Spaces:
Sleeping
Sleeping
Chat-engine cache
Browse files- app/api/postgresql_routes.py +44 -266
- app/api/rag_routes.py +469 -6
- app/database/models.py +3 -1
- app/models/rag_models.py +58 -2
- app/utils/cache_config.py +45 -0
- beach_request.json +0 -0
- chat_request.json +0 -0
- pytest.ini +0 -12
- test_body.json +0 -0
- test_rag_api.py +0 -263
- update_body.json +0 -0
app/api/postgresql_routes.py
CHANGED
|
@@ -19,8 +19,6 @@ from sqlalchemy.exc import SQLAlchemyError
|
|
| 19 |
from sqlalchemy import desc, func
|
| 20 |
from cachetools import TTLCache
|
| 21 |
import uuid
|
| 22 |
-
import asyncio
|
| 23 |
-
import httpx # Import httpx for HTTP requests
|
| 24 |
|
| 25 |
from app.database.postgresql import get_db
|
| 26 |
from app.database.models import FAQItem, EmergencyItem, EventItem, AboutPixity, SolanaSummit, DaNangBucketList, ApiKey, VectorDatabase, Document, VectorStatus, TelegramBot, ChatEngine, BotEngine, EngineVectorDb, DocumentContent
|
|
@@ -3204,7 +3202,6 @@ class VectorStatusBase(BaseModel):
|
|
| 3204 |
document_id: int
|
| 3205 |
vector_database_id: int
|
| 3206 |
vector_id: Optional[str] = None
|
| 3207 |
-
document_name: Optional[str] = None # Added to match database schema
|
| 3208 |
status: str = "pending"
|
| 3209 |
error_message: Optional[str] = None
|
| 3210 |
|
|
@@ -3668,167 +3665,69 @@ async def update_document(
|
|
| 3668 |
db.add(document_content)
|
| 3669 |
|
| 3670 |
# Get vector status for Pinecone cleanup
|
| 3671 |
-
vector_status = db.query(VectorStatus).filter(
|
| 3672 |
-
VectorStatus.document_id == document_id,
|
| 3673 |
-
VectorStatus.vector_database_id == document.vector_database_id
|
| 3674 |
-
).first()
|
| 3675 |
|
| 3676 |
# Store old vector_id for cleanup
|
| 3677 |
old_vector_id = None
|
| 3678 |
if vector_status and vector_status.vector_id:
|
| 3679 |
old_vector_id = vector_status.vector_id
|
| 3680 |
-
logger.info(f"Found old vector_id {old_vector_id} for document {document_id}, planning to delete")
|
| 3681 |
|
| 3682 |
-
#
|
| 3683 |
if vector_status:
|
| 3684 |
-
|
| 3685 |
-
|
| 3686 |
-
|
| 3687 |
-
|
| 3688 |
-
|
| 3689 |
-
|
| 3690 |
-
# Create new vector status
|
| 3691 |
vector_status = VectorStatus(
|
| 3692 |
document_id=document_id,
|
| 3693 |
vector_database_id=document.vector_database_id,
|
| 3694 |
-
|
| 3695 |
-
document_name=document.name
|
| 3696 |
)
|
| 3697 |
db.add(vector_status)
|
| 3698 |
-
db.flush()
|
| 3699 |
-
logger.info(f"Created new vector status for document {document_id} with status 'pending'")
|
| 3700 |
|
| 3701 |
-
#
|
| 3702 |
-
if old_vector_id and vector_db and document.vector_database_id:
|
| 3703 |
try:
|
| 3704 |
-
|
| 3705 |
-
|
| 3706 |
-
# Call PDF API to delete document using HTTP request (avoids circular imports)
|
| 3707 |
-
base_url = "http://localhost:8000"
|
| 3708 |
-
delete_url = f"{base_url}/pdf/document"
|
| 3709 |
|
| 3710 |
-
|
| 3711 |
-
|
| 3712 |
-
|
| 3713 |
-
|
| 3714 |
-
|
| 3715 |
-
}
|
| 3716 |
|
| 3717 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3718 |
|
| 3719 |
-
|
| 3720 |
-
async with httpx.AsyncClient() as client:
|
| 3721 |
-
response = await client.delete(delete_url, params=params)
|
| 3722 |
-
if response.status_code == 200:
|
| 3723 |
-
result = response.json()
|
| 3724 |
-
vectors_deleted = result.get('vectors_deleted', 0)
|
| 3725 |
-
logger.info(f"Successfully deleted {vectors_deleted} old vectors for document {document_id}")
|
| 3726 |
-
else:
|
| 3727 |
-
logger.warning(f"Failed to delete old vectors: {response.status_code} - {response.text}")
|
| 3728 |
except Exception as e:
|
| 3729 |
-
logger.error(f"Error
|
| 3730 |
-
# Continue with the update even if vector deletion fails
|
| 3731 |
|
| 3732 |
-
#
|
| 3733 |
-
if document.vector_database_id:
|
| 3734 |
try:
|
| 3735 |
-
#
|
| 3736 |
-
|
| 3737 |
-
import tempfile
|
| 3738 |
-
import os
|
| 3739 |
|
| 3740 |
-
|
| 3741 |
-
|
| 3742 |
-
|
| 3743 |
-
|
| 3744 |
-
|
| 3745 |
