Update app.py
Browse files
app.py
CHANGED
|
@@ -15,32 +15,20 @@ class SALTAnalytics:
|
|
| 15 |
self.schema_info = ""
|
| 16 |
self.openai_client = None
|
| 17 |
|
| 18 |
-
def setup_openai(self, api_key: str):
|
| 19 |
-
"""Setup OpenAI client with API key"""
|
| 20 |
-
try:
|
| 21 |
-
self.openai_client = openai.OpenAI(api_key=api_key)
|
| 22 |
-
return True
|
| 23 |
-
except Exception as e:
|
| 24 |
-
return False
|
| 25 |
-
|
| 26 |
def load_salt_dataset(self):
|
| 27 |
"""Load SAP SALT dataset from Hugging Face into DuckDB"""
|
| 28 |
if self.data_loaded:
|
| 29 |
return "Dataset already loaded!"
|
| 30 |
|
| 31 |
try:
|
| 32 |
-
# Load dataset with error handling for HF Spaces
|
| 33 |
dataset = load_dataset("SAP/SALT", "joined_table", split="train", streaming=False)
|
| 34 |
df = dataset.to_pandas()
|
| 35 |
|
| 36 |
-
|
| 37 |
-
if len(df) > 100000: # Limit for HF Spaces memory
|
| 38 |
df = df.sample(n=50000, random_state=42)
|
| 39 |
|
| 40 |
-
# Load into DuckDB
|
| 41 |
self.con.execute("CREATE TABLE salt_data AS SELECT * FROM df")
|
| 42 |
|
| 43 |
-
# Get schema information
|
| 44 |
schema_result = self.con.execute("DESCRIBE salt_data").fetchall()
|
| 45 |
self.schema_info = "\n".join([f"{col[0]}: {col[1]}" for col in schema_result])
|
| 46 |
|
|
@@ -58,7 +46,6 @@ class SALTAnalytics:
|
|
| 58 |
try:
|
| 59 |
insights = {}
|
| 60 |
|
| 61 |
-
# Sales Office Performance
|
| 62 |
insights['Sales Office Performance'] = self.con.execute("""
|
| 63 |
SELECT SALESOFFICE,
|
| 64 |
COUNT(*) as total_orders,
|
|
@@ -69,7 +56,6 @@ class SALTAnalytics:
|
|
| 69 |
LIMIT 10
|
| 70 |
""").fetchdf()
|
| 71 |
|
| 72 |
-
# Payment Terms Distribution
|
| 73 |
insights['Payment Terms Distribution'] = self.con.execute("""
|
| 74 |
SELECT CUSTOMERPAYMENTTERMS,
|
| 75 |
COUNT(*) as frequency,
|
|
@@ -79,7 +65,6 @@ class SALTAnalytics:
|
|
| 79 |
ORDER BY frequency DESC
|
| 80 |
""").fetchdf()
|
| 81 |
|
| 82 |
-
# Shipping Conditions Analysis
|
| 83 |
insights['Shipping Conditions'] = self.con.execute("""
|
| 84 |
SELECT SHIPPINGCONDITION,
|
| 85 |
COUNT(*) as order_count,
|
|
@@ -95,20 +80,20 @@ class SALTAnalytics:
|
|
| 95 |
return f"Error generating insights: {str(e)}"
|
| 96 |
|
| 97 |
def clean_sql_response(self, sql_query: str) -> str:
|
| 98 |
-
"""
|
| 99 |
-
#
|
| 100 |
-
|
| 101 |
-
sql_marker = "
|
| 102 |
|
| 103 |
-
# Remove
|
| 104 |
if sql_query.startswith(sql_marker):
|
| 105 |
-
sql_query = sql_query[
|
| 106 |
-
elif sql_query.startswith(
|
| 107 |
-
sql_query = sql_query[
|
| 108 |
|
| 109 |
-
# Remove
|
| 110 |
-
if sql_query.endswith(
|
| 111 |
-
sql_query = sql_query[:-
|
| 112 |
|
| 113 |
return sql_query.strip()
|
| 114 |
|
|
@@ -121,7 +106,6 @@ class SALTAnalytics:
|
|
| 121 |
return "Please provide OpenAI API key"
|
| 122 |
|
| 123 |
try:
|
| 124 |
-
# Setup OpenAI client
|
| 125 |
client = openai.OpenAI(api_key=api_key)
|
| 126 |
|
| 127 |
prompt = f"""
|
|
@@ -129,16 +113,7 @@ class SALTAnalytics:
|
|
| 129 |
|
| 130 |
{self.schema_info}
|
| 131 |
|
| 132 |
-
The SALT dataset contains SAP ERP sales order data. Key fields:
|
| 133 |
-
- SALESOFFICE, SALESGROUP: Sales organization
|
| 134 |
-
- CUSTOMERID: Customer identifier
|
| 135 |
-
- CUSTOMERPAYMENTTERMS: Payment terms (Net30, Net45, etc.)
