
         
            +
                    path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
         
     | 
| 80 | 
         
            +
                    path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
         
     | 
| 81 | 
         
            +
                    path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    out = self.scratch.output_conv(path_1)
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    return out
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            class DPTDepthModel(DPT):
         
     | 
| 89 | 
         
            +
                def __init__(self, path=None, non_negative=True, **kwargs):
         
     | 
| 90 | 
         
            +
                    features = kwargs["features"] if "features" in kwargs else 256
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    head = nn.Sequential(
         
     | 
| 93 | 
         
            +
                        nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
         
     | 
| 94 | 
         
            +
                        Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
         
     | 
| 95 | 
         
            +
                        nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
         
     | 
| 96 | 
         
            +
                        nn.ReLU(True),
         
     | 
| 97 | 
         
            +
                        nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
         
     | 
| 98 | 
         
            +
                        nn.ReLU(True) if non_negative else nn.Identity(),
         
     | 
| 99 | 
         
            +
                        nn.Identity(),
         
     | 
| 100 | 
         
            +
                    )
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    super().__init__(head, **kwargs)
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    if path is not None:
         
     | 
| 105 | 
         
            +
                       self.load(path)
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                def forward(self, x):
         
     | 
| 108 | 
         
            +
                    return super().forward(x).squeeze(dim=1)
         
     | 
| 109 | 
         
            +
             
     | 
    	
        annotator/midas/midas/midas_net.py
    ADDED
    
    | 
         @@ -0,0 +1,76 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
         
     | 
| 2 | 
         
            +
            This file contains code that is adapted from
         
     | 
| 3 | 
         
            +
            https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
         
     | 
| 4 | 
         
            +
            """
         
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            import torch.nn as nn
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from .base_model import BaseModel
         
     | 
| 9 | 
         
            +
            from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            class MidasNet(BaseModel):
         
     | 
| 13 | 
         
            +
                """Network for monocular depth estimation.
         
     | 
| 14 | 
         
            +
                """
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                def __init__(self, path=None, features=256, non_negative=True):
         
     | 
| 17 | 
         
            +
                    """Init.
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                    Args:
         
     | 
| 20 | 
         
            +
                        path (str, optional): Path to saved model. Defaults to None.
         
     | 
| 21 | 
         
            +
                        features (int, optional): Number of features. Defaults to 256.
         
     | 
| 22 | 
         
            +
                        backbone (str, optional): Backbone network for encoder. Defaults to resnet50
         
     | 
| 23 | 
         
            +
                    """
         
     | 
| 24 | 
         
            +
                    print("Loading weights: ", path)
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                    super(MidasNet, self).__init__()
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                    use_pretrained = False if path is None else True
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                    self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                    self.scratch.refinenet4 = FeatureFusionBlock(features)
         
     | 
| 33 | 
         
            +
                    self.scratch.refinenet3 = FeatureFusionBlock(features)
         
     | 
| 34 | 
         
            +
                    self.scratch.refinenet2 = FeatureFusionBlock(features)
         
     | 
| 35 | 
         
            +
                    self.scratch.refinenet1 = FeatureFusionBlock(features)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    self.scratch.output_conv = nn.Sequential(
         
     | 
| 38 | 
         
            +
                        nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
         
     | 
| 39 | 
         
            +
                        Interpolate(scale_factor=2, mode="bilinear"),
         
     | 
| 40 | 
         
            +
                        nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
         
     | 
| 41 | 
         
            +
                        nn.ReLU(True),
         
     | 
| 42 | 
         
            +
                        nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
         
     | 
| 43 | 
         
            +
                        nn.ReLU(True) if non_negative else nn.Identity(),
         
     | 
| 44 | 
         
            +
                    )
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                    if path:
         
     | 
| 47 | 
         
            +
                        self.load(path)
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                def forward(self, x):
         
     | 
| 50 | 
         
            +
                    """Forward pass.
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                    Args:
         
     | 
| 53 | 
         
            +
                        x (tensor): input data (image)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    Returns:
         
     | 
| 56 | 
         
            +
                        tensor: depth
         
     | 
| 57 | 
         
            +
                    """
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    layer_1 = self.pretrained.layer1(x)
         
     | 
| 60 | 
         
            +
                    layer_2 = self.pretrained.layer2(layer_1)
         
     | 
| 61 | 
         
            +
                    layer_3 = self.pretrained.layer3(layer_2)
         
     | 
| 62 | 
         
            +
                    layer_4 = self.pretrained.layer4(layer_3)
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    layer_1_rn = self.scratch.layer1_rn(layer_1)
         
     | 
| 65 | 
         
            +
                    layer_2_rn = self.scratch.layer2_rn(layer_2)
         
     | 
| 66 | 
         
            +
                    layer_3_rn = self.scratch.layer3_rn(layer_3)
         
     | 
| 67 | 
         
            +
                    layer_4_rn = self.scratch.layer4_rn(layer_4)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    path_4 = self.scratch.refinenet4(layer_4_rn)
         
     | 
| 70 | 
         
            +
                    path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
         
     | 
| 71 | 
         
            +
                    path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
         
     | 
| 72 | 
         
            +
                    path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    out = self.scratch.output_conv(path_1)
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    return torch.squeeze(out, dim=1)
         
     | 
    	
        annotator/midas/midas/midas_net_custom.py
    ADDED
    
    | 
         @@ -0,0 +1,128 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
         
     | 
| 2 | 
         
            +
            This file contains code that is adapted from
         
     | 
| 3 | 
         
            +
            https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
         
     | 
| 4 | 
         
            +
            """
         
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            import torch.nn as nn
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from .base_model import BaseModel
         
     | 
| 9 | 
         
            +
            from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            class MidasNet_small(BaseModel):
         
     | 
| 13 | 
         
            +
                """Network for monocular depth estimation.
         
     | 
| 14 | 
         
            +
                """
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
         
     | 
| 17 | 
         
            +
                    blocks={'expand': True}):
         
     | 
| 18 | 
         
            +
                    """Init.
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                    Args:
         
     | 
| 21 | 
         
            +
                        path (str, optional): Path to saved model. Defaults to None.
         
     | 
| 22 | 
         
            +
                        features (int, optional): Number of features. Defaults to 256.
         
     | 
| 23 | 
         
            +
                        backbone (str, optional): Backbone network for encoder. Defaults to resnet50
         
     | 
| 24 | 
         
            +
                    """
         
     | 
| 25 | 
         
            +
                    print("Loading weights: ", path)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                    super(MidasNet_small, self).__init__()
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                    use_pretrained = False if path else True
         
     | 
| 30 | 
         
            +
                            
         
     | 
| 31 | 
         
            +
                    self.channels_last = channels_last
         
     | 
| 32 | 
         
            +
                    self.blocks = blocks
         
     | 
| 33 | 
         
            +
                    self.backbone = backbone
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                    self.groups = 1
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    features1=features
         
     | 
| 38 | 
         
            +
                    features2=features
         
     | 
| 39 | 
         
            +
                    features3=features
         
     | 
| 40 | 
         
            +
                    features4=features
         
     | 
| 41 | 
         
            +
                    self.expand = False
         
     | 
| 42 | 
         
            +
                    if "expand" in self.blocks and self.blocks['expand'] == True:
         
     | 
| 43 | 
         
            +
                        self.expand = True
         
     | 
| 44 | 
         
            +
                        features1=features
         
     | 
| 45 | 
         
            +
                        features2=features*2
         
     | 
| 46 | 
         
            +
                        features3=features*4
         
     | 
| 47 | 
         
            +
                        features4=features*8
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
         