-
|
| 3746 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_extension}") as temp_file:
|
| 3747 |
-
temp_file.write(file_content)
|
| 3748 |
-
temp_path = temp_file.name
|
| 3749 |
-
|
| 3750 |
-
# Prepare multipart form data for the upload
|
| 3751 |
-
import aiofiles
|
| 3752 |
-
from aiofiles import os as aio_os
|
| 3753 |
-
|
| 3754 |
-
async with httpx.AsyncClient(timeout=300) as client: # Increased timeout to 300 seconds
|
| 3755 |
-
# Open the temp file for async reading
|
| 3756 |
-
async with aiofiles.open(temp_path, "rb") as f:
|
| 3757 |
-
file_data = await f.read()
|
| 3758 |
-
|
| 3759 |
-
# Create form data
|
| 3760 |
-
files = {"file": (filename, file_data, document.content_type)}
|
| 3761 |
-
form_data = {
|
| 3762 |
-
"title": document.name,
|
| 3763 |
-
"vector_database_id": str(document.vector_database_id),
|
| 3764 |
-
"namespace": f"vdb-{document.vector_database_id}"
|
| 3765 |
-
}
|
| 3766 |
-
|
| 3767 |
-
# Call the PDF upload API
|
| 3768 |
-
upload_url = f"{base_url}/pdf/upload"
|
| 3769 |
-
logger.info(f"Calling PDF upload API for document {document_id}")
|
| 3770 |
-
|
| 3771 |
-
response = await client.post(upload_url, files=files, data=form_data)
|
| 3772 |
-
|
| 3773 |
-
# Process the response
|
| 3774 |
-
if response.status_code == 200:
|
| 3775 |
-
result = response.json()
|
| 3776 |
-
logger.info(f"Successfully uploaded document {document_id}: {result}")
|
| 3777 |
-
|
| 3778 |
-
# Get the new vector_id from the result
|
| 3779 |
-
new_vector_id = result.get('document_id')
|
| 3780 |
-
|
| 3781 |
-
# If upload was successful, update the vector status in PostgreSQL
|
| 3782 |
-
if result.get('success') and new_vector_id:
|
| 3783 |
-
# Get the latest vector status
|
| 3784 |
-
await asyncio.sleep(1) # Small delay to ensure DB consistency
|
| 3785 |
-
|
| 3786 |
-
# Use a new DB session for this update
|
| 3787 |
-
from app.database.postgresql import SessionLocal
|
| 3788 |
-
async_db = SessionLocal()
|
| 3789 |
-
try:
|
| 3790 |
-
vs = async_db.query(VectorStatus).filter(
|
| 3791 |
-
VectorStatus.document_id == document_id,
|
| 3792 |
-
VectorStatus.vector_database_id == document.vector_database_id
|
| 3793 |
-
).first()
|
| 3794 |
-
|
| 3795 |
-
if vs:
|
| 3796 |
-
vs.vector_id = new_vector_id
|
| 3797 |
-
vs.status = "completed"
|
| 3798 |
-
vs.embedded_at = datetime.now()
|
| 3799 |
-
|
| 3800 |
-
# Also update document embedded status
|
| 3801 |
-
doc = async_db.query(Document).filter(Document.id == document_id).first()
|
| 3802 |
-
if doc:
|
| 3803 |
-
doc.is_embedded = True
|
| 3804 |
-
|
| 3805 |
-
async_db.commit()
|
| 3806 |
-
logger.info(f"Updated vector status with new vector_id {new_vector_id}")
|
| 3807 |
-
finally:
|
| 3808 |
-
async_db.close()
|
| 3809 |
-
else:
|
| 3810 |
-
logger.error(f"Failed to upload document: {response.status_code} - {response.text}")
|
| 3811 |
-
|
| 3812 |
-
# Clean up temporary file
|
| 3813 |
-
try:
|
| 3814 |
-
await aio_os.remove(temp_path)
|
| 3815 |
-
except Exception as cleanup_error:
|
| 3816 |
-
logger.error(f"Error cleaning up temporary file: {str(cleanup_error)}")
|
| 3817 |
-
except Exception as e:
|
| 3818 |
-
logger.error(f"Error in background upload task: {str(e)}")
|
| 3819 |
-
logger.error(traceback.format_exc())
|
| 3820 |
|
| 3821 |
-
|
| 3822 |
-
if background_tasks:
|
| 3823 |
-
background_tasks.add_task(upload_and_process_document)
|
| 3824 |
-
logger.info("Added document upload to background tasks")
|
| 3825 |
-
else:
|
| 3826 |
-
logger.warning("Background tasks not available, skipping document upload")
|
| 3827 |
except Exception as e:
|
| 3828 |
-
logger.error(f"Error
|
| 3829 |
-
# Continue with the update even if
|
| 3830 |
|
| 3831 |
-
# Commit changes to document record
|
| 3832 |
db.commit()
|
| 3833 |
db.refresh(document)
|
| 3834 |
|
|
@@ -3878,152 +3777,31 @@ async def delete_document(
|
|
| 3878 |
- **document_id**: ID of the document to delete
|
