Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
demo
|
| 7 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import zipfile
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
+
import nltk
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
+
from pyabsa import TADCheckpointManager
|
| 10 |
+
from textattack.attack_recipes import (
|
| 11 |
+
BAEGarg2019,
|
| 12 |
+
PWWSRen2019,
|
| 13 |
+
TextFoolerJin2019,
|
| 14 |
+
PSOZang2020,
|
| 15 |
+
IGAWang2019,
|
| 16 |
+
GeneticAlgorithmAlzantot2018,
|
| 17 |
+
DeepWordBugGao2018,
|
| 18 |
+
CLARE2020,
|
| 19 |
+
)
|
| 20 |
+
from textattack.attack_results import SuccessfulAttackResult
|
| 21 |
+
from utils import SentAttacker, get_agnews_example, get_sst2_example, get_amazon_example, get_imdb_example, diff_texts
|
| 22 |
+
# from utils import get_yahoo_example
|
| 23 |
+
|
| 24 |
+
sent_attackers = {}
|
| 25 |
+
tad_classifiers = {}
|
| 26 |
+
|
| 27 |
+
attack_recipes = {
|
| 28 |
+
"bae": BAEGarg2019,
|
| 29 |
+
"pwws": PWWSRen2019,
|
| 30 |
+
"textfooler": TextFoolerJin2019,
|
| 31 |
+
"pso": PSOZang2020,
|
| 32 |
+
"iga": IGAWang2019,
|
| 33 |
+
"ga": GeneticAlgorithmAlzantot2018,
|
| 34 |
+
"deepwordbug": DeepWordBugGao2018,
|
| 35 |
+
"clare": CLARE2020,
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def init():
|
| 40 |
+
nltk.download("omw-1.4")
|
| 41 |
+
|
| 42 |
+
if not os.path.exists("TAD-SST2"):
|
| 43 |
+
z = zipfile.ZipFile("checkpoints.zip", "r")
|
| 44 |
+
z.extractall(os.getcwd())
|
| 45 |
+
|
| 46 |
+
for attacker in ["pwws", "bae", "textfooler", "deepwordbug"]:
|
| 47 |
+
for dataset in [
|
| 48 |
+
"agnews10k",
|
| 49 |
+
"amazon",
|
| 50 |
+
"sst2",
|
| 51 |
+
"yahoo",
|
| 52 |
+
# 'imdb'
|
| 53 |
+
]:
|
| 54 |
+
if "tad-{}".format(dataset) not in tad_classifiers:
|
| 55 |
+
tad_classifiers[
|
| 56 |
+
"tad-{}".format(dataset)
|
| 57 |
+
] = TADCheckpointManager.get_tad_text_classifier(
|
| 58 |
+
"tad-{}".format(dataset).upper()
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
sent_attackers["tad-{}{}".format(dataset, attacker)] = SentAttacker(
|
| 62 |
+
tad_classifiers["tad-{}".format(dataset)], attack_recipes[attacker]
|
| 63 |
+
)
|
| 64 |
+
tad_classifiers["tad-{}".format(dataset)].sent_attacker = sent_attackers[
|
| 65 |
+
"tad-{}pwws".format(dataset)
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
cache = set()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def generate_adversarial_example(dataset, attacker, text=None, label=None):
|
| 73 |
+
if not text or text in cache:
|
| 74 |
+
if "agnews" in dataset.lower():
|
| 75 |
+
text, label = get_agnews_example()
|
| 76 |
+
elif "sst2" in dataset.lower():
|
| 77 |
+
text, label = get_sst2_example()
|
| 78 |
+
elif "amazon" in dataset.lower():
|
| 79 |
+
text, label = get_amazon_example()
|
| 80 |
+
# elif "yahoo" in dataset.lower():
|
| 81 |
+
# text, label = get_yahoo_example()
|
| 82 |
+
elif "imdb" in dataset.lower():
|
| 83 |
+
text, label = get_imdb_example()
|
| 84 |
+
|
| 85 |
+
cache.add(text)
|
| 86 |
+
|
| 87 |
+
result = None
|
| 88 |
+
attack_result = sent_attackers[
|
| 89 |
+
"tad-{}{}".format(dataset.lower(), attacker.lower())
|
| 90 |
+
].attacker.simple_attack(text, int(label))
|
| 91 |
+
if isinstance(attack_result, SuccessfulAttackResult):
|
| 92 |
+
if (
|
| 93 |
+
attack_result.perturbed_result.output
|
| 94 |
+
!= attack_result.original_result.ground_truth_output
|
| 95 |
+
) and (
|
| 96 |
+
attack_result.original_result.output
|
| 97 |
+
== attack_result.original_result.ground_truth_output
|
| 98 |
+
):
|
| 99 |
+
# with defense
|
| 100 |
+
