Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Back to diffusers 0.14.x
Browse files- model.py +17 -18
- requirements.txt +1 -1
- text_to_video_pipeline.py +504 -0
- utils.py +84 -1
    	
        model.py
    CHANGED
    
    | @@ -1,12 +1,12 @@ | |
| 1 | 
             
            from enum import Enum
         | 
| 2 | 
             
            import gc
         | 
| 3 | 
             
            import numpy as np
         | 
| 4 | 
            -
             | 
| 5 | 
             
            import torch
         | 
| 6 |  | 
| 7 | 
            -
            from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel | 
| 8 | 
             
            from diffusers.schedulers import EulerAncestralDiscreteScheduler, DDIMScheduler
         | 
| 9 | 
            -
            from  | 
| 10 |  | 
| 11 | 
             
            import utils
         | 
| 12 | 
             
            import gradio_utils
         | 
| @@ -32,18 +32,18 @@ class Model: | |
| 32 | 
             
                    self.generator = torch.Generator(device=device)
         | 
| 33 | 
             
                    self.pipe_dict = {
         | 
| 34 | 
             
                        ModelType.Pix2Pix_Video: StableDiffusionInstructPix2PixPipeline,
         | 
| 35 | 
            -
                        ModelType.Text2Video:  | 
| 36 | 
             
                        ModelType.ControlNetCanny: StableDiffusionControlNetPipeline,
         | 
| 37 | 
             
                        ModelType.ControlNetCannyDB: StableDiffusionControlNetPipeline,
         | 
| 38 | 
             
                        ModelType.ControlNetPose: StableDiffusionControlNetPipeline,
         | 
| 39 | 
             
                        ModelType.ControlNetDepth: StableDiffusionControlNetPipeline,
         | 
| 40 | 
             
                    }
         | 
| 41 | 
            -
                    self.controlnet_attn_proc = CrossFrameAttnProcessor(
         | 
| 42 | 
            -
                         | 
| 43 | 
            -
                    self.pix2pix_attn_proc = CrossFrameAttnProcessor(
         | 
| 44 | 
            -
                         | 
| 45 | 
            -
                    self.text2video_attn_proc = CrossFrameAttnProcessor(
         | 
| 46 | 
            -
                         | 
| 47 |  | 
| 48 | 
             
                    self.pipe = None
         | 
| 49 | 
             
                    self.model_type = None
         | 
| @@ -58,7 +58,7 @@ class Model: | |
| 58 | 
             
                    gc.collect()
         | 
| 59 | 
             
                    safety_checker = kwargs.pop('safety_checker', None)
         | 
| 60 | 
             
                    self.pipe = self.pipe_dict[model_type].from_pretrained(
         | 
| 61 | 
            -
                        model_id, safety_checker=safety_checker, **kwargs).to(self.device | 
| 62 | 
             
                    self.model_type = model_type
         | 
| 63 | 
             
                    self.model_name = model_id
         | 
| 64 |  | 
| @@ -86,13 +86,12 @@ class Model: | |
| 86 | 
             
                def inference(self, split_to_chunks=False, chunk_size=2, **kwargs):
         | 
| 87 | 
             
                    if not hasattr(self, "pipe") or self.pipe is None:
         | 
| 88 | 
             
                        return
         | 
| 89 | 
            -
             | 
| 90 | 
             
                    if "merging_ratio" in kwargs:
         | 
| 91 | 
             
                        merging_ratio = kwargs.pop("merging_ratio")
         | 
| 92 |  | 
| 93 | 
             
                        # if merging_ratio > 0:
         | 
| 94 | 
             
                        tomesd.apply_patch(self.pipe, ratio=merging_ratio)
         | 
| 95 | 
            -
                    '''
         | 
| 96 | 
             
                    seed = kwargs.pop('seed', 0)
         | 
| 97 | 
             
                    if seed < 0:
         | 
| 98 | 
             
                        seed = self.generator.seed()
         | 
| @@ -480,19 +479,19 @@ class Model: | |
| 480 | 
             
                                            width=resolution,
         | 
| 481 | 
             
                                            num_inference_steps=50,
         | 
| 482 | 
             
                                            guidance_scale=7.5,
         | 
| 483 | 
            -
                                             | 
| 484 | 
             
                                            t0=t0,
         | 
| 485 | 
             
                                            t1=t1,
         | 
| 486 | 
             
                                            motion_field_strength_x=motion_field_strength_x,
         | 
| 487 | 
             
                                            motion_field_strength_y=motion_field_strength_y,
         | 
| 488 | 
            -
                                             | 
| 489 | 
             
                                            smooth_bg=smooth_bg,
         | 
| 490 | 
             
                                            smooth_bg_strength=smooth_bg_strength,
         | 
| 491 | 
             
                                            seed=seed,
         | 
| 492 | 
             
                                            output_type='numpy',
         | 
| 493 | 
             
                                            negative_prompt=negative_prompt,
         | 
| 494 | 
            -
                                             | 
| 495 | 
            -
                                             | 
| 496 | 
            -
                                             | 
| 497 | 
             
                                            )
         | 
| 498 | 
             
                    return utils.create_video(result, fps, path=path, watermark=gradio_utils.logo_name_to_path(watermark))
         | 
|  | |
| 1 | 
             
            from enum import Enum
         | 
| 2 | 
             
            import gc
         | 
| 3 | 
             
            import numpy as np
         | 
| 4 | 
            +
            import tomesd
         | 
| 5 | 
             
            import torch
         | 
| 6 |  | 
| 7 | 
            +
            from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel
         | 
| 8 | 
             
            from diffusers.schedulers import EulerAncestralDiscreteScheduler, DDIMScheduler
         | 
| 9 | 
            +
            from text_to_video_pipeline import TextToVideoPipeline
         | 
| 10 |  | 
| 11 | 
             
            import utils
         | 
| 12 | 
             
            import gradio_utils
         | 
|  | |
| 32 | 
             
                    self.generator = torch.Generator(device=device)
         | 
| 33 | 
             
                    self.pipe_dict = {
         | 
| 34 | 
             
                        ModelType.Pix2Pix_Video: StableDiffusionInstructPix2PixPipeline,
         | 
| 35 | 
            +
                        ModelType.Text2Video: TextToVideoPipeline,
         | 
| 36 | 
             