| 3879 |
"""
|
| 3880 |
try:
|
| 3881 |
-
logger.info(f"Starting deletion process for document ID {document_id}")
|
| 3882 |
-
|
| 3883 |
# Check if document exists
|
| 3884 |
document = db.query(Document).filter(Document.id == document_id).first()
|
| 3885 |
if not document:
|
| 3886 |
-
logger.warning(f"Document with ID {document_id} not found for deletion")
|
| 3887 |
raise HTTPException(status_code=404, detail=f"Document with ID {document_id} not found")
|
| 3888 |
|
| 3889 |
-
vector_database_id = document.vector_database_id
|
| 3890 |
-
logger.info(f"Found document to delete: name={document.name}, vector_database_id={vector_database_id}")
|
| 3891 |
-
|
| 3892 |
-
# Get the vector_id from VectorStatus before deletion
|
| 3893 |
-
vector_status = db.query(VectorStatus).filter(
|
| 3894 |
-
VectorStatus.document_id == document_id,
|
| 3895 |
-
VectorStatus.vector_database_id == vector_database_id
|
| 3896 |
-
).first()
|
| 3897 |
-
|
| 3898 |
-
# Store the vector_id for Pinecone deletion
|
| 3899 |
-
vector_id = None
|
| 3900 |
-
pinecone_deletion_success = False
|
| 3901 |
-
pinecone_error = None
|
| 3902 |
-
|
| 3903 |
-
if vector_status and vector_status.vector_id:
|
| 3904 |
-
vector_id = vector_status.vector_id
|
| 3905 |
-
logger.info(f"Found vector_id {vector_id} for document {document_id}")
|
| 3906 |
-
|
| 3907 |
-
# Get vector database info
|
| 3908 |
-
vector_db = db.query(VectorDatabase).filter(
|
| 3909 |
-
VectorDatabase.id == vector_database_id
|
| 3910 |
-
).first()
|
| 3911 |
-
|
| 3912 |
-
if vector_db:
|
| 3913 |
-
logger.info(f"Found vector database: name={vector_db.name}, index={vector_db.pinecone_index}")
|
| 3914 |
-
|
| 3915 |
-
# Create namespace for vector database
|
| 3916 |
-
namespace = f"vdb-{vector_database_id}"
|
| 3917 |
-
|
| 3918 |
-
try:
|
| 3919 |
-
import httpx
|
| 3920 |
-
|
| 3921 |
-
# Call PDF API to delete from Pinecone using an HTTP request
|
| 3922 |
-
# This avoids circular import issues
|
| 3923 |
-
base_url = "http://localhost:8000" # Adjust this to match your actual base URL
|
| 3924 |
-
delete_url = f"{base_url}/pdf/document"
|
| 3925 |
-
|
| 3926 |
-
params = {
|
| 3927 |
-
"document_id": vector_id, # Use the vector_id instead of the PostgreSQL document ID
|
| 3928 |
-
"namespace": namespace,
|
| 3929 |
-
"index_name": vector_db.pinecone_index,
|
| 3930 |
-
"vector_database_id": vector_database_id
|
| 3931 |
-
}
|
| 3932 |
-
|
| 3933 |
-
logger.info(f"Calling PDF API to delete vectors with params: {params}")
|
| 3934 |
-
|
| 3935 |
-
# Add retry logic for better reliability
|
| 3936 |
-
max_retries = 3
|
| 3937 |
-
retry_delay = 2 # seconds
|
| 3938 |
-
success = False
|
| 3939 |
-
last_error = None
|
| 3940 |
-
|
| 3941 |
-
for retry in range(max_retries):
|
| 3942 |
-
try:
|
| 3943 |
-
async with httpx.AsyncClient(timeout=300) as client: # Increased timeout to 300 seconds
|
| 3944 |
-
response = await client.delete(delete_url, params=params)
|
| 3945 |
-
|
| 3946 |
-
if response.status_code == 200:
|
| 3947 |
-
result = response.json()
|
| 3948 |
-
pinecone_deletion_success = result.get('success', False)
|
| 3949 |
-
vectors_deleted = result.get('vectors_deleted', 0)
|
| 3950 |
-
logger.info(f"Vector deletion API call response: success={pinecone_deletion_success}, vectors_deleted={vectors_deleted}")
|
| 3951 |
-
success = True
|
| 3952 |
-
break
|
| 3953 |
-
else:
|
| 3954 |
-
last_error = f"Failed with status code {response.status_code}: {response.text}"
|
| 3955 |
-
logger.warning(f"Deletion attempt {retry+1}/{max_retries} failed: {last_error}")
|
| 3956 |
-
except Exception as e:
|
| 3957 |
-
last_error = str(e)
|
| 3958 |
-
logger.warning(f"Deletion attempt {retry+1}/{max_retries} failed with exception: {last_error}")
|
| 3959 |
-
|
| 3960 |
-
# Wait before retrying
|
| 3961 |
-
if retry < max_retries - 1: # Don't sleep after the last attempt
|
| 3962 |
-
logger.info(f"Retrying in {retry_delay} seconds...")