|
| 136 |
-
- SHIPPINGCONDITION, SHIPPINGPOINT: Shipping logistics
|
| 137 |
-
- PLANT: Manufacturing location
|
| 138 |
-
- HEADERINCOTERMSCLASSIFICATION, ITEMINCOTERMSCLASSIFICATION: Trade terms
|
| 139 |
-
|
| 140 |
Convert this question to a DuckDB SQL query: "{question}"
|
| 141 |
-
|
| 142 |
Return ONLY the SQL query, no explanation. Limit results to 20 rows.
|
| 143 |
"""
|
| 144 |
|
|
@@ -148,15 +123,11 @@ class SALTAnalytics:
|
|
| 148 |
temperature=0.1
|
| 149 |
)
|
| 150 |
|
| 151 |
-
sql_query = response.choices
|
| 152 |
-
|
| 153 |
-
# Clean SQL query using safe method
|
| 154 |
sql_query = self.clean_sql_response(sql_query)
|
| 155 |
|
| 156 |
-
# Execute query
|
| 157 |
result_df = self.con.execute(sql_query).fetchdf()
|
| 158 |
|
| 159 |
-
# Get explanation
|
| 160 |
explanation_prompt = f"""
|
| 161 |
Question: {question}
|
| 162 |
Results: {result_df.head(10).to_string()}
|
|
@@ -170,13 +141,11 @@ class SALTAnalytics:
|
|
| 170 |
temperature=0.3
|
| 171 |
)
|
| 172 |
|
| 173 |
-
explanation = explanation_response.choices
|
| 174 |
|
| 175 |
-
#
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
return f"**SQL Query:**\n{code_start}{sql_query}{code_end}\n\n**Results:**\n{result_df.to_string(index=False)}\n\n**Explanation:**\n{explanation}"
|
| 180 |
|
| 181 |
except Exception as e:
|
| 182 |
return f"Error: {str(e)}"
|
|
@@ -185,12 +154,9 @@ class SALTAnalytics:
|
|
| 185 |
analytics = SALTAnalytics()
|
| 186 |
|
| 187 |
def load_dataset_interface():
|
| 188 |
-
|
| 189 |
-
result = analytics.load_salt_dataset()
|
| 190 |
-
return result
|
| 191 |
|
| 192 |
def show_insights_interface():
|
| 193 |
-
"""Interface for showing insights"""
|
| 194 |
insights = analytics.get_predefined_insights()
|
| 195 |
|
| 196 |
if isinstance(insights, str):
|
|
@@ -206,14 +172,10 @@ def show_insights_interface():
|
|
| 206 |
return output
|
| 207 |
|
| 208 |
def qa_interface(question: str, api_key: str):
|
| 209 |
-
"""Interface for Q&A functionality"""
|
| 210 |
if not question.strip():
|
| 211 |
return "Please enter a question"
|
| 212 |
-
|
| 213 |
-
result = analytics.natural_language_query(question, api_key)
|
| 214 |
-
return result
|
| 215 |
|
| 216 |
-
# Sample questions for the interface
|
| 217 |
sample_questions = [
|
| 218 |
"Which sales office has the most customers?",
|
| 219 |
"What are the most common payment terms?",
|
|
@@ -222,7 +184,6 @@ sample_questions = [
|
|
| 222 |
"What's the distribution of sales groups?"