     | 
| 50 | 
         
            +
              
         
     | 
| 51 | 
         
            +
                    self.scratch.activation = nn.ReLU(False)    
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                    self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
         
     | 
| 54 | 
         
            +
                    self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
         
     | 
| 55 | 
         
            +
                    self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
         
     | 
| 56 | 
         
            +
                    self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    
         
     | 
| 59 | 
         
            +
                    self.scratch.output_conv = nn.Sequential(
         
     | 
| 60 | 
         
            +
                        nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
         
     | 
| 61 | 
         
            +
                        Interpolate(scale_factor=2, mode="bilinear"),
         
     | 
| 62 | 
         
            +
                        nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
         
     | 
| 63 | 
         
            +
                        self.scratch.activation,
         
     | 
| 64 | 
         
            +
                        nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
         
     | 
| 65 | 
         
            +
                        nn.ReLU(True) if non_negative else nn.Identity(),
         
     | 
| 66 | 
         
            +
                        nn.Identity(),
         
     | 
| 67 | 
         
            +
                    )
         
     | 
| 68 | 
         
            +
                    
         
     | 
| 69 | 
         
            +
                    if path:
         
     | 
| 70 | 
         
            +
                        self.load(path)
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                def forward(self, x):
         
     | 
| 74 | 
         
            +
                    """Forward pass.
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    Args:
         
     | 
| 77 | 
         
            +
                        x (tensor): input data (image)
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    Returns:
         
     | 
| 80 | 
         
            +
                        tensor: depth
         
     | 
| 81 | 
         
            +
                    """
         
     | 
| 82 | 
         
            +
                    if self.channels_last==True:
         
     | 
| 83 | 
         
            +
                        print("self.channels_last = ", self.channels_last)
         
     | 
| 84 | 
         
            +
                        x.contiguous(memory_format=torch.channels_last)
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                    layer_1 = self.pretrained.layer1(x)
         
     | 
| 88 | 
         
            +
                    layer_2 = self.pretrained.layer2(layer_1)
         
     | 
| 89 | 
         
            +
                    layer_3 = self.pretrained.layer3(layer_2)
         
     | 
| 90 | 
         
            +
                    layer_4 = self.pretrained.layer4(layer_3)
         
     | 
| 91 | 
         
            +
                    
         
     | 
| 92 | 
         
            +
                    layer_1_rn = self.scratch.layer1_rn(layer_1)
         
     | 
| 93 | 
         
            +
                    layer_2_rn = self.scratch.layer2_rn(layer_2)
         
     | 
| 94 | 
         
            +
                    layer_3_rn = self.scratch.layer3_rn(layer_3)
         
     | 
| 95 | 
         
            +
                    layer_4_rn = self.scratch.layer4_rn(layer_4)
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    path_4 = self.scratch.refinenet4(layer_4_rn)
         
     | 
| 99 | 
         
            +
                    path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
         
     | 
| 100 | 
         
            +
                    path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
         
     | 
| 101 | 
         
            +
                    path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
         
     | 
| 102 | 
         
            +
                    
         
     | 
| 103 | 
         
            +
                    out = self.scratch.output_conv(path_1)
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    return torch.squeeze(out, dim=1)
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            def fuse_model(m):
         
     | 
| 110 | 
         
            +
                prev_previous_type = nn.Identity()
         
     | 
| 111 | 
         
            +
                prev_previous_name = ''
         
     | 
| 112 | 
         
            +
                previous_type = nn.Identity()
         
     | 
| 113 | 
         
            +
                previous_name = ''
         
     | 
| 114 | 
         
            +
                for name, module in m.named_modules():
         
     | 
| 115 | 
         
            +
                    if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
         
     | 
| 116 | 
         
            +
                        # print("FUSED ", prev_previous_name, previous_name, name)
         
     | 
| 117 | 
         
            +
                        torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
         
     | 
| 118 | 
         
            +
                    elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
         
     | 
| 119 | 
         
            +
                        # print("FUSED ", prev_previous_name, previous_name)
         
     | 
| 120 | 
         
            +
                        torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
         
     | 
| 121 | 
         
            +
                    # elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
         
     | 
| 122 | 
         
            +
                    #    print("FUSED ", previous_name, name)
         
     | 
| 123 | 
         
            +
                    #    torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                    prev_previous_type = previous_type
         
     | 
| 126 | 
         
            +
                    prev_previous_name = previous_name
         
     | 
| 127 | 
         
            +
                    previous_type = type(module)
         
     | 
| 128 | 
         
            +
                    previous_name = name
         
     | 
    	
        annotator/midas/midas/transforms.py
    ADDED
    
    | 
         @@ -0,0 +1,234 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            import cv2
         
     | 
| 3 | 
         
            +
            import math
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
         
     | 
| 7 | 
         
            +
                """Rezise the sample to ensure the given size. Keeps aspect ratio.
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
                Args:
         
     | 
| 10 | 
         
            +
                    sample (dict): sample
         
     | 
| 11 | 
         
            +
                    size (tuple): image size
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                Returns:
         
     | 
| 14 | 
         
            +
                    tuple: new size
         
     | 
| 15 | 
         
            +
                """
         
     | 
| 16 | 
         
            +
                shape = list(sample["disparity"].shape)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                if shape[0] >= size[0] and shape[1] >= size[1]:
         
     | 
| 19 | 
         
            +
                    return sample
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                scale = [0, 0]
         
     | 
| 22 | 
         
            +
                scale[0] = size[0] / shape[0]
         
     | 
| 23 | 
         
            +
                scale[1] = size[1] / shape[1]
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                scale = max(scale)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                shape[0] = math.ceil(scale * shape[0])
         
     | 
| 28 | 
         
            +
                shape[1] = math.ceil(scale * shape[1])
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                # resize
         
     | 
| 31 | 
         
            +
                sample["image"] = cv2.resize(
         
     | 
| 32 | 
         
            +
                    sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
         
     | 
| 33 | 
         
            +
                )
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                sample["disparity"] = cv2.resize(
         
     | 
| 36 | 
         
            +
                    sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
         
     | 
| 37 | 
         
            +
                )
         
     | 
| 38 | 
         
            +
                sample["mask"] = cv2.resize(
         
     | 
| 39 | 
         
            +
                    sample["mask"].astype(np.float32),
         
     | 
| 40 | 
         
            +
                    tuple(shape[::-1]),
         
     | 
| 41 | 
         
            +
                    interpolation=cv2.INTER_NEAREST,
         
     | 
| 42 | 
         
            +
                )
         
     | 
| 43 | 
         
            +
                sample["mask"] = sample["mask"].astype(bool)
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                return tuple(shape)
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            class Resize(object):
         
     | 
| 49 | 
         
            +
                """Resize sample to given size (width, height).
         