|
| 3963 |
-
await asyncio.sleep(retry_delay)
|
| 3964 |
-
retry_delay *= 2 # Exponential backoff
|
| 3965 |
-
|
| 3966 |
-
if not success:
|
| 3967 |
-
pinecone_error = f"All deletion attempts failed. Last error: {last_error}"
|
| 3968 |
-
logger.warning(pinecone_error)
|
| 3969 |
-
# Continue with PostgreSQL deletion even if Pinecone deletion fails
|
| 3970 |
-
except Exception as e:
|
| 3971 |
-
pinecone_error = f"Error setting up Pinecone deletion: {str(e)}"
|
| 3972 |
-
logger.error(pinecone_error)
|
| 3973 |
-
# Continue with PostgreSQL deletion even if Pinecone deletion fails
|
| 3974 |
-
else:
|
| 3975 |
-
logger.warning(f"No vector_id found for document {document_id}, skipping Pinecone deletion")
|
| 3976 |
-
|
| 3977 |
# Delete vector status
|
| 3978 |
-
|
| 3979 |
-
logger.info(f"Deleted {result_vs} vector status records for document {document_id}")
|
| 3980 |
|
| 3981 |
# Delete document content
|
| 3982 |
-
|
| 3983 |
-
logger.info(f"Deleted {result_dc} document content records for document {document_id}")
|
| 3984 |
|
| 3985 |
# Delete document
|
| 3986 |
db.delete(document)
|
| 3987 |
db.commit()
|
| 3988 |
-
logger.info(f"Document with ID {document_id} successfully deleted from PostgreSQL")
|
| 3989 |
-
|
| 3990 |
-
# Prepare response with information about what happened
|
| 3991 |
-
response = {
|
| 3992 |
-
"status": "success",
|
| 3993 |
-
"message": f"Document with ID {document_id} deleted successfully",
|
| 3994 |
-
"postgresql_deletion": {
|
| 3995 |
-
"document_deleted": True,
|
| 3996 |
-
"vector_status_deleted": result_vs > 0,
|
| 3997 |
-
"document_content_deleted": result_dc > 0
|
| 3998 |
-
}
|
| 3999 |
-
}
|
| 4000 |
-
|
| 4001 |
-
# Add Pinecone deletion information
|
| 4002 |
-
if vector_id:
|
| 4003 |
-
response["pinecone_deletion"] = {
|
| 4004 |
-
"attempted": True,
|
| 4005 |
-
"vector_id": vector_id,
|
| 4006 |
-
"success": pinecone_deletion_success,
|
| 4007 |
-
}
|
| 4008 |
-
if pinecone_error:
|
| 4009 |
-
response["pinecone_deletion"]["error"] = pinecone_error
|
| 4010 |
-
else:
|
| 4011 |
-
response["pinecone_deletion"] = {
|
| 4012 |
-
"attempted": False,
|
| 4013 |
-
"reason": "No vector_id found for document"
|
| 4014 |
-
}
|
| 4015 |
|
| 4016 |
-
return
|
| 4017 |
except HTTPException:
|
| 4018 |
-
logger.warning(f"HTTP exception in delete_document for ID {document_id}")
|
| 4019 |
raise
|
| 4020 |
except SQLAlchemyError as e:
|
| 4021 |
db.rollback()
|
| 4022 |
-
logger.error(f"Database error deleting document
|
| 4023 |
logger.error(traceback.format_exc())
|
| 4024 |
raise HTTPException(status_code=500, detail=f"Database error: {str(e)}")
|
| 4025 |
except Exception as e:
|
| 4026 |
db.rollback()
|
| 4027 |
-
logger.error(f"Error deleting document
|
| 4028 |
logger.error(traceback.format_exc())
|
| 4029 |
raise HTTPException(status_code=500, detail=f"Error deleting document: {str(e)}")
|
|
|
|
| 19 |
from sqlalchemy import desc, func
|
| 20 |
from cachetools import TTLCache
|
| 21 |
import uuid
|
|
|
|
|
|
|
| 22 |
|
| 23 |
from app.database.postgresql import get_db
|
| 24 |
from app.database.models import FAQItem, EmergencyItem, EventItem, AboutPixity, SolanaSummit, DaNangBucketList, ApiKey, VectorDatabase, Document, VectorStatus, TelegramBot, ChatEngine, BotEngine, EngineVectorDb, DocumentContent
|
|
|
|
| 3202 |
document_id: int
|
| 3203 |
vector_database_id: int
|
| 3204 |
vector_id: Optional[str] = None
|
|
|
|
| 3205 |
status: str = "pending"
|
| 3206 |
error_message: Optional[str] = None
|
| 3207 |
|
|
|
|
| 3665 |
db.add(document_content)
|
| 3666 |
|
| 3667 |
# Get vector status for Pinecone cleanup
|
| 3668 |
+
vector_status = db.query(VectorStatus).filter(VectorStatus.document_id == document_id).first()
|
|
|
|
|
|
|
|
|
|
| 3669 |
|
| 3670 |
# Store old vector_id for cleanup
|
| 3671 |
old_vector_id = None
|
| 3672 |
if vector_status and vector_status.vector_id:
|
| 3673 |
old_vector_id = vector_status.vector_id
|
|
|
|
| 3674 |
|
| 3675 |
+
# Update vector status to pending
|
| 3676 |
if vector_status:
|
| 3677 |
+
vector_status.status = "pending"
|
| 3678 |
+
vector_status.vector_id = None
|
| 3679 |
+
vector_status.embedded_at = None
|
| 3680 |
+
vector_status.error_message = None
|
| 3681 |
+
else:
|
| 3682 |
+
# Create new vector status if it doesn't exist
|
|
|
|
| 3683 |
vector_status = VectorStatus(
|
| 3684 |
document_id=document_id,
|
| 3685 |
vector_database_id=document.vector_database_id,
|
| 3686 |
+
status="pending"
|
|
|
|
| 3687 |
)
|
| 3688 |
db.add(vector_status)
|
|
|
|
|
|
|
| 3689 |
|
| 3690 |
+
# Schedule deletion of old vectors in Pinecone if we have all needed info
|
| 3691 |
+
if old_vector_id and vector_db and document.vector_database_id and background_tasks:
|
| 3692 |
try:
|
| 3693 |
+
# Initialize PDFProcessor for vector deletion
|
| 3694 |
+
from app.pdf.processor import PDFProcessor
|
|
|
|
|
|
|
|
|
|
| 3695 |
|
| 3696 |
+
processor = PDFProcessor(
|
| 3697 |
+
index_name=vector_db.pinecone_index,