|
| 223 |
]
|
| 224 |
|
| 225 |
-
# Create Gradio interface
|
| 226 |
with gr.Blocks(title="SAP SALT Analytics Demo", theme=gr.themes.Soft()) as demo:
|
| 227 |
|
| 228 |
gr.Markdown("""
|
|
@@ -238,10 +199,7 @@ with gr.Blocks(title="SAP SALT Analytics Demo", theme=gr.themes.Soft()) as demo:
|
|
| 238 |
load_btn = gr.Button("Load SALT Dataset", variant="primary")
|
| 239 |
load_output = gr.Textbox(label="Status", lines=3)
|
| 240 |
|
| 241 |
-
load_btn.click(
|
| 242 |
-
fn=load_dataset_interface,
|
| 243 |
-
outputs=load_output
|
| 244 |
-
)
|
| 245 |
|
| 246 |
with gr.Tab("📈 Insights"):
|
| 247 |
gr.Markdown("### Pre-built Analytics Insights")
|
|
@@ -249,10 +207,7 @@ with gr.Blocks(title="SAP SALT Analytics Demo", theme=gr.themes.Soft()) as demo:
|
|
| 249 |
insights_btn = gr.Button("Generate Insights", variant="primary")
|
| 250 |
insights_output = gr.Markdown()
|
| 251 |
|
| 252 |
-
insights_btn.click(
|
| 253 |
-
fn=show_insights_interface,
|
| 254 |
-
outputs=insights_output
|
| 255 |
-
)
|
| 256 |
|
| 257 |
with gr.Tab("🤖 AI Q&A"):
|
| 258 |
gr.Markdown("### Ask Questions in Natural Language")
|
|
@@ -282,7 +237,6 @@ with gr.Blocks(title="SAP SALT Analytics Demo", theme=gr.themes.Soft()) as demo:
|
|
| 282 |
with gr.Column(scale=4):
|
| 283 |
qa_output = gr.Markdown()
|
| 284 |
|
| 285 |
-
# Update question input when sample is selected
|
| 286 |
sample_dropdown.change(
|
| 287 |
fn=lambda x: x if x else "",
|
| 288 |
inputs=sample_dropdown,
|
|
@@ -308,19 +262,13 @@ with gr.Blocks(title="SAP SALT Analytics Demo", theme=gr.themes.Soft()) as demo:
|
|
| 308 |
- **DuckDB**: High-performance analytics database
|
| 309 |
- **OpenAI GPT-4**: Natural language to SQL conversion
|
| 310 |
- **Hugging Face**: Dataset hosting and deployment
|
| 311 |
-
- **Gradio
|
| 312 |
|
| 313 |
**Business Value**:
|
| 314 |
- Automate sales order completion (70-80% accuracy)
|
| 315 |
- Optimize customer-to-sales office assignments
|
| 316 |
- Predict shipping and payment preferences
|
| 317 |
- Generate actionable business insights
|
| 318 |
-
|
| 319 |
-
**Open Source Benefits**:
|
| 320 |
-
- Zero licensing costs vs. proprietary SAP analytics
|
| 321 |
-
- Full customization and control
|
| 322 |
-
- Community-driven improvements
|
| 323 |
-
- Easy integration with existing systems
|
| 324 |
""")
|
| 325 |
|
| 326 |
if __name__ == "__main__":
|
|
|
|
| 15 |
self.schema_info = ""
|
| 16 |
self.openai_client = None
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def load_salt_dataset(self):
|
| 19 |
"""Load SAP SALT dataset from Hugging Face into DuckDB"""
|
| 20 |
if self.data_loaded:
|
| 21 |
return "Dataset already loaded!"