     | 
| 50 | 
         
            +
                """
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def __init__(
         
     | 
| 53 | 
         
            +
                    self,
         
     | 
| 54 | 
         
            +
                    width,
         
     | 
| 55 | 
         
            +
                    height,
         
     | 
| 56 | 
         
            +
                    resize_target=True,
         
     | 
| 57 | 
         
            +
                    keep_aspect_ratio=False,
         
     | 
| 58 | 
         
            +
                    ensure_multiple_of=1,
         
     | 
| 59 | 
         
            +
                    resize_method="lower_bound",
         
     | 
| 60 | 
         
            +
                    image_interpolation_method=cv2.INTER_AREA,
         
     | 
| 61 | 
         
            +
                ):
         
     | 
| 62 | 
         
            +
                    """Init.
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    Args:
         
     | 
| 65 | 
         
            +
                        width (int): desired output width
         
     | 
| 66 | 
         
            +
                        height (int): desired output height
         
     | 
| 67 | 
         
            +
                        resize_target (bool, optional):
         
     | 
| 68 | 
         
            +
                            True: Resize the full sample (image, mask, target).
         
     | 
| 69 | 
         
            +
                            False: Resize image only.
         
     | 
| 70 | 
         
            +
                            Defaults to True.
         
     | 
| 71 | 
         
            +
                        keep_aspect_ratio (bool, optional):
         
     | 
| 72 | 
         
            +
                            True: Keep the aspect ratio of the input sample.
         
     | 
| 73 | 
         
            +
                            Output sample might not have the given width and height, and
         
     | 
| 74 | 
         
            +
                            resize behaviour depends on the parameter 'resize_method'.
         
     | 
| 75 | 
         
            +
                            Defaults to False.
         
     | 
| 76 | 
         
            +
                        ensure_multiple_of (int, optional):
         
     | 
| 77 | 
         
            +
                            Output width and height is constrained to be multiple of this parameter.
         
     | 
| 78 | 
         
            +
                            Defaults to 1.
         
     | 
| 79 | 
         
            +
                        resize_method (str, optional):
         
     | 
| 80 | 
         
            +
                            "lower_bound": Output will be at least as large as the given size.
         
     | 
| 81 | 
         
            +
                            "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
         
     | 
| 82 | 
         
            +
                            "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
         
     | 
| 83 | 
         
            +
                            Defaults to "lower_bound".
         
     | 
| 84 | 
         
            +
                    """
         
     | 
| 85 | 
         
            +
                    self.__width = width
         
     | 
| 86 | 
         
            +
                    self.__height = height
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    self.__resize_target = resize_target
         
     | 
| 89 | 
         
            +
                    self.__keep_aspect_ratio = keep_aspect_ratio
         
     | 
| 90 | 
         
            +
                    self.__multiple_of = ensure_multiple_of
         
     | 
| 91 | 
         
            +
                    self.__resize_method = resize_method
         
     | 
| 92 | 
         
            +
                    self.__image_interpolation_method = image_interpolation_method
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
         
     | 
| 95 | 
         
            +
                    y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                    if max_val is not None and y > max_val:
         
     | 
| 98 | 
         
            +
                        y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    if y < min_val:
         
     | 
| 101 | 
         
            +
                        y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                    return y
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                def get_size(self, width, height):
         
     | 
| 106 | 
         
            +
                    # determine new height and width
         
     | 
| 107 | 
         
            +
                    scale_height = self.__height / height
         
     | 
| 108 | 
         
            +
                    scale_width = self.__width / width
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    if self.__keep_aspect_ratio:
         
     | 
| 111 | 
         
            +
                        if self.__resize_method == "lower_bound":
         
     | 
| 112 | 
         
            +
                            # scale such that output size is lower bound
         
     | 
| 113 | 
         
            +
                            if scale_width > scale_height:
         
     | 
| 114 | 
         
            +
                                # fit width
         
     | 
| 115 | 
         
            +
                                scale_height = scale_width
         
     | 
| 116 | 
         
            +
                            else:
         
     | 
| 117 | 
         
            +
                                # fit height
         
     | 
| 118 | 
         
            +
                                scale_width = scale_height
         
     | 
| 119 | 
         
            +
                        elif self.__resize_method == "upper_bound":
         
     | 
| 120 | 
         
            +
                            # scale such that output size is upper bound
         
     | 
| 121 | 
         
            +
                            if scale_width < scale_height:
         
     | 
| 122 | 
         
            +
                                # fit width
         
     | 
| 123 | 
         
            +
                                scale_height = scale_width
         
     | 
| 124 | 
         
            +
                            else:
         
     | 
| 125 | 
         
            +
                                # fit height
         
     | 
| 126 | 
         
            +
                                scale_width = scale_height
         
     | 
| 127 | 
         
            +
                        elif self.__resize_method == "minimal":
         
     | 
| 128 | 
         
            +
                            # scale as least as possbile
         
     | 
| 129 | 
         
            +
                            if abs(1 - scale_width) < abs(1 - scale_height):
         
     | 
| 130 | 
         
            +
                                # fit width
         
     | 
| 131 | 
         
            +
                                scale_height = scale_width
         
     | 
| 132 | 
         
            +
                            else:
         
     | 
| 133 | 
         
            +
                                # fit height
         
     | 
| 134 | 
         
            +
                                scale_width = scale_height
         
     | 
| 135 | 
         
            +
                        else:
         
     | 
| 136 | 
         
            +
                            raise ValueError(
         
     | 
| 137 | 
         
            +
                                f"resize_method {self.__resize_method} not implemented"
         
     | 
| 138 | 
         
            +
                            )
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    if self.__resize_method == "lower_bound":
         
     | 
| 141 | 
         
            +
                        new_height = self.constrain_to_multiple_of(
         
     | 
| 142 | 
         
            +
                            scale_height * height, min_val=self.__height
         
     | 
| 143 | 
         
            +
                        )
         
     | 
| 144 | 
         
            +
                        new_width = self.constrain_to_multiple_of(
         
     | 
| 145 | 
         
            +
                            scale_width * width, min_val=self.__width
         
     | 
| 146 | 
         
            +
                        )
         
     | 
| 147 | 
         
            +
                    elif self.__resize_method == "upper_bound":
         
     | 
| 148 | 
         
            +
                        new_height = self.constrain_to_multiple_of(
         
     | 
| 149 | 
         
            +
                            scale_height * height, max_val=self.__height
         
     | 
| 150 | 
         
            +
                        )
         
     | 
| 151 | 
         
            +
                        new_width = self.constrain_to_multiple_of(
         
     | 
| 152 | 
         
            +
                            scale_width * width, max_val=self.__width
         
     | 
| 153 | 
         
            +
                        )
         
     | 
| 154 | 
         
            +
                    elif self.__resize_method == "minimal":
         
     | 
| 155 | 
         
            +
                        new_height = self.constrain_to_multiple_of(scale_height * height)
         
     | 
| 156 | 
         
            +
                        new_width = self.constrain_to_multiple_of(scale_width * width)
         
     | 
| 157 | 
         
            +
                    else:
         
     | 
| 158 | 
         
            +
                        raise ValueError(f"resize_method {self.__resize_method} not implemented")
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                    return (new_width, new_height)
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                def __call__(self, sample):
         
     | 
| 163 | 
         
            +
                    width, height = self.get_size(
         
     | 
| 164 | 
         
            +
                        sample["image"].shape[1], sample["image"].shape[0]
         
     | 
| 165 | 
         
            +
                    )
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                    # resize sample
         
     | 
| 168 | 
         
            +
                    sample["image"] = cv2.resize(
         
     | 
| 169 | 
         
            +
                        sample["image"],
         
     | 
| 170 | 
         
            +
                        (width, height),
         
     | 
| 171 | 
         
            +
                        interpolation=self.__image_interpolation_method,
         
     | 
| 172 | 
         
            +
                    )
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                    if self.__resize_target:
         