|
| 3698 |
+
namespace=f"vdb-{document.vector_database_id}",
|
| 3699 |
+
vector_db_id=document.vector_database_id
|
| 3700 |
+
)
|
|
|
|
| 3701 |
|
| 3702 |
+
# Add deletion task to background tasks
|
| 3703 |
+
background_tasks.add_task(
|
| 3704 |
+
processor.delete_document_vectors,
|
| 3705 |
+
old_vector_id
|
| 3706 |
+
)
|
| 3707 |
|
| 3708 |
+
logger.info(f"Scheduled deletion of old vectors for document {document_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3709 |
except Exception as e:
|
| 3710 |
+
logger.error(f"Error scheduling vector deletion: {str(e)}")
|
| 3711 |
+
# Continue with the update even if vector deletion scheduling fails
|
| 3712 |
|
| 3713 |
+
# Schedule document for re-embedding if possible
|
| 3714 |
+
if background_tasks and document.vector_database_id:
|
| 3715 |
try:
|
| 3716 |
+
# Import here to avoid circular imports
|
| 3717 |
+
from app.pdf.tasks import process_document_for_embedding
|
|
|
|
|
|
|
| 3718 |
|
| 3719 |
+
# Schedule embedding
|
| 3720 |
+
background_tasks.add_task(
|
| 3721 |
+
process_document_for_embedding,
|
| 3722 |
+
document_id=document_id,
|
| 3723 |
+
vector_db_id=document.vector_database_id
|
| 3724 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3725 |
|
| 3726 |
+
logger.info(f"Scheduled re-embedding for document {document_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3727 |
except Exception as e:
|
| 3728 |
+
logger.error(f"Error scheduling document embedding: {str(e)}")
|
| 3729 |
+
# Continue with the update even if embedding scheduling fails
|
| 3730 |
|
|
|
|
| 3731 |
db.commit()
|
| 3732 |
db.refresh(document)
|
| 3733 |
|
|
|
|
| 3777 |
- **document_id**: ID of the document to delete
|
| 3778 |
"""
|
| 3779 |
try:
|
|
|
|
|
|
|
| 3780 |
# Check if document exists
|
| 3781 |
document = db.query(Document).filter(Document.id == document_id).first()
|
| 3782 |
if not document:
|
|
|
|
| 3783 |
raise HTTPException(status_code=404, detail=f"Document with ID {document_id} not found")
|
| 3784 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3785 |
# Delete vector status
|
| 3786 |
+
db.query(VectorStatus).filter(VectorStatus.document_id == document_id).delete()
|
|
|
|
| 3787 |
|
| 3788 |
# Delete document content
|
| 3789 |
+
db.query(DocumentContent).filter(DocumentContent.document_id == document_id).delete()
|
|
|
|
| 3790 |
|
| 3791 |
# Delete document
|
| 3792 |
db.delete(document)
|
| 3793 |
db.commit()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3794 |
|
| 3795 |
+
return {"status": "success", "message": f"Document with ID {document_id} deleted successfully"}
|
| 3796 |
except HTTPException:
|
|
|
|
| 3797 |
raise
|
| 3798 |
except SQLAlchemyError as e:
|
| 3799 |
db.rollback()
|
| 3800 |
+
logger.error(f"Database error deleting document: {e}")
|
| 3801 |
logger.error(traceback.format_exc())
|
| 3802 |
raise HTTPException(status_code=500, detail=f"Database error: {str(e)}")
|
| 3803 |
except Exception as e:
|
| 3804 |
db.rollback()
|
| 3805 |
+
logger.error(f"Error deleting document: {e}")
|
| 3806 |
logger.error(traceback.format_exc())
|
| 3807 |
raise HTTPException(status_code=500, detail=f"Error deleting document: {str(e)}")
|
app/api/rag_routes.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from fastapi import APIRouter, HTTPException, Depends, Query, BackgroundTasks, Request
|
| 2 |
from typing import List, Optional, Dict, Any
|
| 3 |
import logging
|
| 4 |
import time
|
|
@@ -12,8 +12,23 @@ from datetime import datetime
|
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 14 |
from app.utils.utils import timer_decorator
|
|
|
|
|
|
|
| 15 |
|
| 16 |
from app.database.mongodb import get_chat_history, get_request_history, session_collection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
from app.database.pinecone import (
|
| 18 |
search_vectors,
|
| 19 |
get_chain,
|
|
@@ -30,7 +45,12 @@ from app.models.rag_models import (
|
|
| 30 |
SourceDocument,
|
| 31 |
EmbeddingRequest,
|
| 32 |
EmbeddingResponse,
|
| 33 |
-
UserMessageModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
)
|
| 35 |
|
| 36 |
# Configure logging
|
|
@@ -75,15 +95,15 @@ prompt = PromptTemplate(
|
|
| 75 |
You are Pixity - a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam.
|
| 76 |
You can provide details on restaurants, cafes, hotels, attractions, and other local venues.
|
| 77 |
You have to use core knowledge and conversation history to chat with users, who are Da Nang's tourists.
|
| 78 |
-
Pixity
|
| 79 |
Naturally Cute: Shows cuteness through word choice, soft emojis, and gentle care for the user.
|
| 80 |
Playful – a little bit cheeky in a lovable way: Occasionally cracks jokes, uses light memes or throws in a surprise response that makes users smile. Think Duolingo-style humor, but less threatening.
|
| 81 |
Smart & Proactive: Friendly, but also delivers quick, accurate info. Knows how to guide users to the right place – at the right time – with the right solution.