result = tad_classifiers["tad-{}".format(dataset.lower())].infer(
|
| 101 |
+
attack_result.perturbed_result.attacked_text.text
|
| 102 |
+
+ "$LABEL${},{},{}".format(
|
| 103 |
+
attack_result.original_result.ground_truth_output,
|
| 104 |
+
1,
|
| 105 |
+
attack_result.perturbed_result.output,
|
| 106 |
+
),
|
| 107 |
+
print_result=True,
|
| 108 |
+
defense=attacker,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
if result:
|
| 112 |
+
classification_df = {}
|
| 113 |
+
classification_df["is_repaired"] = result["is_fixed"]
|
| 114 |
+
classification_df["pred_label"] = result["label"]
|
| 115 |
+
classification_df["confidence"] = round(result["confidence"], 3)
|
| 116 |
+
classification_df["is_correct"] = str(result["pred_label"]) == str(label)
|
| 117 |
+
|
| 118 |
+
advdetection_df = {}
|
| 119 |
+
if result["is_adv_label"] != "0":
|
| 120 |
+
advdetection_df["is_adversarial"] = {
|
| 121 |
+
"0": False,
|
| 122 |
+
"1": True,
|
| 123 |
+
0: False,
|
| 124 |
+
1: True,
|
| 125 |
+
}[result["is_adv_label"]]
|
| 126 |
+
advdetection_df["perturbed_label"] = result["perturbed_label"]
|
| 127 |
+
advdetection_df["confidence"] = round(result["is_adv_confidence"], 3)
|
| 128 |
+
advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
|
| 129 |
+
advdetection_df['is_correct'] = result['ref_is_adv_check']
|
| 130 |
+
|
| 131 |
+
else:
|
| 132 |
+
return generate_adversarial_example(dataset, attacker)
|
| 133 |
+
|
| 134 |
+
return (
|
| 135 |
+
text,
|
| 136 |
+
label,
|
| 137 |
+
result["restored_text"],
|
| 138 |
+
result["label"],
|
| 139 |
+
attack_result.perturbed_result.attacked_text.text,
|
| 140 |
+
diff_texts(text, text),
|
| 141 |
+
diff_texts(text, attack_result.perturbed_result.attacked_text.text),
|
| 142 |
+
diff_texts(text, result["restored_text"]),
|
| 143 |
+
attack_result.perturbed_result.output,
|
| 144 |
+
pd.DataFrame(classification_df, index=[0]),
|
| 145 |
+
pd.DataFrame(advdetection_df, index=[0]),
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def run_demo(dataset, attacker, text=None, label=None):
|
| 150 |
+
try:
|
| 151 |
+
data = {
|
| 152 |
+
"dataset": dataset,
|
| 153 |
+
"attacker": attacker,
|
| 154 |
+
"text": text,
|
| 155 |
+
"label": label,
|
| 156 |
+
}
|
| 157 |
+
response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', json=data)
|
| 158 |
+
result = response.json()
|
| 159 |
+
print(response.json())
|
| 160 |
+
return (
|
| 161 |
+
result["text"],
|
| 162 |
+
result["label"],
|
| 163 |
+
result["restored_text"],
|
| 164 |
+
result["result_label"],
|
| 165 |
+
result["perturbed_text"],
|
| 166 |
+
result["text_diff"],
|
| 167 |
+
result["perturbed_diff"],
|
| 168 |
+
result["restored_diff"],
|
| 169 |
+
result["output"],
|
| 170 |
+
pd.DataFrame(result["classification_df"]),
|
| 171 |
+
pd.DataFrame(result["advdetection_df"]),
|
| 172 |
+
result["message"]
|
| 173 |
+
)
|
| 174 |
+
except Exception as e:
|
| 175 |
+
print(e)
|
| 176 |
+
return generate_adversarial_example(dataset, attacker, text, label)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def check_gpu():
|
| 180 |
+
try:
|
| 181 |
+
response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', timeout=3)
|
| 182 |
+
if response.status_code < 500:
|
| 183 |
+
return 'GPU available'
|
| 184 |
+
else:
|
| 185 |
+
return 'GPU not available'
|
| 186 |
+
except Exception as e:
|
| 187 |
+
return 'GPU not available'
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
if __name__ == "__main__":
|
| 191 |
+
try:
|
| 192 |
+
init()
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(e)
|
| 195 |
+
print("Failed to initialize the demo. Please try again later.")