     | 
| 175 | 
         
            +
                        if "disparity" in sample:
         
     | 
| 176 | 
         
            +
                            sample["disparity"] = cv2.resize(
         
     | 
| 177 | 
         
            +
                                sample["disparity"],
         
     | 
| 178 | 
         
            +
                                (width, height),
         
     | 
| 179 | 
         
            +
                                interpolation=cv2.INTER_NEAREST,
         
     | 
| 180 | 
         
            +
                            )
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                        if "depth" in sample:
         
     | 
| 183 | 
         
            +
                            sample["depth"] = cv2.resize(
         
     | 
| 184 | 
         
            +
                                sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
         
     | 
| 185 | 
         
            +
                            )
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                        sample["mask"] = cv2.resize(
         
     | 
| 188 | 
         
            +
                            sample["mask"].astype(np.float32),
         
     | 
| 189 | 
         
            +
                            (width, height),
         
     | 
| 190 | 
         
            +
                            interpolation=cv2.INTER_NEAREST,
         
     | 
| 191 | 
         
            +
                        )
         
     | 
| 192 | 
         
            +
                        sample["mask"] = sample["mask"].astype(bool)
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    return sample
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
            class NormalizeImage(object):
         
     | 
| 198 | 
         
            +
                """Normlize image by given mean and std.
         
     | 
| 199 | 
         
            +
                """
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                def __init__(self, mean, std):
         
     | 
| 202 | 
         
            +
                    self.__mean = mean
         
     | 
| 203 | 
         
            +
                    self.__std = std
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                def __call__(self, sample):
         
     | 
| 206 | 
         
            +
                    sample["image"] = (sample["image"] - self.__mean) / self.__std
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                    return sample
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
            class PrepareForNet(object):
         
     | 
| 212 | 
         
            +
                """Prepare sample for usage as network input.
         
     | 
| 213 | 
         
            +
                """
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                def __init__(self):
         
     | 
| 216 | 
         
            +
                    pass
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                def __call__(self, sample):
         
     | 
| 219 | 
         
            +
                    image = np.transpose(sample["image"], (2, 0, 1))
         
     | 
| 220 | 
         
            +
                    sample["image"] = np.ascontiguousarray(image).astype(np.float32)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    if "mask" in sample:
         
     | 
| 223 | 
         
            +
                        sample["mask"] = sample["mask"].astype(np.float32)
         
     | 
| 224 | 
         
            +
                        sample["mask"] = np.ascontiguousarray(sample["mask"])
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                    if "disparity" in sample:
         
     | 
| 227 | 
         
            +
                        disparity = sample["disparity"].astype(np.float32)
         
     | 
| 228 | 
         
            +
                        sample["disparity"] = np.ascontiguousarray(disparity)
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    if "depth" in sample:
         
     | 
| 231 | 
         
            +
                        depth = sample["depth"].astype(np.float32)
         
     | 
| 232 | 
         
            +
                        sample["depth"] = np.ascontiguousarray(depth)
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
                    return sample
         
     | 
    	
        annotator/midas/midas/vit.py
    ADDED
    
    | 
         @@ -0,0 +1,491 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import timm
         
     | 
| 4 | 
         
            +
            import types
         
     | 
| 5 | 
         
            +
            import math
         
     | 
| 6 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            class Slice(nn.Module):
         
     | 
| 10 | 
         
            +
                def __init__(self, start_index=1):
         
     | 
| 11 | 
         
            +
                    super(Slice, self).__init__()
         
     | 
| 12 | 
         
            +
                    self.start_index = start_index
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
                def forward(self, x):
         
     | 
| 15 | 
         
            +
                    return x[:, self.start_index :]
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            class AddReadout(nn.Module):
         
     | 
| 19 | 
         
            +
                def __init__(self, start_index=1):
         
     | 
| 20 | 
         
            +
                    super(AddReadout, self).__init__()
         
     | 
| 21 | 
         
            +
                    self.start_index = start_index
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def forward(self, x):
         
     | 
| 24 | 
         
            +
                    if self.start_index == 2:
         
     | 
| 25 | 
         
            +
                        readout = (x[:, 0] + x[:, 1]) / 2
         
     | 
| 26 | 
         
            +
                    else:
         
     | 
| 27 | 
         
            +
                        readout = x[:, 0]
         
     | 
| 28 | 
         
            +
                    return x[:, self.start_index :] + readout.unsqueeze(1)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            class ProjectReadout(nn.Module):
         
     | 
| 32 | 
         
            +
                def __init__(self, in_features, start_index=1):
         
     | 
| 33 | 
         
            +
                    super(ProjectReadout, self).__init__()
         
     | 
| 34 | 
         
            +
                    self.start_index = start_index
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                def forward(self, x):
         
     | 
| 39 | 
         
            +
                    readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
         
     | 
| 40 | 
         
            +
                    features = torch.cat((x[:, self.start_index :], readout), -1)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                    return self.project(features)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            class Transpose(nn.Module):
         
     | 
| 46 | 
         
            +
                def __init__(self, dim0, dim1):
         
     | 
| 47 | 
         
            +
                    super(Transpose, self).__init__()
         
     | 
| 48 | 
         
            +
                    self.dim0 = dim0
         
     | 
| 49 | 
         
            +
                    self.dim1 = dim1
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                def forward(self, x):
         
     | 
| 52 | 
         
            +
                    x = x.transpose(self.dim0, self.dim1)
         
     | 
| 53 | 
         
            +
                    return x
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            def forward_vit(pretrained, x):
         
     | 
| 57 | 
         
            +
                b, c, h, w = x.shape
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                glob = pretrained.model.forward_flex(x)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                layer_1 = pretrained.activations["1"]
         
     | 
| 62 | 
         
            +
                layer_2 = pretrained.activations["2"]
         
     | 
| 63 | 
         
            +
                layer_3 = pretrained.activations["3"]
         
     | 
| 64 | 
         
            +
                layer_4 = pretrained.activations["4"]
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                layer_1 = pretrained.act_postprocess1[0:2](layer_1)
         
     | 
| 67 | 
         
            +
                layer_2 = pretrained.act_postprocess2[0:2](layer_2)
         
     | 
| 68 | 
         
            +
                layer_3 = pretrained.act_postprocess3[0:2](layer_3)
         
     | 
| 69 | 
         
            +
                layer_4 = pretrained.act_postprocess4[0:2](layer_4)
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                unflatten = nn.Sequential(
         
     | 
| 72 | 
         
            +
                    nn.Unflatten(
         
     | 
| 73 | 
         
            +
                        2,
         
     | 
| 74 | 
         
            +
                        torch.Size(
         
     | 
| 75 | 
         
            +
                            [
         
     | 
| 76 | 
         
            +
                                h // pretrained.model.patch_size[1],
         
     | 
| 77 | 
         
            +
                                w // pretrained.model.patch_size[0],
         
     | 
| 78 | 
         
            +
                            ]
         
     | 
| 79 | 
         
            +
                        ),
         
     | 
| 80 | 
         
            +
                    )
         
     | 
| 81 | 
         
            +
                )
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                if layer_1.ndim == 3:
         
     | 
| 84 | 
         
            +
                    layer_1 = unflatten(layer_1)
         
     | 
| 85 | 
         
            +
                if layer_2.ndim == 3:
         
     | 
| 86 | 
         
            +
                    layer_2 = unflatten(layer_2)
         
     | 
| 87 | 
         
            +
                if layer_3.ndim == 3:
         