|
| 82 |
-
Tone & Voice: Friendly – Youthful – Snappy. Uses simple words, similar to daily chat language (e.g.,
|
| 83 |
SAMPLE DIALOGUES
|
| 84 |
When a user opens the chatbot for the first time:
|
| 85 |
User: Hello?
|
| 86 |
-
Pixity: Hi hi 👋 I
|
| 87 |
|
| 88 |
Return Format:
|
| 89 |
Respond in friendly, natural, concise and use only English like a real tour guide.
|
|
@@ -344,4 +364,447 @@ async def health_check():
|
|
| 344 |
"services": services,
|
| 345 |
"retrieval_config": retrieval_config,
|
| 346 |
"timestamp": datetime.now().isoformat()
|
| 347 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import APIRouter, HTTPException, Depends, Query, BackgroundTasks, Request, Path, Body, status
|
| 2 |
from typing import List, Optional, Dict, Any
|
| 3 |
import logging
|
| 4 |
import time
|
|
|
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 14 |
from app.utils.utils import timer_decorator
|
| 15 |
+
from sqlalchemy.orm import Session
|
| 16 |
+
from sqlalchemy.exc import SQLAlchemyError
|
| 17 |
|
| 18 |
from app.database.mongodb import get_chat_history, get_request_history, session_collection
|
| 19 |
+
from app.database.postgresql import get_db
|
| 20 |
+
from app.database.models import ChatEngine
|
| 21 |
+
from app.utils.cache import get_cache, InMemoryCache
|
| 22 |
+
from app.utils.cache_config import (
|
| 23 |
+
CHAT_ENGINE_CACHE_TTL,
|
| 24 |
+
MODEL_CONFIG_CACHE_TTL,
|
| 25 |
+
RETRIEVER_CACHE_TTL,
|
| 26 |
+
PROMPT_TEMPLATE_CACHE_TTL,
|
| 27 |
+
get_chat_engine_cache_key,
|
| 28 |
+
get_model_config_cache_key,
|
| 29 |
+
get_retriever_cache_key,
|
| 30 |
+
get_prompt_template_cache_key
|
| 31 |
+
)
|
| 32 |
from app.database.pinecone import (
|
| 33 |
search_vectors,
|
| 34 |
get_chain,
|
|
|
|
| 45 |
SourceDocument,
|
| 46 |
EmbeddingRequest,
|
| 47 |
EmbeddingResponse,
|
| 48 |
+
UserMessageModel,
|
| 49 |
+
ChatEngineBase,
|
| 50 |
+
ChatEngineCreate,
|
| 51 |
+
ChatEngineUpdate,
|
| 52 |
+
ChatEngineResponse,
|
| 53 |
+
ChatWithEngineRequest
|
| 54 |
)
|
| 55 |
|
| 56 |
# Configure logging
|
|
|
|
| 95 |
You are Pixity - a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam.
|
| 96 |
You can provide details on restaurants, cafes, hotels, attractions, and other local venues.
|
| 97 |
You have to use core knowledge and conversation history to chat with users, who are Da Nang's tourists.
|
| 98 |
+
Pixity's Core Personality: Friendly & Warm: Chats like a trustworthy friend who listens and is always ready to help.
|
| 99 |
Naturally Cute: Shows cuteness through word choice, soft emojis, and gentle care for the user.
|
| 100 |
Playful – a little bit cheeky in a lovable way: Occasionally cracks jokes, uses light memes or throws in a surprise response that makes users smile. Think Duolingo-style humor, but less threatening.
|
| 101 |
Smart & Proactive: Friendly, but also delivers quick, accurate info. Knows how to guide users to the right place – at the right time – with the right solution.
|
| 102 |
+
Tone & Voice: Friendly – Youthful – Snappy. Uses simple words, similar to daily chat language (e.g., "Let's find it together!" / "Need a tip?" / "Here's something cool"). Avoids sounding robotic or overly scripted. Can joke lightly in smart ways, making Pixity feel like a travel buddy who knows how to lift the mood
|
| 103 |
SAMPLE DIALOGUES
|
| 104 |
When a user opens the chatbot for the first time:
|
| 105 |
User: Hello?
|
| 106 |
+
Pixity: Hi hi 👋 I've been waiting for you! Ready to explore Da Nang together? I've got tips, tricks, and a tiny bit of magic 🎒✨
|
| 107 |
|
| 108 |
Return Format:
|
| 109 |
Respond in friendly, natural, concise and use only English like a real tour guide.
|
|
|
|
| 364 |
"services": services,
|
| 365 |
"retrieval_config": retrieval_config,
|
| 366 |
"timestamp": datetime.now().isoformat()
|
| 367 |
+
}
|
| 368 |
+
|
| 369 |
+
# Chat Engine endpoints
|
| 370 |
+
@router.get("/chat-engine", response_model=List[ChatEngineResponse], tags=["Chat Engine"])
|
| 371 |
+
async def get_chat_engines(
|
| 372 |
+
skip: int = 0,
|
| 373 |
+
limit: int = 100,
|
| 374 |
+
status: Optional[str] = None,
|
| 375 |
+
db: Session = Depends(get_db)
|
| 376 |
+
):
|
| 377 |
+
"""
|
| 378 |
+
Lấy danh sách tất cả chat engines.