                        ModelType.ControlNetCanny: StableDiffusionControlNetPipeline,
         | 
| 37 | 
             
                        ModelType.ControlNetCannyDB: StableDiffusionControlNetPipeline,
         | 
| 38 | 
             
                        ModelType.ControlNetPose: StableDiffusionControlNetPipeline,
         | 
| 39 | 
             
                        ModelType.ControlNetDepth: StableDiffusionControlNetPipeline,
         | 
| 40 | 
             
                    }
         | 
| 41 | 
            +
                    self.controlnet_attn_proc = utils.CrossFrameAttnProcessor(
         | 
| 42 | 
            +
                        unet_chunk_size=2)
         | 
| 43 | 
            +
                    self.pix2pix_attn_proc = utils.CrossFrameAttnProcessor(
         | 
| 44 | 
            +
                        unet_chunk_size=3)
         | 
| 45 | 
            +
                    self.text2video_attn_proc = utils.CrossFrameAttnProcessor(
         | 
| 46 | 
            +
                        unet_chunk_size=2)
         | 
| 47 |  | 
| 48 | 
             
                    self.pipe = None
         | 
| 49 | 
             
                    self.model_type = None
         | 
|  | |
| 58 | 
             
                    gc.collect()
         | 
| 59 | 
             
                    safety_checker = kwargs.pop('safety_checker', None)
         | 
| 60 | 
             
                    self.pipe = self.pipe_dict[model_type].from_pretrained(
         | 
| 61 | 
            +
                        model_id, safety_checker=safety_checker, **kwargs).to(self.device).to(self.dtype)
         | 
| 62 | 
             
                    self.model_type = model_type
         | 
| 63 | 
             
                    self.model_name = model_id
         | 
| 64 |  | 
|  | |
| 86 | 
             
                def inference(self, split_to_chunks=False, chunk_size=2, **kwargs):
         | 
| 87 | 
             
                    if not hasattr(self, "pipe") or self.pipe is None:
         | 
| 88 | 
             
                        return
         | 
| 89 | 
            +
             | 
| 90 | 
             
                    if "merging_ratio" in kwargs:
         | 
| 91 | 
             
                        merging_ratio = kwargs.pop("merging_ratio")
         | 
| 92 |  | 
| 93 | 
             
                        # if merging_ratio > 0:
         | 
| 94 | 
             
                        tomesd.apply_patch(self.pipe, ratio=merging_ratio)
         | 
|  | |
| 95 | 
             
                    seed = kwargs.pop('seed', 0)
         | 
| 96 | 
             
                    if seed < 0:
         | 
| 97 | 
             
                        seed = self.generator.seed()
         | 
|  | |
| 479 | 
             
                                            width=resolution,
         | 
| 480 | 
             
                                            num_inference_steps=50,
         | 
| 481 | 
             
                                            guidance_scale=7.5,
         | 
| 482 | 
            +
                                            guidance_stop_step=1.0,
         | 
| 483 | 
             
                                            t0=t0,
         | 
| 484 | 
             
                                            t1=t1,
         | 
| 485 | 
             
                                            motion_field_strength_x=motion_field_strength_x,
         | 
| 486 | 
             
                                            motion_field_strength_y=motion_field_strength_y,
         | 
| 487 | 
            +
                                            use_motion_field=use_motion_field,
         | 
| 488 | 
             
                                            smooth_bg=smooth_bg,
         | 
| 489 | 
             
                                            smooth_bg_strength=smooth_bg_strength,
         | 
| 490 | 
             
                                            seed=seed,
         | 
| 491 | 
             
                                            output_type='numpy',
         | 
| 492 | 
             
                                            negative_prompt=negative_prompt,
         | 
| 493 | 
            +
                                            merging_ratio=merging_ratio,
         | 
| 494 | 
            +
                                            split_to_chunks=True,
         | 
| 495 | 
            +
                                            chunk_size=chunk_size,
         | 
| 496 | 
             
                                            )
         | 
| 497 | 
             
                    return utils.create_video(result, fps, path=path, watermark=gradio_utils.logo_name_to_path(watermark))
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -3,7 +3,7 @@ addict==2.4.0 | |
| 3 | 
             
            albumentations==1.3.0
         | 
| 4 | 
             
            basicsr==1.4.2
         | 
| 5 | 
             
            decord==0.6.0
         | 
| 6 | 
            -
            diffusers==0. | 
| 7 | 
             
            einops==0.6.0
         | 
| 8 | 
             
            gradio==3.23.0
         | 
| 9 | 
             
            kornia==0.6
         | 
|  | |
| 3 | 
             
            albumentations==1.3.0
         | 
| 4 | 
             
            basicsr==1.4.2
         | 
| 5 | 
             
            decord==0.6.0
         | 
| 6 | 
            +
            diffusers==0.14.0
         | 
| 7 | 
             