     | 
| 88 | 
         
            +
                    layer_3 = unflatten(layer_3)
         
     | 
| 89 | 
         
            +
                if layer_4.ndim == 3:
         
     | 
| 90 | 
         
            +
                    layer_4 = unflatten(layer_4)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
         
     | 
| 93 | 
         
            +
                layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
         
     | 
| 94 | 
         
            +
                layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
         
     | 
| 95 | 
         
            +
                layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                return layer_1, layer_2, layer_3, layer_4
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
            def _resize_pos_embed(self, posemb, gs_h, gs_w):
         
     | 
| 101 | 
         
            +
                posemb_tok, posemb_grid = (
         
     | 
| 102 | 
         
            +
                    posemb[:, : self.start_index],
         
     | 
| 103 | 
         
            +
                    posemb[0, self.start_index :],
         
     | 
| 104 | 
         
            +
                )
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                gs_old = int(math.sqrt(len(posemb_grid)))
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
         
     | 
| 109 | 
         
            +
                posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
         
     | 
| 110 | 
         
            +
                posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                return posemb
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            def forward_flex(self, x):
         
     | 
| 118 | 
         
            +
                b, c, h, w = x.shape
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                pos_embed = self._resize_pos_embed(
         
     | 
| 121 | 
         
            +
                    self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
         
     | 
| 122 | 
         
            +
                )
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                B = x.shape[0]
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                if hasattr(self.patch_embed, "backbone"):
         
     | 
| 127 | 
         
            +
                    x = self.patch_embed.backbone(x)
         
     | 
| 128 | 
         
            +
                    if isinstance(x, (list, tuple)):
         
     | 
| 129 | 
         
            +
                        x = x[-1]  # last feature if backbone outputs list/tuple of features
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                if getattr(self, "dist_token", None) is not None:
         
     | 
| 134 | 
         
            +
                    cls_tokens = self.cls_token.expand(
         
     | 
| 135 | 
         
            +
                        B, -1, -1
         
     | 
| 136 | 
         
            +
                    )  # stole cls_tokens impl from Phil Wang, thanks
         
     | 
| 137 | 
         
            +
                    dist_token = self.dist_token.expand(B, -1, -1)
         
     | 
| 138 | 
         
            +
                    x = torch.cat((cls_tokens, dist_token, x), dim=1)
         
     | 
| 139 | 
         
            +
                else:
         
     | 
| 140 | 
         
            +
                    cls_tokens = self.cls_token.expand(
         
     | 
| 141 | 
         
            +
                        B, -1, -1
         
     | 
| 142 | 
         
            +
                    )  # stole cls_tokens impl from Phil Wang, thanks
         
     | 
| 143 | 
         
            +
                    x = torch.cat((cls_tokens, x), dim=1)
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                x = x + pos_embed
         
     | 
| 146 | 
         
            +
                x = self.pos_drop(x)
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                for blk in self.blocks:
         
     | 
| 149 | 
         
            +
                    x = blk(x)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                x = self.norm(x)
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                return x
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
            activations = {}
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            def get_activation(name):
         
     | 
| 160 | 
         
            +
                def hook(model, input, output):
         
     | 
| 161 | 
         
            +
                    activations[name] = output
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                return hook
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
            def get_readout_oper(vit_features, features, use_readout, start_index=1):
         
     | 
| 167 | 
         
            +
                if use_readout == "ignore":
         
     | 
| 168 | 
         
            +
                    readout_oper = [Slice(start_index)] * len(features)
         
     | 
| 169 | 
         
            +
                elif use_readout == "add":
         
     | 
| 170 | 
         
            +
                    readout_oper = [AddReadout(start_index)] * len(features)
         
     | 
| 171 | 
         
            +
                elif use_readout == "project":
         
     | 
| 172 | 
         
            +
                    readout_oper = [
         
     | 
| 173 | 
         
            +
                        ProjectReadout(vit_features, start_index) for out_feat in features
         
     | 
| 174 | 
         
            +
                    ]
         
     | 
| 175 | 
         
            +
                else:
         
     | 
| 176 | 
         
            +
                    assert (
         
     | 
| 177 | 
         
            +
                        False
         
     | 
| 178 | 
         
            +
                    ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                return readout_oper
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
            def _make_vit_b16_backbone(
         
     | 
| 184 | 
         
            +
                model,
         
     | 
| 185 | 
         
            +
                features=[96, 192, 384, 768],
         
     | 
| 186 | 
         
            +
                size=[384, 384],
         
     | 
| 187 | 
         
            +
                hooks=[2, 5, 8, 11],
         
     | 
| 188 | 
         
            +
                vit_features=768,
         
     | 
| 189 | 
         
            +
                use_readout="ignore",
         
     | 
| 190 | 
         
            +
                start_index=1,
         
     | 
| 191 | 
         
            +
            ):
         
     | 
| 192 | 
         
            +
                pretrained = nn.Module()
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                pretrained.model = model
         
     | 
| 195 | 
         
            +
                pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
         
     | 
| 196 | 
         
            +
                pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
         
     | 
| 197 | 
         
            +
                pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
         
     | 
| 198 | 
         
            +
                pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                pretrained.activations = activations
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                # 32, 48, 136, 384
         
     | 
| 205 | 
         
            +
                pretrained.act_postprocess1 = nn.Sequential(
         
     | 
| 206 | 
         
            +
                    readout_oper[0],
         
     | 
| 207 | 
         
            +
                    Transpose(1, 2),
         
     | 
| 208 | 
         
            +
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 209 | 
         
            +
                    nn.Conv2d(
         
     | 
| 210 | 
         
            +
                        in_channels=vit_features,
         
     | 
| 211 | 
         
            +
                        out_channels=features[0],
         
     | 
| 212 | 
         
            +
                        kernel_size=1,
         
     | 
| 213 | 
         
            +
                        stride=1,
         
     | 
| 214 | 
         
            +
                        padding=0,
         
     | 
| 215 | 
         
            +
                    ),
         
     | 
| 216 | 
         
            +
                    nn.ConvTranspose2d(
         
     | 
| 217 | 
         
            +
                        in_channels=features[0],
         
     | 
| 218 | 
         
            +
                        out_channels=features[0],
         
     | 
| 219 | 
         
            +
                        kernel_size=4,
         
     | 
| 220 | 
         
            +
                        stride=4,
         
     | 
| 221 | 
         
            +
                        padding=0,
         
     | 
| 222 | 
         
            +
                        bias=True,
         
     | 
| 223 | 
         
            +
                        dilation=1,
         
     | 
| 224 | 
         
            +
                        groups=1,
         
     | 
| 225 | 
         
            +
                    ),
         
     | 
| 226 | 
         
            +
                )
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                pretrained.act_postprocess2 = nn.Sequential(
         