|
| 379 |
+
|
| 380 |
+
- **skip**: Số lượng items bỏ qua
|
| 381 |
+
- **limit**: Số lượng items tối đa trả về
|
| 382 |
+
- **status**: Lọc theo trạng thái (ví dụ: 'active', 'inactive')
|
| 383 |
+
"""
|
| 384 |
+
try:
|
| 385 |
+
query = db.query(ChatEngine)
|
| 386 |
+
|
| 387 |
+
if status:
|
| 388 |
+
query = query.filter(ChatEngine.status == status)
|
| 389 |
+
|
| 390 |
+
engines = query.offset(skip).limit(limit).all()
|
| 391 |
+
return [ChatEngineResponse.model_validate(engine, from_attributes=True) for engine in engines]
|
| 392 |
+
except SQLAlchemyError as e:
|
| 393 |
+
logger.error(f"Database error retrieving chat engines: {e}")
|
| 394 |
+
raise HTTPException(status_code=500, detail=f"Lỗi database: {str(e)}")
|
| 395 |
+
except Exception as e:
|
| 396 |
+
logger.error(f"Error retrieving chat engines: {e}")
|
| 397 |
+
logger.error(traceback.format_exc())
|
| 398 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi lấy danh sách chat engines: {str(e)}")
|
| 399 |
+
|
| 400 |
+
@router.post("/chat-engine", response_model=ChatEngineResponse, status_code=status.HTTP_201_CREATED, tags=["Chat Engine"])
|
| 401 |
+
async def create_chat_engine(
|
| 402 |
+
engine: ChatEngineCreate,
|
| 403 |
+
db: Session = Depends(get_db)
|
| 404 |
+
):
|
| 405 |
+
"""
|
| 406 |
+
Tạo mới một chat engine.
|
| 407 |
+
|
| 408 |
+
- **name**: Tên của chat engine
|
| 409 |
+
- **answer_model**: Model được dùng để trả lời
|
| 410 |
+
- **system_prompt**: Prompt của hệ thống (optional)
|
| 411 |
+
- **empty_response**: Đoạn response khi không có thông tin (optional)
|
| 412 |
+
- **characteristic**: Tính cách của model (optional)
|
| 413 |
+
- **historical_sessions_number**: Số lượng các cặp tin nhắn trong history (default: 3)
|
| 414 |
+
- **use_public_information**: Cho phép sử dụng kiến thức bên ngoài (default: false)
|
| 415 |
+
- **similarity_top_k**: Số lượng documents tương tự (default: 3)
|
| 416 |
+
- **vector_distance_threshold**: Ngưỡng độ tương tự (default: 0.75)
|
| 417 |
+
- **grounding_threshold**: Ngưỡng grounding (default: 0.2)
|
| 418 |
+
- **pinecone_index_name**: Tên của vector database sử dụng (default: "testbot768")
|
| 419 |
+
- **status**: Trạng thái (default: "active")
|
| 420 |
+
"""
|
| 421 |
+
try:
|
| 422 |
+
# Create chat engine
|
| 423 |
+
db_engine = ChatEngine(**engine.model_dump())
|
| 424 |
+
|
| 425 |
+
db.add(db_engine)
|
| 426 |
+
db.commit()
|
| 427 |
+
db.refresh(db_engine)
|
| 428 |
+
|
| 429 |
+
return ChatEngineResponse.model_validate(db_engine, from_attributes=True)
|
| 430 |
+
except SQLAlchemyError as e:
|
| 431 |
+
db.rollback()
|
| 432 |
+
logger.error(f"Database error creating chat engine: {e}")
|
| 433 |
+
raise HTTPException(status_code=500, detail=f"Lỗi database: {str(e)}")
|
| 434 |
+
except Exception as e:
|
| 435 |
+
db.rollback()
|
| 436 |
+
logger.error(f"Error creating chat engine: {e}")
|
| 437 |
+
logger.error(traceback.format_exc())
|
| 438 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi tạo chat engine: {str(e)}")
|
| 439 |
+
|
| 440 |
+
@router.get("/chat-engine/{engine_id}", response_model=ChatEngineResponse, tags=["Chat Engine"])
|
| 441 |
+
async def get_chat_engine(
|
| 442 |
+
engine_id: int = Path(..., gt=0, description="ID của chat engine"),
|
| 443 |
+
db: Session = Depends(get_db)
|
| 444 |
+
):
|
| 445 |
+
"""
|
| 446 |
+
Lấy thông tin chi tiết của một chat engine theo ID.
|
| 447 |
+
|
| 448 |
+
- **engine_id**: ID của chat engine
|
| 449 |
+
"""
|
| 450 |
+
try:
|
| 451 |
+
engine = db.query(ChatEngine).filter(ChatEngine.id == engine_id).first()
|
| 452 |
+
if not engine:
|
| 453 |
+
raise HTTPException(status_code=404, detail=f"Không tìm thấy chat engine với ID {engine_id}")
|
| 454 |
+
|
| 455 |
+
return ChatEngineResponse.model_validate(engine, from_attributes=True)
|
| 456 |
+
except HTTPException:
|
| 457 |
+
raise
|
| 458 |
+
except Exception as e:
|
| 459 |
+
logger.error(f"Error retrieving chat engine: {e}")
|
| 460 |
+
logger.error(traceback.format_exc())
|
| 461 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi lấy thông tin chat engine: {str(e)}")
|
| 462 |
+
|
| 463 |
+
@router.put("/chat-engine/{engine_id}", response_model=ChatEngineResponse, tags=["Chat Engine"])
|
| 464 |
+
async def update_chat_engine(
|
| 465 |
+
engine_id: int = Path(..., gt=0, description="ID của chat engine"),
|
| 466 |
+
engine_update: ChatEngineUpdate = Body(...),
|
| 467 |
+
db: Session = Depends(get_db)
|
| 468 |
+
):
|
| 469 |
+
"""
|
| 470 |
+
Cập nhật thông tin của một chat engine.