            einops==0.6.0
         | 
| 8 | 
             
            gradio==3.23.0
         | 
| 9 | 
             
            kornia==0.6
         | 
    	
        text_to_video_pipeline.py
    ADDED
    
    | @@ -0,0 +1,504 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from diffusers import StableDiffusionPipeline
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            from dataclasses import dataclass
         | 
| 4 | 
            +
            from typing import Callable, List, Optional, Union
         | 
| 5 | 
            +
            import numpy as np
         | 
| 6 | 
            +
            from diffusers.utils import deprecate, logging, BaseOutput
         | 
| 7 | 
            +
            from einops import rearrange, repeat
         | 
| 8 | 
            +
            from torch.nn.functional import grid_sample
         | 
| 9 | 
            +
            import torchvision.transforms as T
         | 
| 10 | 
            +
            from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
         | 
| 11 | 
            +
            from diffusers.models import AutoencoderKL, UNet2DConditionModel
         | 
| 12 | 
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         | 
| 13 | 
            +
            from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
         | 
| 14 | 
            +
            import PIL
         | 
| 15 | 
            +
            from PIL import Image
         | 
| 16 | 
            +
            from kornia.morphology import dilation
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            @dataclass
         | 
| 20 | 
            +
            class TextToVideoPipelineOutput(BaseOutput):
         | 
| 21 | 
            +
                # videos: Union[torch.Tensor, np.ndarray]
         | 
| 22 | 
            +
                # code: Union[torch.Tensor, np.ndarray]
         | 
| 23 | 
            +
                images: Union[List[PIL.Image.Image], np.ndarray]
         | 
| 24 | 
            +
                nsfw_content_detected: Optional[List[bool]]
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            def coords_grid(batch, ht, wd, device):
         | 
| 28 | 
            +
                # Adapted from https://github.com/princeton-vl/RAFT/blob/master/core/utils/utils.py
         | 
| 29 | 
            +
                coords = torch.meshgrid(torch.arange(
         | 
| 30 | 
            +
                    ht, device=device), torch.arange(wd, device=device))
         | 
| 31 | 
            +
                coords = torch.stack(coords[::-1], dim=0).float()
         | 
| 32 | 
            +
                return coords[None].repeat(batch, 1, 1, 1)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            class TextToVideoPipeline(StableDiffusionPipeline):
         | 
| 36 | 
            +
                def __init__(
         | 
| 37 | 
            +
                    self,
         | 
| 38 | 
            +
                    vae: AutoencoderKL,
         | 
| 39 | 
            +
                    text_encoder: CLIPTextModel,
         | 
| 40 | 
            +
                    tokenizer: CLIPTokenizer,
         | 
| 41 | 
            +
                    unet: UNet2DConditionModel,
         | 
| 42 | 
            +
                    scheduler: KarrasDiffusionSchedulers,
         | 
| 43 | 
            +
                    safety_checker: StableDiffusionSafetyChecker,
         | 
| 44 | 
            +
                    feature_extractor: CLIPFeatureExtractor,
         | 
| 45 | 
            +
                    requires_safety_checker: bool = True,
         | 
| 46 | 
            +
                ):
         | 
| 47 | 
            +
                    super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
         | 
| 48 | 
            +
                                     safety_checker, feature_extractor, requires_safety_checker)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def DDPM_forward(self, x0, t0, tMax, generator, device, shape, text_embeddings):
         | 
| 51 | 
            +
                    rand_device = "cpu" if device.type == "mps" else device
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    if x0 is None:
         | 
| 54 | 
            +
                        return torch.randn(shape, generator=generator, device=rand_device, dtype=text_embeddings.dtype).to(device)
         | 
| 55 | 
            +
                    else:
         | 
| 56 | 
            +
                        eps = torch.randn(x0.shape, dtype=text_embeddings.dtype, generator=generator,
         | 
| 57 | 
            +
                                          device=rand_device)
         | 
| 58 | 
            +
                        alpha_vec = torch.prod(self.scheduler.alphas[t0:tMax])
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                        xt = torch.sqrt(alpha_vec) * x0 + \
         | 
| 61 | 
            +
                            torch.sqrt(1-alpha_vec) * eps
         | 
| 62 | 
            +
                        return xt
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
         | 
| 65 | 
            +
                    shape = (batch_size, num_channels_latents, video_length, height //
         | 
| 66 | 
            +
                             self.vae_scale_factor, width // self.vae_scale_factor)
         | 
| 67 | 
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 68 | 
            +
                        raise ValueError(
         | 
| 69 | 
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 70 | 
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         | 
| 71 | 
            +
                        )
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                    if latents is None:
         | 
| 74 | 
            +
                        rand_device = "cpu" if device.type == "mps" else device
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                        if isinstance(generator, list):
         | 
| 77 | 
            +
                            shape = (1,) + shape[1:]
         | 
| 78 | 
            +
                            latents = [
         | 
| 79 | 
            +
                                torch.randn(
         | 
| 80 | 
            +
                                    shape, generator=generator[i], device=rand_device, dtype=dtype)
         | 
| 81 | 
            +
                                for i in range(batch_size)
         | 
| 82 | 
            +
                            ]
         | 
| 83 | 
            +
                            latents = torch.cat(latents, dim=0).to(device)
         | 
| 84 | 
            +
                        else:
         | 
| 85 | 
            +
                            latents = torch.randn(
         | 
| 86 | 
            +
                                shape, generator=generator, device=rand_device, dtype=dtype).to(device)
         | 
| 87 | 
            +
                    else:
         | 
| 88 | 
            +
                        latents = latents.to(device)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         | 
| 91 | 
            +
                    latents = latents * self.scheduler.init_noise_sigma
         | 
| 92 | 
            +
                    return latents
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                def warp_latents_independently(self, latents, reference_flow):
         | 
| 95 | 
            +
                    _, _, H, W = reference_flow.size()
         | 
| 96 | 
            +
                    b, _, f, h, w = latents.size()
         | 
| 97 | 
            +
                    assert b == 1
         | 
| 98 | 
            +
                    coords0 = coords_grid(f, H, W, device=latents.device).to(latents.dtype)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    coords_t0 = coords0 + reference_flow
         | 
| 101 | 
            +
                    coords_t0[:, 0] /= W
         | 
| 102 | 
            +