     | 
| 229 | 
         
            +
                    readout_oper[1],
         
     | 
| 230 | 
         
            +
                    Transpose(1, 2),
         
     | 
| 231 | 
         
            +
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 232 | 
         
            +
                    nn.Conv2d(
         
     | 
| 233 | 
         
            +
                        in_channels=vit_features,
         
     | 
| 234 | 
         
            +
                        out_channels=features[1],
         
     | 
| 235 | 
         
            +
                        kernel_size=1,
         
     | 
| 236 | 
         
            +
                        stride=1,
         
     | 
| 237 | 
         
            +
                        padding=0,
         
     | 
| 238 | 
         
            +
                    ),
         
     | 
| 239 | 
         
            +
                    nn.ConvTranspose2d(
         
     | 
| 240 | 
         
            +
                        in_channels=features[1],
         
     | 
| 241 | 
         
            +
                        out_channels=features[1],
         
     | 
| 242 | 
         
            +
                        kernel_size=2,
         
     | 
| 243 | 
         
            +
                        stride=2,
         
     | 
| 244 | 
         
            +
                        padding=0,
         
     | 
| 245 | 
         
            +
                        bias=True,
         
     | 
| 246 | 
         
            +
                        dilation=1,
         
     | 
| 247 | 
         
            +
                        groups=1,
         
     | 
| 248 | 
         
            +
                    ),
         
     | 
| 249 | 
         
            +
                )
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                pretrained.act_postprocess3 = nn.Sequential(
         
     | 
| 252 | 
         
            +
                    readout_oper[2],
         
     | 
| 253 | 
         
            +
                    Transpose(1, 2),
         
     | 
| 254 | 
         
            +
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 255 | 
         
            +
                    nn.Conv2d(
         
     | 
| 256 | 
         
            +
                        in_channels=vit_features,
         
     | 
| 257 | 
         
            +
                        out_channels=features[2],
         
     | 
| 258 | 
         
            +
                        kernel_size=1,
         
     | 
| 259 | 
         
            +
                        stride=1,
         
     | 
| 260 | 
         
            +
                        padding=0,
         
     | 
| 261 | 
         
            +
                    ),
         
     | 
| 262 | 
         
            +
                )
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                pretrained.act_postprocess4 = nn.Sequential(
         
     | 
| 265 | 
         
            +
                    readout_oper[3],
         
     | 
| 266 | 
         
            +
                    Transpose(1, 2),
         
     | 
| 267 | 
         
            +
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 268 | 
         
            +
                    nn.Conv2d(
         
     | 
| 269 | 
         
            +
                        in_channels=vit_features,
         
     | 
| 270 | 
         
            +
                        out_channels=features[3],
         
     | 
| 271 | 
         
            +
                        kernel_size=1,
         
     | 
| 272 | 
         
            +
                        stride=1,
         
     | 
| 273 | 
         
            +
                        padding=0,
         
     | 
| 274 | 
         
            +
                    ),
         
     | 
| 275 | 
         
            +
                    nn.Conv2d(
         
     | 
| 276 | 
         
            +
                        in_channels=features[3],
         
     | 
| 277 | 
         
            +
                        out_channels=features[3],
         
     | 
| 278 | 
         
            +
                        kernel_size=3,
         
     | 
| 279 | 
         
            +
                        stride=2,
         
     | 
| 280 | 
         
            +
                        padding=1,
         
     | 
| 281 | 
         
            +
                    ),
         
     | 
| 282 | 
         
            +
                )
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                pretrained.model.start_index = start_index
         
     | 
| 285 | 
         
            +
                pretrained.model.patch_size = [16, 16]
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                # We inject this function into the VisionTransformer instances so that
         
     | 
| 288 | 
         
            +
                # we can use it with interpolated position embeddings without modifying the library source.
         
     | 
| 289 | 
         
            +
                pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
         
     | 
| 290 | 
         
            +
                pretrained.model._resize_pos_embed = types.MethodType(
         
     | 
| 291 | 
         
            +
                    _resize_pos_embed, pretrained.model
         
     | 
| 292 | 
         
            +
                )
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                return pretrained
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
            def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
         
     | 
| 298 | 
         
            +
                model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                hooks = [5, 11, 17, 23] if hooks == None else hooks
         
     | 
| 301 | 
         
            +
                return _make_vit_b16_backbone(
         
     | 
| 302 | 
         
            +
                    model,
         
     | 
| 303 | 
         
            +
                    features=[256, 512, 1024, 1024],
         
     | 
| 304 | 
         
            +
                    hooks=hooks,
         
     | 
| 305 | 
         
            +
                    vit_features=1024,
         
     | 
| 306 | 
         
            +
                    use_readout=use_readout,
         
     | 
| 307 | 
         
            +
                )
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
            def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
         
     | 
| 311 | 
         
            +
                model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                hooks = [2, 5, 8, 11] if hooks == None else hooks
         
     | 
| 314 | 
         
            +
                return _make_vit_b16_backbone(
         
     | 
| 315 | 
         
            +
                    model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
         
     | 
| 316 | 
         
            +
                )
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
            def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
         
     | 
| 320 | 
         
            +
                model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                hooks = [2, 5, 8, 11] if hooks == None else hooks
         
     | 
| 323 | 
         
            +
                return _make_vit_b16_backbone(
         
     | 
| 324 | 
         
            +
                    model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
         
     | 
| 325 | 
         
            +
                )
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
            def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
         
     | 
| 329 | 
         
            +
                model = timm.create_model(
         
     | 
| 330 | 
         
            +
                    "vit_deit_base_distilled_patch16_384", pretrained=pretrained
         
     | 
| 331 | 
         
            +
                )
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                hooks = [2, 5, 8, 11] if hooks == None else hooks
         
     | 
| 334 | 
         
            +
                return _make_vit_b16_backbone(
         
     | 
| 335 | 
         
            +
                    model,
         
     | 
| 336 | 
         
            +
                    features=[96, 192, 384, 768],
         
     | 
| 337 | 
         
            +
                    hooks=hooks,
         
     | 
| 338 | 
         
            +
                    use_readout=use_readout,
         
     | 
| 339 | 
         
            +
                    start_index=2,
         
     | 
| 340 | 
         
            +
                )
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
            def _make_vit_b_rn50_backbone(
         
     | 
| 344 | 
         
            +
                model,
         
     | 
| 345 | 
         
            +
                features=[256, 512, 768, 768],
         
     | 
| 346 | 
         
            +
                size=[384, 384],
         
     | 
| 347 | 
         
            +
                hooks=[0, 1, 8, 11],
         
     | 
| 348 | 
         
            +
                vit_features=768,
         
     | 
| 349 | 
         
            +
                use_vit_only=False,
         
     | 
| 350 | 
         
            +
                use_readout="ignore",
         
     | 
| 351 | 
         
            +
                start_index=1,
         
     | 
| 352 | 
         
            +
            ):
         
     | 
| 353 | 
         
            +
                pretrained = nn.Module()
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
                pretrained.model = model
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                if use_vit_only == True:
         
     | 
| 358 | 
         
            +
                    pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
         
     | 
| 359 | 
         
            +
                    pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
         
     | 
| 360 | 
         
            +
                else:
         
     | 
| 361 | 
         
            +
                    pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
         
     | 
| 362 | 
         
            +
                        get_activation("1")
         
     | 
| 363 | 
         
            +
                    )
         
     | 
| 364 | 
         
            +
                    pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
         
     | 
| 365 | 
         
            +
                        get_activation("2")
         
     | 
| 366 | 
         
            +
                    )
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
         
     | 
| 369 | 
         
            +
                pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                pretrained.activations = activations
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
         
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
                if use_vit_only == True:
         
     | 
| 376 | 
         
            +
                    pretrained.act_postprocess1 = nn.Sequential(
         
     | 
| 377 | 
         
            +
                        readout_oper[0],
         
     | 
| 378 | 
         
            +
                        Transpose(1, 2),
         
     | 
| 379 | 
         
            +
                        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 380 | 
         
