Spaces:
Sleeping
Sleeping
| from pydantic import BaseModel, Field | |
| from typing import Optional, List, Dict, Any | |
| from datetime import datetime | |
| from pydantic import ConfigDict | |
| class ChatRequest(BaseModel): | |
| """Request model for chat endpoint""" | |
| user_id: str = Field(..., description="User ID from Telegram") | |
| question: str = Field(..., description="User's question") | |
| include_history: bool = Field(True, description="Whether to include user history in prompt") | |
| use_rag: bool = Field(True, description="Whether to use RAG") | |
| # Advanced retrieval parameters | |
| similarity_top_k: int = Field(6, description="Number of top similar documents to return (after filtering)") | |
| limit_k: int = Field(10, description="Maximum number of documents to retrieve from vector store") | |
| similarity_metric: str = Field("cosine", description="Similarity metric to use (cosine, dotproduct, euclidean)") | |
| similarity_threshold: float = Field(0.0, description="Threshold for vector similarity (0-1)") | |
| # User information | |
| session_id: Optional[str] = Field(None, description="Session ID for tracking conversations") | |
| first_name: Optional[str] = Field(None, description="User's first name") | |
| last_name: Optional[str] = Field(None, description="User's last name") | |
| username: Optional[str] = Field(None, description="User's username") | |
| class SourceDocument(BaseModel): | |
| """Model for source documents""" | |
| text: str = Field(..., description="Text content of the document") | |
| source: Optional[str] = Field(None, description="Source of the document") | |
| score: Optional[float] = Field(None, description="Raw similarity score of the document") | |
| normalized_score: Optional[float] = Field(None, description="Normalized similarity score (0-1)") | |
| metadata: Optional[Dict[str, Any]] = Field(None, description="Metadata of the document") | |
| class ChatResponse(BaseModel): | |
| """Response model for chat endpoint""" | |
| answer: str = Field(..., description="Generated answer") | |
| processing_time: float = Field(..., description="Processing time in seconds") | |
| class ChatResponseInternal(BaseModel): | |
| """Internal model for chat response with sources - used only for logging""" | |
| answer: str | |
| sources: Optional[List[SourceDocument]] = Field(None, description="Source documents used for generating answer") | |
| processing_time: Optional[float] = None | |
| class EmbeddingRequest(BaseModel): | |
| """Request model for embedding endpoint""" | |
| text: str = Field(..., description="Text to generate embedding for") | |
| class EmbeddingResponse(BaseModel): | |
| """Response model for embedding endpoint""" | |
| embedding: List[float] = Field(..., description="Generated embedding") | |
| text: str = Field(..., description="Text that was embedded") | |
| model: str = Field(..., description="Model used for embedding") | |
| class HealthResponse(BaseModel): | |
| """Response model for health endpoint""" | |
| status: str | |
| services: Dict[str, bool] | |
| timestamp: str | |
| class UserMessageModel(BaseModel): | |
| """Model for user messages sent to the RAG API""" | |
| user_id: str = Field(..., description="User ID from the client application") | |
| session_id: str = Field(..., description="Session ID for tracking the conversation") | |
| message: str = Field(..., description="User's message/question") | |
| # Advanced retrieval parameters (optional) | |
| similarity_top_k: Optional[int] = Field(None, description="Number of top similar documents to return (after filtering)") | |
| limit_k: Optional[int] = Field(None, description="Maximum number of documents to retrieve from vector store") | |
| similarity_metric: Optional[str] = Field(None, description="Similarity metric to use (cosine, dotproduct, euclidean)") | |
| similarity_threshold: Optional[float] = Field(None, description="Threshold for vector similarity (0-1)") | |
| class ChatEngineBase(BaseModel): | |
| """Base model cho chat engine""" | |
| name: str = Field(..., description="Tên của chat engine") | |
| answer_model: str = Field(..., description="Model được dùng để trả lời") | |
| system_prompt: Optional[str] = Field(None, description="Prompt của hệ thống, được đưa vào phần đầu tiên của final_prompt") | |
| empty_response: Optional[str] = Field(None, description="Đoạn response khi answer model không có thông tin về câu hỏi") | |
| characteristic: Optional[str] = Field(None, description="Tính cách của model khi trả lời câu hỏi") | |
| historical_sessions_number: int = Field(3, description="Số lượng các cặp tin nhắn trong history được đưa vào final prompt") | |
| use_public_information: bool = Field(False, description="Yes nếu answer model được quyền trả về thông tin mà nó có") | |
| similarity_top_k: int = Field(3, description="Số lượng top similar documents để trả về") | |
| vector_distance_threshold: float = Field(0.75, description="Threshold cho vector similarity") | |
| grounding_threshold: float = Field(0.2, description="Threshold cho grounding") | |
| pinecone_index_name: str = Field("testbot768", description="Vector database mà model được quyền sử dụng") | |
| status: str = Field("active", description="Trạng thái của chat engine") | |
| class ChatEngineCreate(ChatEngineBase): | |
| """Model cho việc tạo chat engine mới""" | |
| pass | |
| class ChatEngineUpdate(BaseModel): | |
| """Model cho việc cập nhật chat engine""" | |
| name: Optional[str] = None | |
| answer_model: Optional[str] = None | |
| system_prompt: Optional[str] = None | |
| empty_response: Optional[str] = None | |
| characteristic: Optional[str] = None | |
| historical_sessions_number: Optional[int] = None | |
| use_public_information: Optional[bool] = None | |
| similarity_top_k: Optional[int] = None | |
| vector_distance_threshold: Optional[float] = None | |
| grounding_threshold: Optional[float] = None | |
| pinecone_index_name: Optional[str] = None | |
| status: Optional[str] = None | |
| class ChatEngineResponse(ChatEngineBase): | |
| """Response model cho chat engine""" | |
| id: int | |
| created_at: datetime | |
| last_modified: datetime | |
| model_config = ConfigDict(from_attributes=True) | |
| class ChatWithEngineRequest(BaseModel): | |
| """Request model cho endpoint chat-with-engine""" | |
| user_id: str = Field(..., description="User ID from Telegram") | |
| question: str = Field(..., description="User's question") | |
| include_history: bool = Field(True, description="Whether to include user history in prompt") | |
| # User information | |
| session_id: Optional[str] = Field(None, description="Session ID for tracking conversations") | |
| first_name: Optional[str] = Field(None, description="User's first name") | |
| last_name: Optional[str] = Field(None, description="User's last name") | |
| username: Optional[str] = Field(None, description="User's username") |