                    coords_t0[:, 1] /= H
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    coords_t0 = coords_t0 * 2.0 - 1.0
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    coords_t0 = T.Resize((h, w))(coords_t0)
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    latents_0 = rearrange(latents[0], 'c f h w -> f  c  h w')
         | 
| 111 | 
            +
                    warped = grid_sample(latents_0, coords_t0,
         | 
| 112 | 
            +
                                         mode='nearest', padding_mode='reflection')
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
         | 
| 115 | 
            +
                    return warped
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                def DDIM_backward(self, num_inference_steps, timesteps, skip_t, t0, t1, do_classifier_free_guidance, null_embs, text_embeddings, latents_local,
         | 
| 118 | 
            +
                                  latents_dtype, guidance_scale, guidance_stop_step, callback, callback_steps, extra_step_kwargs, num_warmup_steps):
         | 
| 119 | 
            +
                    entered = False
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    f = latents_local.shape[2]
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    latents_local = rearrange(latents_local, "b c f w h -> (b f) c w h")
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    latents = latents_local.detach().clone()
         | 
| 126 | 
            +
                    x_t0_1 = None
         | 
| 127 | 
            +
                    x_t1_1 = None
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 130 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 131 | 
            +
                            if t > skip_t:
         | 
| 132 | 
            +
                                continue
         | 
| 133 | 
            +
                            else:
         | 
| 134 | 
            +
                                if not entered:
         | 
| 135 | 
            +
                                    print(
         | 
| 136 | 
            +
                                        f"Continue DDIM with i = {i}, t = {t}, latent = {latents.shape}, device = {latents.device}, type = {latents.dtype}")
         | 
| 137 | 
            +
                                    entered = True
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                            latents = latents.detach()
         | 
| 140 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 141 | 
            +
                            latent_model_input = torch.cat(
         | 
| 142 | 
            +
                                [latents] * 2) if do_classifier_free_guidance else latents
         | 
| 143 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(
         | 
| 144 | 
            +
                                latent_model_input, t)
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                            # predict the noise residual
         | 
| 147 | 
            +
                            with torch.no_grad():
         | 
| 148 | 
            +
                                if null_embs is not None:
         | 
| 149 | 
            +
                                    text_embeddings[0] = null_embs[i][0]
         | 
| 150 | 
            +
                                te = torch.cat([repeat(text_embeddings[0, :, :], "c k -> f c k", f=f),
         | 
| 151 | 
            +
                                               repeat(text_embeddings[1, :, :], "c k -> f c k", f=f)])
         | 
| 152 | 
            +
                                noise_pred = self.unet(
         | 
| 153 | 
            +
                                    latent_model_input, t, encoder_hidden_states=te).sample.to(dtype=latents_dtype)
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                            # perform guidance
         | 
| 156 | 
            +
                            if do_classifier_free_guidance:
         | 
| 157 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(
         | 
| 158 | 
            +
                                    2)
         | 
| 159 | 
            +
                                noise_pred = noise_pred_uncond + guidance_scale * \
         | 
| 160 | 
            +
                                    (noise_pred_text - noise_pred_uncond)
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                            if i >= guidance_stop_step * len(timesteps):
         | 
| 163 | 
            +
                                alpha = 0
         | 
| 164 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 165 | 
            +
                            latents = self.scheduler.step(
         | 
| 166 | 
            +
                                noise_pred, t, latents, **extra_step_kwargs).prev_sample
         | 
| 167 | 
            +
                            # latents = latents - alpha * grads / (torch.norm(grads) + 1e-10)
         | 
| 168 | 
            +
                            # call the callback, if provided
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                            if i < len(timesteps)-1 and timesteps[i+1] == t0:
         | 
| 171 | 
            +
                                x_t0_1 = latents.detach().clone()
         | 
| 172 | 
            +
                                print(f"latent t0 found at i = {i}, t = {t}")
         | 
| 173 | 
            +
                            elif i < len(timesteps)-1 and timesteps[i+1] == t1:
         | 
| 174 | 
            +
                                x_t1_1 = latents.detach().clone()
         | 
| 175 | 
            +
                                print(f"latent t1 found at i={i}, t = {t}")
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 178 | 
            +
                                progress_bar.update()
         | 
| 179 | 
            +
                                if callback is not None and i % callback_steps == 0:
         | 
| 180 | 
            +
                                    callback(i, t, latents)
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    latents = rearrange(latents, "(b f) c w h -> b c f  w h", f=f)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    res = {"x0": latents.detach().clone()}
         | 
| 185 | 
            +
                    if x_t0_1 is not None:
         | 
| 186 | 
            +
                        x_t0_1 = rearrange(x_t0_1, "(b f) c w h -> b c f  w h", f=f)
         | 
| 187 | 
            +
                        res["x_t0_1"] = x_t0_1.detach().clone()
         | 
| 188 | 
            +
                    if x_t1_1 is not None:
         | 
| 189 | 
            +
                        x_t1_1 = rearrange(x_t1_1, "(b f) c w h -> b c f  w h", f=f)
         | 
| 190 | 
            +
                        res["x_t1_1"] = x_t1_1.detach().clone()
         | 
| 191 | 
            +
                    return res
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                def decode_latents(self, latents):
         | 
| 194 | 
            +
                    video_length = latents.shape[2]
         | 
| 195 | 
            +
                    latents = 1 / 0.18215 * latents
         | 
| 196 | 
            +
                    latents = rearrange(latents, "b c f h w -> (b f) c h w")
         | 
| 197 | 
            +
                    video = self.vae.decode(latents).sample
         | 
| 198 | 
            +
                    video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
         | 
| 199 | 
            +
                    video = (video / 2 + 0.5).clamp(0, 1)
         | 
| 200 | 
            +
                    # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
         | 
| 201 | 
            +
                    video = video.detach().cpu()
         | 
| 202 | 
            +
                    return video
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                def create_motion_field(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    reference_flow = torch.zeros(