            +
                        nn.Conv2d(
         
     | 
| 381 | 
         
            +
                            in_channels=vit_features,
         
     | 
| 382 | 
         
            +
                            out_channels=features[0],
         
     | 
| 383 | 
         
            +
                            kernel_size=1,
         
     | 
| 384 | 
         
            +
                            stride=1,
         
     | 
| 385 | 
         
            +
                            padding=0,
         
     | 
| 386 | 
         
            +
                        ),
         
     | 
| 387 | 
         
            +
                        nn.ConvTranspose2d(
         
     | 
| 388 | 
         
            +
                            in_channels=features[0],
         
     | 
| 389 | 
         
            +
                            out_channels=features[0],
         
     | 
| 390 | 
         
            +
                            kernel_size=4,
         
     | 
| 391 | 
         
            +
                            stride=4,
         
     | 
| 392 | 
         
            +
                            padding=0,
         
     | 
| 393 | 
         
            +
                            bias=True,
         
     | 
| 394 | 
         
            +
                            dilation=1,
         
     | 
| 395 | 
         
            +
                            groups=1,
         
     | 
| 396 | 
         
            +
                        ),
         
     | 
| 397 | 
         
            +
                    )
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
                    pretrained.act_postprocess2 = nn.Sequential(
         
     | 
| 400 | 
         
            +
                        readout_oper[1],
         
     | 
| 401 | 
         
            +
                        Transpose(1, 2),
         
     | 
| 402 | 
         
            +
                        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 403 | 
         
            +
                        nn.Conv2d(
         
     | 
| 404 | 
         
            +
                            in_channels=vit_features,
         
     | 
| 405 | 
         
            +
                            out_channels=features[1],
         
     | 
| 406 | 
         
            +
                            kernel_size=1,
         
     | 
| 407 | 
         
            +
                            stride=1,
         
     | 
| 408 | 
         
            +
                            padding=0,
         
     | 
| 409 | 
         
            +
                        ),
         
     | 
| 410 | 
         
            +
                        nn.ConvTranspose2d(
         
     | 
| 411 | 
         
            +
                            in_channels=features[1],
         
     | 
| 412 | 
         
            +
                            out_channels=features[1],
         
     | 
| 413 | 
         
            +
                            kernel_size=2,
         
     | 
| 414 | 
         
            +
                            stride=2,
         
     | 
| 415 | 
         
            +
                            padding=0,
         
     | 
| 416 | 
         
            +
                            bias=True,
         
     | 
| 417 | 
         
            +
                            dilation=1,
         
     | 
| 418 | 
         
            +
                            groups=1,
         
     | 
| 419 | 
         
            +
                        ),
         
     | 
| 420 | 
         
            +
                    )
         
     | 
| 421 | 
         
            +
                else:
         
     | 
| 422 | 
         
            +
                    pretrained.act_postprocess1 = nn.Sequential(
         
     | 
| 423 | 
         
            +
                        nn.Identity(), nn.Identity(), nn.Identity()
         
     | 
| 424 | 
         
            +
                    )
         
     | 
| 425 | 
         
            +
                    pretrained.act_postprocess2 = nn.Sequential(
         
     | 
| 426 | 
         
            +
                        nn.Identity(), nn.Identity(), nn.Identity()
         
     | 
| 427 | 
         
            +
                    )
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                pretrained.act_postprocess3 = nn.Sequential(
         
     | 
| 430 | 
         
            +
                    readout_oper[2],
         
     | 
| 431 | 
         
            +
                    Transpose(1, 2),
         
     | 
| 432 | 
         
            +
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 433 | 
         
            +
                    nn.Conv2d(
         
     | 
| 434 | 
         
            +
                        in_channels=vit_features,
         
     | 
| 435 | 
         
            +
                        out_channels=features[2],
         
     | 
| 436 | 
         
            +
                        kernel_size=1,
         
     | 
| 437 | 
         
            +
                        stride=1,
         
     | 
| 438 | 
         
            +
                        padding=0,
         
     | 
| 439 | 
         
            +
                    ),
         
     | 
| 440 | 
         
            +
                )
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
                pretrained.act_postprocess4 = nn.Sequential(
         
     | 
| 443 | 
         
            +
                    readout_oper[3],
         
     | 
| 444 | 
         
            +
                    Transpose(1, 2),
         
     | 
| 445 | 
         
            +
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 446 | 
         
            +
                    nn.Conv2d(
         
     | 
| 447 | 
         
            +
                        in_channels=vit_features,
         
     | 
| 448 | 
         
            +
                        out_channels=features[3],
         
     | 
| 449 | 
         
            +
                        kernel_size=1,
         
     | 
| 450 | 
         
            +
                        stride=1,
         
     | 
| 451 | 
         
            +
                        padding=0,
         
     | 
| 452 | 
         
            +
                    ),
         
     | 
| 453 | 
         
            +
                    nn.Conv2d(
         
     | 
| 454 | 
         
            +
                        in_channels=features[3],
         
     | 
| 455 | 
         
            +
                        out_channels=features[3],
         
     | 
| 456 | 
         
            +
                        kernel_size=3,
         
     | 
| 457 | 
         
            +
                        stride=2,
         
     | 
| 458 | 
         
            +
                        padding=1,
         
     | 
| 459 | 
         
            +
                    ),
         
     | 
| 460 | 
         
            +
                )
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                pretrained.model.start_index = start_index
         
     | 
| 463 | 
         
            +
                pretrained.model.patch_size = [16, 16]
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
                # We inject this function into the VisionTransformer instances so that
         
     | 
| 466 | 
         
            +
                # we can use it with interpolated position embeddings without modifying the library source.
         
     | 
| 467 | 
         
            +
                pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
                # We inject this function into the VisionTransformer instances so that
         
     | 
| 470 | 
         
            +
                # we can use it with interpolated position embeddings without modifying the library source.
         
     | 
| 471 | 
         
            +
                pretrained.model._resize_pos_embed = types.MethodType(
         
     | 
| 472 | 
         
            +
                    _resize_pos_embed, pretrained.model
         
     | 
| 473 | 
         
            +
                )
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
                return pretrained
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
             
     | 
| 478 | 
         
            +
            def _make_pretrained_vitb_rn50_384(
         
     | 
| 479 | 
         
            +
                pretrained, use_readout="ignore", hooks=None, use_vit_only=False
         
     | 
| 480 | 
         
            +
            ):
         
     | 
| 481 | 
         
            +
                model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
         
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
                hooks = [0, 1, 8, 11] if hooks == None else hooks
         
     | 
| 484 | 
         
            +
                return _make_vit_b_rn50_backbone(
         
     | 
| 485 | 
         
            +
                    model,
         
     | 
| 486 | 
         
            +
                    features=[256, 512, 768, 768],
         
     | 
| 487 | 
         
            +
                    size=[384, 384],
         
     | 
| 488 | 
         
            +
                    hooks=hooks,
         
     | 
| 489 | 
         
            +
                    use_vit_only=use_vit_only,
         
     | 
| 490 | 
         
            +
                    use_readout=use_readout,
         
     | 
| 491 | 
         
            +
                )
         
     | 
    	
        annotator/midas/utils.py
    ADDED
    
    | 
         @@ -0,0 +1,189 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """Utils for monoDepth."""
         