|
| 196 |
+
|
| 197 |
+
demo = gr.Blocks()
|
| 198 |
+
|
| 199 |
+
with demo:
|
| 200 |
+
gr.Markdown("<h1 align='center'>Reactive Perturbation Defocusing (Rapid) for Textual Adversarial Defense</h1>")
|
| 201 |
+
gr.Markdown("<h3 align='center'>Clarifications</h2>")
|
| 202 |
+
gr.Markdown("""
|
| 203 |
+
- This demo has no mechanism to ensure the adversarial example will be correctly repaired by Rapid. The repair success rate is actually the performance reported in the paper.
|
| 204 |
+
- The adversarial example and repaired adversarial example may be unnatural to read, while it is because the attackers usually generate unnatural perturbations. Rapid does not introduce additional unnatural perturbations.
|
| 205 |
+
- To our best knowledge, Reactive Perturbation Defocusing is a novel approach in adversarial defense. Rapid significantly (>10% defense accuracy improvement) outperforms the state-of-the-art methods.
|
| 206 |
+
- The DeepWordBug is an unknown attacker to the adversarial detector and reactive defense module. DeepWordBug has different attacking patterns from other attackers and shows the generalizability and robustness of Rapid.
|
| 207 |
+
""")
|
| 208 |
+
gr.Markdown("<h2 align='center'>Natural Example Input</h2>")
|
| 209 |
+
with gr.Group():
|
| 210 |
+
with gr.Row():
|
| 211 |
+
input_dataset = gr.Radio(
|
| 212 |
+
choices=["SST2", "Amazon", "Yahoo", "AGNews10K"],
|
| 213 |
+
value="SST2",
|
| 214 |
+
label="Select a testing dataset and an adversarial attacker to generate an adversarial example.",
|
| 215 |
+
)
|
| 216 |
+
input_attacker = gr.Radio(
|
| 217 |
+
choices=["BAE", "PWWS", "TextFooler", "DeepWordBug"],
|
| 218 |
+
value="TextFooler",
|
| 219 |
+
label="Choose an Adversarial Attacker for generating an adversarial example to attack the model.",
|
| 220 |
+
)
|
| 221 |
+
with gr.Group(visible=False):
|
| 222 |
+
|
| 223 |
+
with gr.Row():
|
| 224 |
+
input_sentence = gr.Textbox(
|
| 225 |
+
placeholder="Input a natural example...",
|
| 226 |
+
label="Alternatively, input a natural example and its original label (from above datasets) to generate an adversarial example.",
|
| 227 |
+
visible=False
|
| 228 |
+
)
|
| 229 |
+
input_label = gr.Textbox(
|
| 230 |
+
placeholder="Original label, (must be a integer, because we use digits to represent labels in training)",
|
| 231 |
+
label="Original Label",
|
| 232 |
+
visible=False
|
| 233 |
+
)
|
| 234 |
+
gr.Markdown(
|
| 235 |
+
"<h3 align='center'>To input an example, please select a dataset which the example belongs to or resembles.</h2>",
|
| 236 |
+
visible=False
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
msg_text = gr.Textbox(
|
| 240 |
+
label="Message",
|
| 241 |
+
placeholder="This is a message box to show any error messages.",
|
| 242 |
+
)
|
| 243 |
+
button_gen = gr.Button(
|
| 244 |
+
"Generate an adversarial example to repair using Rapid (GPU: < 1 minute, CPU: 1-10 minutes)",
|
| 245 |
+
variant="primary",
|
| 246 |
+
)
|
| 247 |
+
gpu_status_text = gr.Textbox(
|
| 248 |
+
label='GPU status',
|
| 249 |
+
placeholder="Please click to check",
|
| 250 |
+
)
|
| 251 |
+
button_check = gr.Button(
|
| 252 |
+
"Check if GPU available",
|
| 253 |
+
variant="primary"
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
button_check.click(
|
| 257 |
+
fn=check_gpu,
|
| 258 |
+
inputs=[],
|
| 259 |
+
outputs=[
|
| 260 |
+
gpu_status_text
|
| 261 |
+
]
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