|
| 22 |
|
| 23 |
try:
|
|
|
|
| 24 |
dataset = load_dataset("SAP/SALT", "joined_table", split="train", streaming=False)
|
| 25 |
df = dataset.to_pandas()
|
| 26 |
|
| 27 |
+
if len(df) > 100000:
|
|
|
|
| 28 |
df = df.sample(n=50000, random_state=42)
|
| 29 |
|
|
|
|
| 30 |
self.con.execute("CREATE TABLE salt_data AS SELECT * FROM df")
|
| 31 |
|
|
|
|
| 32 |
schema_result = self.con.execute("DESCRIBE salt_data").fetchall()
|
| 33 |
self.schema_info = "\n".join([f"{col[0]}: {col[1]}" for col in schema_result])
|
| 34 |
|
|
|
|
| 46 |
try:
|
| 47 |
insights = {}
|
| 48 |
|
|
|
|
| 49 |
insights['Sales Office Performance'] = self.con.execute("""
|
| 50 |
SELECT SALESOFFICE,
|
| 51 |
COUNT(*) as total_orders,
|
|
|
|
| 56 |
LIMIT 10
|
| 57 |
""").fetchdf()
|
| 58 |
|
|
|
|
| 59 |
insights['Payment Terms Distribution'] = self.con.execute("""
|
| 60 |
SELECT CUSTOMERPAYMENTTERMS,
|
| 61 |
COUNT(*) as frequency,
|
|
|
|
| 65 |
ORDER BY frequency DESC
|
| 66 |
""").fetchdf()
|
| 67 |
|
|
|
|
| 68 |
insights['Shipping Conditions'] = self.con.execute("""
|
| 69 |
SELECT SHIPPINGCONDITION,
|
| 70 |
COUNT(*) as order_count,
|
|
|
|
| 80 |
return f"Error generating insights: {str(e)}"
|
| 81 |
|
| 82 |
def clean_sql_response(self, sql_query: str) -> str:
|
| 83 |
+
"""Clean SQL response - COMPLETELY FIXED"""
|
| 84 |
+
# Use string concatenation to avoid syntax errors
|
| 85 |
+
backticks = "`" + "`" + "`"
|
| 86 |
+
sql_marker = backticks + "sql"
|
| 87 |
|
| 88 |
+
# Remove start markers
|
| 89 |
if sql_query.startswith(sql_marker):
|
| 90 |
+
sql_query = sql_query[6:] # Remove ```
|
| 91 |
+
elif sql_query.startswith(backticks):
|
| 92 |
+
sql_query = sql_query[3:] # Remove ```
|
| 93 |
|
| 94 |
+
# Remove end markers
|
| 95 |
+
if sql_query.endswith(backticks):
|
| 96 |
+
sql_query = sql_query[:-3] # Remove trailing ```
|
| 97 |
|
| 98 |
return sql_query.strip()
|
| 99 |
|
|
|
|
| 106 |
return "Please provide OpenAI API key"
|
| 107 |
|
| 108 |
try:
|
|
|
|
| 109 |
client = openai.OpenAI(api_key=api_key)
|
| 110 |
|
| 111 |
prompt = f"""
|
|
|
|
| 113 |
|
| 114 |
{self.schema_info}
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
Convert this question to a DuckDB SQL query: "{question}"
|
|
|
|
| 117 |
Return ONLY the SQL query, no explanation. Limit results to 20 rows.