     | 
| 2 | 
         
            +
            import sys
         
     | 
| 3 | 
         
            +
            import re
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            import cv2
         
     | 
| 6 | 
         
            +
            import torch
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            def read_pfm(path):
         
     | 
| 10 | 
         
            +
                """Read pfm file.
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
                Args:
         
     | 
| 13 | 
         
            +
                    path (str): path to file
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
                Returns:
         
     | 
| 16 | 
         
            +
                    tuple: (data, scale)
         
     | 
| 17 | 
         
            +
                """
         
     | 
| 18 | 
         
            +
                with open(path, "rb") as file:
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                    color = None
         
     | 
| 21 | 
         
            +
                    width = None
         
     | 
| 22 | 
         
            +
                    height = None
         
     | 
| 23 | 
         
            +
                    scale = None
         
     | 
| 24 | 
         
            +
                    endian = None
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                    header = file.readline().rstrip()
         
     | 
| 27 | 
         
            +
                    if header.decode("ascii") == "PF":
         
     | 
| 28 | 
         
            +
                        color = True
         
     | 
| 29 | 
         
            +
                    elif header.decode("ascii") == "Pf":
         
     | 
| 30 | 
         
            +
                        color = False
         
     | 
| 31 | 
         
            +
                    else:
         
     | 
| 32 | 
         
            +
                        raise Exception("Not a PFM file: " + path)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
         
     | 
| 35 | 
         
            +
                    if dim_match:
         
     | 
| 36 | 
         
            +
                        width, height = list(map(int, dim_match.groups()))
         
     | 
| 37 | 
         
            +
                    else:
         
     | 
| 38 | 
         
            +
                        raise Exception("Malformed PFM header.")
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                    scale = float(file.readline().decode("ascii").rstrip())
         
     | 
| 41 | 
         
            +
                    if scale < 0:
         
     | 
| 42 | 
         
            +
                        # little-endian
         
     | 
| 43 | 
         
            +
                        endian = "<"
         
     | 
| 44 | 
         
            +
                        scale = -scale
         
     | 
| 45 | 
         
            +
                    else:
         
     | 
| 46 | 
         
            +
                        # big-endian
         
     | 
| 47 | 
         
            +
                        endian = ">"
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    data = np.fromfile(file, endian + "f")
         
     | 
| 50 | 
         
            +
                    shape = (height, width, 3) if color else (height, width)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                    data = np.reshape(data, shape)
         
     | 
| 53 | 
         
            +
                    data = np.flipud(data)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    return data, scale
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            def write_pfm(path, image, scale=1):
         
     | 
| 59 | 
         
            +
                """Write pfm file.
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                Args:
         
     | 
| 62 | 
         
            +
                    path (str): pathto file
         
     | 
| 63 | 
         
            +
                    image (array): data
         
     | 
| 64 | 
         
            +
                    scale (int, optional): Scale. Defaults to 1.
         
     | 
| 65 | 
         
            +
                """
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                with open(path, "wb") as file:
         
     | 
| 68 | 
         
            +
                    color = None
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    if image.dtype.name != "float32":
         
     | 
| 71 | 
         
            +
                        raise Exception("Image dtype must be float32.")
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                    image = np.flipud(image)
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    if len(image.shape) == 3 and image.shape[2] == 3:  # color image
         
     | 
| 76 | 
         
            +
                        color = True
         
     | 
| 77 | 
         
            +
                    elif (
         
     | 
| 78 | 
         
            +
                        len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
         
     | 
| 79 | 
         
            +
                    ):  # greyscale
         
     | 
| 80 | 
         
            +
                        color = False
         
     | 
| 81 | 
         
            +
                    else:
         
     | 
| 82 | 
         
            +
                        raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    file.write("PF\n" if color else "Pf\n".encode())
         
     | 
| 85 | 
         
            +
                    file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                    endian = image.dtype.byteorder
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                    if endian == "<" or endian == "=" and sys.byteorder == "little":
         
     | 
| 90 | 
         
            +
                        scale = -scale
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    file.write("%f\n".encode() % scale)
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                    image.tofile(file)
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            def read_image(path):
         
     | 
| 98 | 
         
            +
                """Read image and output RGB image (0-1).
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                Args:
         
     | 
| 101 | 
         
            +
                    path (str): path to file
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                Returns:
         
     | 
| 104 | 
         
            +
                    array: RGB image (0-1)
         
     | 
| 105 | 
         
            +
                """
         
     | 
| 106 | 
         
            +
                img = cv2.imread(path)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                if img.ndim == 2:
         
     | 
| 109 | 
         
            +
                    img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                return img
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
            def resize_image(img):
         
     | 
| 117 | 
         
            +
                """Resize image and make it fit for network.
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                Args:
         
     | 
| 120 | 
         
            +
                    img (array): image
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                Returns:
         
     | 
| 123 | 
         
            +
                    tensor: data ready for network
         
     | 
| 124 | 
         
            +
                """
         
     | 
| 125 | 
         
            +
                height_orig = img.shape[0]
         
     | 
| 126 | 
         
            +
                width_orig = img.shape[1]
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                if width_orig > height_orig:
         
     | 
| 129 | 
         
            +
                    scale = width_orig / 384
         
     | 
| 130 | 
         
            +
                else:
         
     | 
| 131 | 
         
            +
                    scale = height_orig / 384
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
         
     | 
| 134 | 
         
            +
                width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                img_resized = (
         
     | 
| 139 | 
         
            +
                    torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
         
     | 
| 140 | 
         
            +
                )
         
     | 
| 141 | 
         
            +
                img_resized = img_resized.unsqueeze(0)
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                return img_resized
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
            def resize_depth(depth, width, height):
         
     | 
| 147 | 
         
            +
                """Resize depth map and bring to CPU (numpy).
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                Args:
         
     | 
| 150 | 
         
            +
                    depth (tensor): depth
         
     | 
| 151 | 
         
            +
                    width (int): image width
         
     | 
| 152 | 
         
            +
                    height (int): image height
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                Returns:
         
     | 
| 155 | 
         
            +
                    array: processed depth
         
     | 
| 156 | 
         
            +
                """
         
     | 
| 157 | 
         
            +
                depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                depth_resized = cv2.resize(
         
     | 
| 160 | 
         
            +
                    depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
         
     | 
| 161 | 
         
            +
                )
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                return depth_resized
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            def write_depth(path, depth, bits=1):
         
     | 
| 166 | 
         
            +
                """Write depth map to pfm and png file.
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                Args:
         
     | 
| 169 | 
         
            +
                    path (str): filepath without extension
         
     | 
| 170 | 
         
            +
                    depth (array): depth
         
     | 
| 171 | 
         
            +
                """
         
     | 
| 172 | 
         
            +
                write_pfm(path + ".pfm", depth.astype(np.float32))
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                depth_min = depth.min()
         
     | 
| 175 | 
         
            +
                depth_max = depth.max()
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                max_val = (2**(8*bits))-1
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                if depth_max - depth_min > np.finfo("float").eps:
         
     | 
| 180 | 
         
            +
                    out = max_val * (depth - depth_min) / (depth_max - depth_min)
         
     | 
| 181 | 
         
            +
                else:
         
     | 
| 182 | 
         
            +
                    out = np.zeros(depth.shape, dtype=depth.type)
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                if bits == 1:
         
     | 
| 185 | 
         
            +
                    cv2.imwrite(path + ".png", out.astype("uint8"))
         
     | 
| 186 | 
         
            +
                elif bits == 2:
         
     | 
| 187 | 
         
            +
                    cv2.imwrite(path + ".png", out.astype("uint16"))
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                return
         
     |