         | 
| 207 | 
            +
                        (video_length-1, 2, 512, 512), device=latents.device, dtype=latents.dtype)
         | 
| 208 | 
            +
                    for fr_idx, frame_id in enumerate(frame_ids):
         | 
| 209 | 
            +
                        reference_flow[fr_idx, 0, :,
         | 
| 210 | 
            +
                                       :] = motion_field_strength_x*(frame_id)
         | 
| 211 | 
            +
                        reference_flow[fr_idx, 1, :,
         | 
| 212 | 
            +
                                       :] = motion_field_strength_y*(frame_id)
         | 
| 213 | 
            +
                    return reference_flow
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                def create_motion_field_and_warp_latents(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    motion_field = self.create_motion_field(motion_field_strength_x=motion_field_strength_x,
         | 
| 218 | 
            +
                                                            motion_field_strength_y=motion_field_strength_y, latents=latents, video_length=video_length, frame_ids=frame_ids)
         | 
| 219 | 
            +
                    for idx, latent in enumerate(latents):
         | 
| 220 | 
            +
                        latents[idx] = self.warp_latents_independently(
         | 
| 221 | 
            +
                            latent[None], motion_field)
         | 
| 222 | 
            +
                    return motion_field, latents
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                @torch.no_grad()
         | 
| 225 | 
            +
                def __call__(
         | 
| 226 | 
            +
                    self,
         | 
| 227 | 
            +
                    prompt: Union[str, List[str]],
         | 
| 228 | 
            +
                    video_length: Optional[int],
         | 
| 229 | 
            +
                    height: Optional[int] = None,
         | 
| 230 | 
            +
                    width: Optional[int] = None,
         | 
| 231 | 
            +
                    num_inference_steps: int = 50,
         | 
| 232 | 
            +
                    guidance_scale: float = 7.5,
         | 
| 233 | 
            +
                    guidance_stop_step: float = 0.5,
         | 
| 234 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 235 | 
            +
                    num_videos_per_prompt: Optional[int] = 1,
         | 
| 236 | 
            +
                    eta: float = 0.0,
         | 
| 237 | 
            +
                    generator: Optional[Union[torch.Generator,
         | 
| 238 | 
            +
                                              List[torch.Generator]]] = None,
         | 
| 239 | 
            +
                    xT: Optional[torch.FloatTensor] = None,
         | 
| 240 | 
            +
                    null_embs: Optional[torch.FloatTensor] = None,
         | 
| 241 | 
            +
                    motion_field_strength_x: float = 12,
         | 
| 242 | 
            +
                    motion_field_strength_y: float = 12,
         | 
| 243 | 
            +
                    output_type: Optional[str] = "tensor",
         | 
| 244 | 
            +
                    return_dict: bool = True,
         | 
| 245 | 
            +
                    callback: Optional[Callable[[
         | 
| 246 | 
            +
                        int, int, torch.FloatTensor], None]] = None,
         | 
| 247 | 
            +
                    callback_steps: Optional[int] = 1,
         | 
| 248 | 
            +
                    use_motion_field: bool = True,
         | 
| 249 | 
            +
                    smooth_bg: bool = False,
         | 
| 250 | 
            +
                    smooth_bg_strength: float = 0.4,
         | 
| 251 | 
            +
                    t0: int = 44,
         | 
| 252 | 
            +
                    t1: int = 47,
         | 
| 253 | 
            +
                    **kwargs,
         | 
| 254 | 
            +
                ):
         | 
| 255 | 
            +
                    frame_ids = kwargs.pop("frame_ids", list(range(video_length)))
         | 
| 256 | 
            +
                    assert t0 < t1
         | 
| 257 | 
            +
                    assert num_videos_per_prompt == 1
         | 
| 258 | 
            +
                    assert isinstance(prompt, list) and len(prompt) > 0
         | 
| 259 | 
            +
                    assert isinstance(negative_prompt, list) or negative_prompt is None
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    prompt_types = [prompt, negative_prompt]
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                    for idx, prompt_type in enumerate(prompt_types):
         | 
| 264 | 
            +
                        prompt_template = None
         | 
| 265 | 
            +
                        for prompt in prompt_type:
         | 
| 266 | 
            +
                            if prompt_template is None:
         | 
| 267 | 
            +
                                prompt_template = prompt
         | 
| 268 | 
            +
                            else:
         | 
| 269 | 
            +
                                assert prompt == prompt_template
         | 
| 270 | 
            +
                        if prompt_types[idx] is not None:
         | 
| 271 | 
            +
                            prompt_types[idx] = prompt_types[idx][0]
         | 
| 272 | 
            +
                    prompt = prompt_types[0]
         | 
| 273 | 
            +
                    negative_prompt = prompt_types[1]
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    # Default height and width to unet
         | 
| 276 | 
            +
                    height = height or self.unet.config.sample_size * self.vae_scale_factor
         | 
| 277 | 
            +
                    width = width or self.unet.config.sample_size * self.vae_scale_factor
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    # Check inputs. Raise error if not correct
         | 
| 280 | 
            +
                    self.check_inputs(prompt, height, width, callback_steps)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                    # Define call parameters
         | 
| 283 | 
            +
                    batch_size = 1 if isinstance(prompt, str) else len(prompt)
         | 
| 284 | 
            +
                    device = self._execution_device
         | 
| 285 | 
            +
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 286 | 
            +
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 287 | 
            +
                    # corresponds to doing no classifier free guidance.
         | 
| 288 | 
            +
                    do_classifier_free_guidance = guidance_scale > 1.0
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                    # Encode input prompt
         | 
| 291 | 
            +
                    text_embeddings = self._encode_prompt(
         | 
| 292 | 
            +
                        prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
         | 
| 293 | 
            +
                    )
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    # Prepare timesteps
         | 
| 296 | 
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 297 | 
            +
                    timesteps = self.scheduler.timesteps
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    # print(f" Latent shape = {latents.shape}")
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    # Prepare latent variables
         | 
| 302 | 
            +
                    num_channels_latents = self.unet.in_channels
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    xT = self.prepare_latents(
         | 
| 305 | 
            +