|
| 118 |
"""
|
| 119 |
|
|
|
|
| 123 |
temperature=0.1
|
| 124 |
)
|
| 125 |
|
| 126 |
+
sql_query = response.choices.message.content.strip()
|
|
|
|
|
|
|
| 127 |
sql_query = self.clean_sql_response(sql_query)
|
| 128 |
|
|
|
|
| 129 |
result_df = self.con.execute(sql_query).fetchdf()
|
| 130 |
|
|
|
|
| 131 |
explanation_prompt = f"""
|
| 132 |
Question: {question}
|
| 133 |
Results: {result_df.head(10).to_string()}
|
|
|
|
| 141 |
temperature=0.3
|
| 142 |
)
|
| 143 |
|
| 144 |
+
explanation = explanation_response.choices.message.content
|
| 145 |
|
| 146 |
+
# Safe output formatting
|
| 147 |
+
code_block = "`" + "`" + "`"
|
| 148 |
+
return f"**SQL Query:**\n{code_block}sql\n{sql_query}\n{code_block}\n\n**Results:**\n{result_df.to_string(index=False)}\n\n**Explanation:**\n{explanation}"
|
|
|
|
|
|
|
| 149 |
|
| 150 |
except Exception as e:
|
| 151 |
return f"Error: {str(e)}"
|
|
|
|
| 154 |
analytics = SALTAnalytics()
|
| 155 |
|
| 156 |
def load_dataset_interface():
|
| 157 |
+
return analytics.load_salt_dataset()
|
|
|
|
|
|
|
| 158 |
|
| 159 |
def show_insights_interface():
|
|
|
|
| 160 |
insights = analytics.get_predefined_insights()
|
| 161 |
|
| 162 |
if isinstance(insights, str):
|
|
|
|
| 172 |
return output
|
| 173 |
|
| 174 |
def qa_interface(question: str, api_key: str):
|
|
|
|
| 175 |
if not question.strip():
|
| 176 |
return "Please enter a question"
|
| 177 |
+
return analytics.natural_language_query(question, api_key)
|
|
|
|
|
|
|
| 178 |
|
|
|
|
| 179 |
sample_questions = [
|
| 180 |
"Which sales office has the most customers?",
|
| 181 |
"What are the most common payment terms?",
|
|
|
|
| 184 |
"What's the distribution of sales groups?"
|
| 185 |
]
|
| 186 |
|
|
|
|
| 187 |
with gr.Blocks(title="SAP SALT Analytics Demo", theme=gr.themes.Soft()) as demo:
|
| 188 |
|
| 189 |
gr.Markdown("""
|
|
|
|
| 199 |
load_btn = gr.Button("Load SALT Dataset", variant="primary")
|
| 200 |
load_output = gr.Textbox(label="Status", lines=3)
|
| 201 |
|
| 202 |
+
load_btn.click(fn=load_dataset_interface, outputs=load_output)
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
with gr.Tab("📈 Insights"):
|
| 205 |
gr.Markdown("### Pre-built Analytics Insights")
|
|
|
|
| 207 |
insights_btn = gr.Button("Generate Insights", variant="primary")
|
| 208 |
insights_output = gr.Markdown()
|
| 209 |
|
| 210 |
+
insights_btn.click(fn=show_insights_interface, outputs=insights_output)
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
with gr.Tab("🤖 AI Q&A"):
|
| 213 |
gr.Markdown("### Ask Questions in Natural Language")
|
|
|
|
| 237 |
with gr.Column(scale=4):
|
| 238 |
qa_output = gr.Markdown()
|
| 239 |
|
|
|
|
| 240 |
sample_dropdown.change(
|
| 241 |
fn=lambda x: x if x else "",
|
| 242 |
inputs=sample_dropdown,
|
|
|
|
| 262 |
- **DuckDB**: High-performance analytics database
|
| 263 |
- **OpenAI GPT-4**: Natural language to SQL conversion
|
| 264 |
- **Hugging Face**: Dataset hosting and deployment
|
| 265 |
+
- **Gradio 4.44**: Secure interactive web interface
|
| 266 |
|
| 267 |
**Business Value**:
|
| 268 |
- Automate sales order completion (70-80% accuracy)
|
| 269 |
- Optimize customer-to-sales office assignments
|
| 270 |
- Predict shipping and payment preferences
|
| 271 |
- Generate actionable business insights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
""")
|
| 273 |
|
| 274 |
if __name__ == "__main__":
|