gr.Markdown("<h2 align='center'>Generated Adversarial Example and Repaired Adversarial Example</h2>")
|
| 265 |
+
|
| 266 |
+
with gr.Column():
|
| 267 |
+
with gr.Group():
|
| 268 |
+
with gr.Row():
|
| 269 |
+
output_original_example = gr.Textbox(label="Original Example")
|
| 270 |
+
output_original_label = gr.Textbox(label="Original Label")
|
| 271 |
+
with gr.Row():
|
| 272 |
+
output_adv_example = gr.Textbox(label="Adversarial Example")
|
| 273 |
+
output_adv_label = gr.Textbox(label="Predicted Label of the Adversarial Example")
|
| 274 |
+
with gr.Row():
|
| 275 |
+
output_repaired_example = gr.Textbox(
|
| 276 |
+
label="Repaired Adversarial Example by Rapid"
|
| 277 |
+
)
|
| 278 |
+
output_repaired_label = gr.Textbox(label="Predicted Label of the Repaired Adversarial Example")
|
| 279 |
+
|
| 280 |
+
gr.Markdown("<h2 align='center'>Example Difference (Comparisons)</p>")
|
| 281 |
+
gr.Markdown("""
|
| 282 |
+
<p align='center'>The (+) and (-) in the boxes indicate the added and deleted characters in the adversarial example compared to the original input natural example.</p>
|
| 283 |
+
""")
|
| 284 |
+
ori_text_diff = gr.HighlightedText(
|
| 285 |
+
label="The Original Natural Example",
|
| 286 |
+
combine_adjacent=True,
|
| 287 |
+
)
|
| 288 |
+
adv_text_diff = gr.HighlightedText(
|
| 289 |
+
label="Character Editions of Adversarial Example Compared to the Natural Example",
|
| 290 |
+
combine_adjacent=True,
|
| 291 |
+
)
|
| 292 |
+
restored_text_diff = gr.HighlightedText(
|
| 293 |
+
label="Character Editions of Repaired Adversarial Example Compared to the Natural Example",
|
| 294 |
+
combine_adjacent=True,
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
gr.Markdown(
|
| 298 |
+
"## <h2 align='center'>The Output of Reactive Perturbation Defocusing</p>"
|
| 299 |
+
)
|
| 300 |
+
with gr.Row():
|
| 301 |
+
with gr.Column():
|
| 302 |
+
with gr.Group():
|
| 303 |
+
output_is_adv_df = gr.DataFrame(
|
| 304 |
+
label="Adversarial Example Detection Result"
|
| 305 |
+
)
|
| 306 |
+
gr.Markdown(
|
| 307 |
+
"The is_adversarial field indicates if an adversarial example is detected. "
|
| 308 |
+
"The perturbed_label is the predicted label of the adversarial example. "
|
| 309 |
+
"The confidence field represents the confidence of the predicted adversarial example detection. "
|
| 310 |
+
)
|
| 311 |
+
with gr.Column():
|
| 312 |
+
with gr.Group():
|
| 313 |
+
output_df = gr.DataFrame(
|
| 314 |
+
label="Repaired Standard Classification Result"
|
| 315 |
+
)
|
| 316 |
+
gr.Markdown(
|
| 317 |
+
"If is_repaired=true, it has been repaired by Rapid. "
|
| 318 |
+
"The pred_label field indicates the standard classification result. "
|
| 319 |
+
"The confidence field represents the confidence of the predicted label. "
|
| 320 |
+
"The is_correct field indicates whether the predicted label is correct."
|
| 321 |
+
)
|
| 322 |
|
| 323 |
+
# Bind functions to buttons
|
| 324 |
+
button_gen.click(
|
| 325 |
+
fn=run_demo,
|
| 326 |
+
inputs=[input_dataset, input_attacker, input_sentence, input_label],
|
| 327 |
+
outputs=[
|
| 328 |
+
output_original_example,
|
| 329 |
+
output_original_label,
|
| 330 |
+
output_repaired_example,
|
| 331 |
+
output_repaired_label,
|
| 332 |
+
output_adv_example,
|
| 333 |
+
ori_text_diff,
|
| 334 |
+
adv_text_diff,
|
| 335 |
+
restored_text_diff,
|
| 336 |
+
output_adv_label,
|
| 337 |
+
output_df,
|
| 338 |
+
output_is_adv_df,
|
| 339 |
+
msg_text
|
| 340 |
+
],
|
| 341 |
+
)
|
| 342 |
|
| 343 |
+
demo.queue(2).launch()
|
|
|