                        batch_size * num_videos_per_prompt,
         | 
| 306 | 
            +
                        num_channels_latents,
         | 
| 307 | 
            +
                        1,
         | 
| 308 | 
            +
                        height,
         | 
| 309 | 
            +
                        width,
         | 
| 310 | 
            +
                        text_embeddings.dtype,
         | 
| 311 | 
            +
                        device,
         | 
| 312 | 
            +
                        generator,
         | 
| 313 | 
            +
                        xT,
         | 
| 314 | 
            +
                    )
         | 
| 315 | 
            +
                    dtype = xT.dtype
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                    # when motion field is not used, augment with random latent codes
         | 
| 318 | 
            +
                    if use_motion_field:
         | 
| 319 | 
            +
                        xT = xT[:, :, :1]
         | 
| 320 | 
            +
                    else:
         | 
| 321 | 
            +
                        if xT.shape[2] < video_length:
         | 
| 322 | 
            +
                            xT_missing = self.prepare_latents(
         | 
| 323 | 
            +
                                batch_size * num_videos_per_prompt,
         | 
| 324 | 
            +
                                num_channels_latents,
         | 
| 325 | 
            +
                                video_length-xT.shape[2],
         | 
| 326 | 
            +
                                height,
         | 
| 327 | 
            +
                                width,
         | 
| 328 | 
            +
                                text_embeddings.dtype,
         | 
| 329 | 
            +
                                device,
         | 
| 330 | 
            +
                                generator,
         | 
| 331 | 
            +
                                None,
         | 
| 332 | 
            +
                            )
         | 
| 333 | 
            +
                            xT = torch.cat([xT, xT_missing], dim=2)
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                    xInit = xT.clone()
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    timesteps_ddpm = [981, 961, 941, 921, 901, 881, 861, 841, 821, 801, 781, 761, 741, 721,
         | 
| 338 | 
            +
                                      701, 681, 661, 641, 621, 601, 581, 561, 541, 521, 501, 481, 461, 441,
         | 
| 339 | 
            +
                                      421, 401, 381, 361, 341, 321, 301, 281, 261, 241, 221, 201, 181, 161,
         | 
| 340 | 
            +
                                      141, 121, 101,  81,  61,  41,  21,   1]
         | 
| 341 | 
            +
                    timesteps_ddpm.reverse()
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                    t0 = timesteps_ddpm[t0]
         | 
| 344 | 
            +
                    t1 = timesteps_ddpm[t1]
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    print(f"t0 = {t0} t1 = {t1}")
         | 
| 347 | 
            +
                    x_t1_1 = None
         | 
| 348 | 
            +
             | 
| 349 | 
            +
                    # Prepare extra step kwargs.
         | 
| 350 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 351 | 
            +
                    # Denoising loop
         | 
| 352 | 
            +
                    num_warmup_steps = len(timesteps) - \
         | 
| 353 | 
            +
                        num_inference_steps * self.scheduler.order
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                    shape = (batch_size, num_channels_latents, 1, height //
         | 
| 356 | 
            +
                             self.vae_scale_factor, width // self.vae_scale_factor)
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                    ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 359 | 
            +
                                                  null_embs=null_embs, text_embeddings=text_embeddings, latents_local=xT, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step,
         | 
| 360 | 
            +
                                                  callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    x0 = ddim_res["x0"].detach()
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    if "x_t0_1" in ddim_res:
         | 
| 365 | 
            +
                        x_t0_1 = ddim_res["x_t0_1"].detach()
         | 
| 366 | 
            +
                    if "x_t1_1" in ddim_res:
         | 
| 367 | 
            +
                        x_t1_1 = ddim_res["x_t1_1"].detach()
         | 
| 368 | 
            +
                    del ddim_res
         | 
| 369 | 
            +
                    del xT
         | 
| 370 | 
            +
                    if use_motion_field:
         | 
| 371 | 
            +
                        del x0
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                        x_t0_k = x_t0_1[:, :, :1, :, :].repeat(1, 1, video_length-1, 1, 1)
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                        reference_flow, x_t0_k = self.create_motion_field_and_warp_latents(
         | 
| 376 | 
            +
                            motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, latents=x_t0_k, video_length=video_length, frame_ids=frame_ids[1:])
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                        # assuming t0=t1=1000, if t0 = 1000
         | 
| 379 | 
            +
                        if t1 > t0:
         | 
| 380 | 
            +
                            x_t1_k = self.DDPM_forward(
         | 
| 381 | 
            +
                                x0=x_t0_k, t0=t0, tMax=t1, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
         | 
| 382 | 
            +
                        else:
         | 
| 383 | 
            +
                            x_t1_k = x_t0_k
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                        if x_t1_1 is None:
         | 
| 386 | 
            +
                            raise Exception
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                        x_t1 = torch.cat([x_t1_1, x_t1_k], dim=2).clone().detach()
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                        ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 391 | 
            +
                                                      null_embs=null_embs, text_embeddings=text_embeddings, latents_local=x_t1, latents_dtype=dtype, guidance_scale=guidance_scale,
         | 
| 392 | 
            +
                                                      guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                        x0 = ddim_res["x0"].detach()
         | 
| 395 | 
            +
                        del ddim_res
         | 
| 396 | 
            +
                        del x_t1
         | 
| 397 | 
            +
                        del x_t1_1
         | 
| 398 | 
            +
                        del x_t1_k
         | 
| 399 | 
            +
                    else:
         | 
| 400 | 
            +
                        x_t1 = x_t1_1.clone()
         | 
| 401 | 
            +
                        x_t1_1 = x_t1_1[:, :, :1, :, :].clone()
         | 
| 402 | 
            +
                        x_t1_k = x_t1_1[:, :, 1:, :, :].clone()
         | 
| 403 | 
            +
                        x_t0_k = x_t0_1[:, :, 1:, :, :].clone()
         | 
| 404 | 
            +
                        x_t0_1 = x_t0_1[:, :, :1, :, :].clone()
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                    # smooth background
         | 
| 407 | 
            +
                    if smooth_bg:
         | 
| 408 | 
            +
                        h, w = x0.shape[3], x0.shape[4]
         | 
| 409 | 
            +
                        M_FG = torch.zeros((batch_size, video_length, h, w),
         | 
| 410 | 
            +
                                           device=x0.device).to(x0.dtype)
         | 
| 411 | 
            +
                        for batch_idx, x0_b in enumerate(x0):
         | 
| 412 | 
            +
                            z0_b = self.decode_latents(x0_b[None]).detach()
         | 
| 413 | 
            +
                            z0_b = rearrange(z0_b[0], "c f h w -> f h w c")
         | 
| 414 | 
            +
                            for frame_idx, z0_f in enumerate(z0_b):
         | 
| 415 | 
            +
                                z0_f = torch.round(
         | 
| 416 | 
            +
                                    z0_f * 255).cpu().numpy().astype(np.uint8)
         | 
| 417 | 
            +
                                # apply SOD detection
         | 
| 418 | 
            +
                                m_f = torch.tensor(self.sod_model.process_data(
         | 
| 419 | 
            +
                                    z0_f), device=x0.device).to(x0.dtype)
         | 
| 420 | 
            +
                                mask = T.Resize(
         | 
| 421 | 
            +
                                    size=(h, w), interpolation=T.InterpolationMode.NEAREST)(m_f[None])
         | 
| 422 | 
            +
                                kernel = torch.ones(5, 5, device=x0.device, dtype=x0.dtype)
         | 
| 423 | 
            +
                                mask = dilation(mask[None].to(x0.device), kernel)[0]
         | 
| 424 | 
            +
                                M_FG[batch_idx, frame_idx, :, :] = mask
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                        x_t1_1_fg_masked = x_t1_1 * \
         | 
| 427 | 
            +
                            (1 - repeat(M_FG[:, 0, :, :],
         | 
| 428 | 
            +
                                        "b w h -> b c 1 w h", c=x_t1_1.shape[1]))
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                        x_t1_1_fg_masked_moved = []
         | 
| 431 | 
            +
                        for batch_idx, x_t1_1_fg_masked_b in enumerate(x_t1_1_fg_masked):
         | 
| 432 | 
            +
                            x_t1_fg_masked_b = x_t1_1_fg_masked_b.clone()
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                            x_t1_fg_masked_b = x_t1_fg_masked_b.repeat(
         | 
| 435 | 
            +
                                1, video_length-1, 1, 1)
         | 
| 436 | 
            +
                            if use_motion_field:
         | 
| 437 | 
            +
                                x_t1_fg_masked_b = x_t1_fg_masked_b[None]
         | 
| 438 | 
            +
                                x_t1_fg_masked_b = self.warp_latents_independently(
         | 
| 439 | 
            +
                                    x_t1_fg_masked_b, reference_flow)
         | 
| 440 | 
            +
                            else:
         | 
| 441 | 
            +
                                x_t1_fg_masked_b = x_t1_fg_masked_b[None]
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                            x_t1_fg_masked_b = torch.cat(
         | 
| 444 | 
            +
                                [x_t1_1_fg_masked_b[None], x_t1_fg_masked_b], dim=2)
         | 
| 445 | 
            +
                            x_t1_1_fg_masked_moved.append(x_t1_fg_masked_b)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                        x_t1_1_fg_masked_moved = torch.cat(x_t1_1_fg_masked_moved, dim=0)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                        M_FG_1 = M_FG[:, :1, :, :]
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                        M_FG_warped = []
         | 
| 452 | 
            +
                        for batch_idx, m_fg_1_b in enumerate(M_FG_1):
         | 
| 453 | 
            +
                            m_fg_1_b = m_fg_1_b[None, None]
         | 
| 454 | 
            +
                            m_fg_b = m_fg_1_b.repeat(1, 1, video_length-1, 1, 1)
         | 
| 455 | 
            +
                            if use_motion_field:
         | 
| 456 | 
            +
                                m_fg_b = self.warp_latents_independently(
         | 
| 457 | 
            +
                                    m_fg_b.clone(), reference_flow)
         | 
| 458 | 
            +
                            M_FG_warped.append(
         | 
| 459 | 
            +
                                torch.cat([m_fg_1_b[:1, 0], m_fg_b[:1, 0]], dim=1))
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                        M_FG_warped = torch.cat(M_FG_warped, dim=0)
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                        channels = x0.shape[1]
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                        M_BG = (1-M_FG) * (1 - M_FG_warped)
         | 
| 466 | 
            +
                        M_BG = repeat(M_BG, "b f h w -> b c f h w", c=channels)
         | 
| 467 | 
            +
                        a_convex = smooth_bg_strength
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                        latents = (1-M_BG) * x_t1 + M_BG * (a_convex *
         | 
| 470 | 
            +
                                                            x_t1 + (1-a_convex) * x_t1_1_fg_masked_moved)
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                        ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 473 | 
            +
                                                      null_embs=null_embs, text_embeddings=text_embeddings, latents_local=latents, latents_dtype=dtype, guidance_scale=guidance_scale,
         | 
| 474 | 
            +
                                                      guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
         | 
| 475 | 
            +
                        x0 = ddim_res["x0"].detach()
         | 
| 476 | 
            +
                        del ddim_res
         | 
| 477 | 
            +
                        del latents
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                    latents = x0
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                    # manually for max memory savings
         | 
| 482 | 
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         | 
| 483 | 
            +
                        self.unet.to("cpu")
         | 
| 484 | 
            +
                    torch.cuda.empty_cache()
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                    if output_type == "latent":
         | 
| 487 | 
            +
                        image = latents
         | 
| 488 | 
            +
                        has_nsfw_concept = None
         | 
| 489 | 
            +
                    else:
         | 
| 490 | 
            +
                        image = self.decode_latents(latents)
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                        # Run safety checker
         | 
| 493 | 
            +
                        image, has_nsfw_concept = self.run_safety_checker(
         | 
| 494 | 
            +
                            image, device, text_embeddings.dtype)
         | 
| 495 | 
            +
                        image = rearrange(image, "b c f h w -> (b f) h w c")
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    # Offload last model to CPU
         | 
| 498 | 
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         | 
| 499 | 
            +
                        self.final_offload_hook.offload()
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                    if not return_dict:
         | 
| 502 | 
            +
                        return (image, has_nsfw_concept)
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                    return TextToVideoPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
         | 
    	
        utils.py
    CHANGED
    
    | @@ -133,6 +133,40 @@ def create_gif(frames, fps, rescale=False, path=None, watermark=None): | |
| 133 | 
             
                imageio.mimsave(path, outputs, fps=fps)
         | 
| 134 | 
             
                return path
         | 
| 135 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 136 | 
             
            def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
         | 
| 137 | 
             
                vr = decord.VideoReader(video_path)
         | 
| 138 | 
             
                initial_fps = vr.get_avg_fps()
         | 
| @@ -178,8 +212,57 @@ def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, | |
| 178 |  | 
| 179 | 
             
                return video, output_fps
         | 
| 180 |  | 
| 181 | 
            -
             | 
| 182 | 
             
            def post_process_gif(list_of_results, image_resolution):
         | 
| 183 | 
             
                output_file = "/tmp/ddxk.gif"
         | 
| 184 | 
             
                imageio.mimsave(output_file, list_of_results, fps=4)
         | 
| 185 | 
             
                return output_file
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 133 | 
             
                imageio.mimsave(path, outputs, fps=fps)
         | 
| 134 | 
             
                return path
         | 
| 135 |  | 
| 136 | 
            +
            # def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
         | 
| 137 | 
            +
            #     vr = decord.VideoReader(video_path)
         | 
| 138 | 
            +
            #     video = vr.get_batch(range(0, len(vr))).asnumpy()
         | 
| 139 | 
            +
            #     initial_fps = vr.get_avg_fps()
         | 
| 140 | 
            +
            #     if output_fps == -1:
         | 
| 141 | 
            +
            #         output_fps = int(initial_fps)
         | 
| 142 | 
            +
            #     if end_t == -1:
         | 
| 143 | 
            +
            #         end_t = len(vr) / initial_fps
         | 
| 144 | 
            +
            #     else:
         | 
| 145 | 
            +
            #         end_t = min(len(vr) / initial_fps, end_t)
         | 
| 146 | 
            +
            #     assert 0 <= start_t < end_t
         | 
| 147 | 
            +
            #     assert output_fps > 0
         | 
| 148 | 
            +
            #     f, h, w, c = video.shape
         | 
| 149 | 
            +
            #     start_f_ind = int(start_t * initial_fps)
         | 
| 150 | 
            +
            #     end_f_ind = int(end_t * initial_fps)
         | 
| 151 | 
            +
            #     num_f = int((end_t - start_t) * output_fps)
         | 
| 152 | 
            +
            #     sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
         | 
| 153 | 
            +
            #     video = video[sample_idx]
         | 
| 154 | 
            +
            #     video = rearrange(video, "f h w c -> f c h w")
         | 
| 155 | 
            +
            #     video = torch.Tensor(video).to(device).to(dtype)
         | 
| 156 | 
            +
            #     if h > w:
         | 
| 157 | 
            +
            #         w = int(w * resolution / h)
         | 
| 158 | 
            +
            #         w = w - w % 8
         | 
| 159 | 
            +
            #         h = resolution - resolution % 8
         | 
| 160 | 
            +
            #         video = Resize((h, w))(video)
         | 
| 161 | 
            +
            #     else:
         | 
| 162 | 
            +
            #         h = int(h * resolution / w)
         | 
| 163 | 
            +
            #         h = h - h % 8
         | 
| 164 | 
            +
            #         w = resolution - resolution % 8
         | 
| 165 | 
            +
            #         video = Resize((h, w))(video)
         | 
| 166 | 
            +
            #     if normalize:
         | 
| 167 | 
            +
            #         video = video / 127.5 - 1.0
         | 
| 168 | 
            +
            #     return video, output_fps
         | 
| 169 | 
            +
             | 
| 170 | 
             
            def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
         | 
| 171 | 
             
                vr = decord.VideoReader(video_path)
         | 
| 172 | 
             
                initial_fps = vr.get_avg_fps()
         | 
|  | |
| 212 |  | 
| 213 | 
             
                return video, output_fps
         | 
| 214 |  | 
|  | |
| 215 | 
             
            def post_process_gif(list_of_results, image_resolution):
         | 
| 216 | 
             
                output_file = "/tmp/ddxk.gif"
         | 
| 217 | 
             
                imageio.mimsave(output_file, list_of_results, fps=4)
         | 
| 218 | 
             
                return output_file
         | 
| 219 | 
            +
             | 
| 220 | 
            +
             | 
| 221 | 
            +
            class CrossFrameAttnProcessor:
         | 
| 222 | 
            +
                def __init__(self, unet_chunk_size=2):
         | 
| 223 | 
            +
                    self.unet_chunk_size = unet_chunk_size
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                def __call__(
         | 
| 226 | 
            +
                        self,
         | 
| 227 | 
            +
                        attn,
         | 
| 228 | 
            +
                        hidden_states,
         | 
| 229 | 
            +
                        encoder_hidden_states=None,
         | 
| 230 | 
            +
                        attention_mask=None):
         | 
| 231 | 
            +
                    batch_size, sequence_length, _ = hidden_states.shape
         | 
| 232 | 
            +
                    attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
         | 
| 233 | 
            +
                    query = attn.to_q(hidden_states)
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                    is_cross_attention = encoder_hidden_states is not None
         | 
| 236 | 
            +
                    if encoder_hidden_states is None:
         | 
| 237 | 
            +
                        encoder_hidden_states = hidden_states
         | 
| 238 | 
            +
                    elif attn.cross_attention_norm:
         | 
| 239 | 
            +
                        encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
         | 
| 240 | 
            +
                    key = attn.to_k(encoder_hidden_states)
         | 
| 241 | 
            +
                    value = attn.to_v(encoder_hidden_states)
         | 
| 242 | 
            +
                    # Sparse Attention
         | 
| 243 | 
            +
                    if not is_cross_attention:
         | 
| 244 | 
            +
                        video_length = key.size()[0] // self.unet_chunk_size
         | 
| 245 | 
            +
                        # former_frame_index = torch.arange(video_length) - 1
         | 
| 246 | 
            +
                        # former_frame_index[0] = 0
         | 
| 247 | 
            +
                        former_frame_index = [0] * video_length
         | 
| 248 | 
            +
                        key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
         | 
| 249 | 
            +
                        key = key[:, former_frame_index]
         | 
| 250 | 
            +
                        key = rearrange(key, "b f d c -> (b f) d c")
         | 
| 251 | 
            +
                        value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
         | 
| 252 | 
            +
                        value = value[:, former_frame_index]
         | 
| 253 | 
            +
                        value = rearrange(value, "b f d c -> (b f) d c")
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                    query = attn.head_to_batch_dim(query)
         | 
| 256 | 
            +
                    key = attn.head_to_batch_dim(key)
         | 
| 257 | 
            +
                    value = attn.head_to_batch_dim(value)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    attention_probs = attn.get_attention_scores(query, key, attention_mask)
         | 
| 260 | 
            +
                    hidden_states = torch.bmm(attention_probs, value)
         | 
| 261 | 
            +
                    hidden_states = attn.batch_to_head_dim(hidden_states)
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                    # linear proj
         | 
| 264 | 
            +
                    hidden_states = attn.to_out[0](hidden_states)
         | 
| 265 | 
            +
                    # dropout
         | 
| 266 | 
            +
                    hidden_states = attn.to_out[1](hidden_states)
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    return hidden_states
         | 