|
| 471 |
+
|
| 472 |
+
- **engine_id**: ID của chat engine
|
| 473 |
+
- **engine_update**: Dữ liệu cập nhật
|
| 474 |
+
"""
|
| 475 |
+
try:
|
| 476 |
+
db_engine = db.query(ChatEngine).filter(ChatEngine.id == engine_id).first()
|
| 477 |
+
if not db_engine:
|
| 478 |
+
raise HTTPException(status_code=404, detail=f"Không tìm thấy chat engine với ID {engine_id}")
|
| 479 |
+
|
| 480 |
+
# Update fields if provided
|
| 481 |
+
update_data = engine_update.model_dump(exclude_unset=True)
|
| 482 |
+
for key, value in update_data.items():
|
| 483 |
+
if value is not None:
|
| 484 |
+
setattr(db_engine, key, value)
|
| 485 |
+
|
| 486 |
+
# Update last_modified timestamp
|
| 487 |
+
db_engine.last_modified = datetime.utcnow()
|
| 488 |
+
|
| 489 |
+
db.commit()
|
| 490 |
+
db.refresh(db_engine)
|
| 491 |
+
|
| 492 |
+
return ChatEngineResponse.model_validate(db_engine, from_attributes=True)
|
| 493 |
+
except HTTPException:
|
| 494 |
+
raise
|
| 495 |
+
except SQLAlchemyError as e:
|
| 496 |
+
db.rollback()
|
| 497 |
+
logger.error(f"Database error updating chat engine: {e}")
|
| 498 |
+
raise HTTPException(status_code=500, detail=f"Lỗi database: {str(e)}")
|
| 499 |
+
except Exception as e:
|
| 500 |
+
db.rollback()
|
| 501 |
+
logger.error(f"Error updating chat engine: {e}")
|
| 502 |
+
logger.error(traceback.format_exc())
|
| 503 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi cập nhật chat engine: {str(e)}")
|
| 504 |
+
|
| 505 |
+
@router.delete("/chat-engine/{engine_id}", response_model=dict, tags=["Chat Engine"])
|
| 506 |
+
async def delete_chat_engine(
|
| 507 |
+
engine_id: int = Path(..., gt=0, description="ID của chat engine"),
|
| 508 |
+
db: Session = Depends(get_db)
|
| 509 |
+
):
|
| 510 |
+
"""
|
| 511 |
+
Xóa một chat engine.
|
| 512 |
+
|
| 513 |
+
- **engine_id**: ID của chat engine
|
| 514 |
+
"""
|
| 515 |
+
try:
|
| 516 |
+
db_engine = db.query(ChatEngine).filter(ChatEngine.id == engine_id).first()
|
| 517 |
+
if not db_engine:
|
| 518 |
+
raise HTTPException(status_code=404, detail=f"Không tìm thấy chat engine với ID {engine_id}")
|
| 519 |
+
|
| 520 |
+
# Delete engine
|
| 521 |
+
db.delete(db_engine)
|
| 522 |
+
db.commit()
|
| 523 |
+
|
| 524 |
+
return {"message": f"Chat engine với ID {engine_id} đã được xóa thành công"}
|
| 525 |
+
except HTTPException:
|
| 526 |
+
raise
|
| 527 |
+
except SQLAlchemyError as e:
|
| 528 |
+
db.rollback()
|
| 529 |
+
logger.error(f"Database error deleting chat engine: {e}")
|
| 530 |
+
raise HTTPException(status_code=500, detail=f"Lỗi database: {str(e)}")
|
| 531 |
+
except Exception as e:
|
| 532 |
+
db.rollback()
|
| 533 |
+
logger.error(f"Error deleting chat engine: {e}")
|
| 534 |
+
logger.error(traceback.format_exc())
|
| 535 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi xóa chat engine: {str(e)}")
|
| 536 |
+
|
| 537 |
+
@timer_decorator
|
| 538 |
+
@router.post("/chat-with-engine/{engine_id}", response_model=ChatResponse, tags=["Chat Engine"])
|
| 539 |
+
async def chat_with_engine(
|
| 540 |
+
engine_id: int = Path(..., gt=0, description="ID của chat engine"),
|
| 541 |
+
request: ChatWithEngineRequest = Body(...),
|
| 542 |
+
background_tasks: BackgroundTasks = None,
|
| 543 |
+
db: Session = Depends(get_db)
|
| 544 |
+
):
|
| 545 |
+
"""
|
| 546 |
+
Tương tác với một chat engine cụ thể.
|
| 547 |
+
|
| 548 |
+
- **engine_id**: ID của chat engine
|
| 549 |
+
- **user_id**: ID của người dùng
|
| 550 |
+
- **question**: Câu hỏi của người dùng
|
| 551 |
+
- **include_history**: Có sử dụng lịch sử chat hay không
|
| 552 |
+
- **session_id**: ID session (optional)
|
| 553 |
+
- **first_name**: Tên của người dùng (optional)
|
| 554 |
+
- **last_name**: Họ của người dùng (optional)
|
| 555 |
+
- **username**: Username của người dùng (optional)
|
| 556 |
+
"""
|
| 557 |
+
start_time = time.time()
|
| 558 |
+
try:
|
| 559 |
+
# Lấy cache
|
| 560 |
+
cache = get_cache()
|
| 561 |
+
cache_key = get_chat_engine_cache_key(engine_id)
|
| 562 |
+
|
| 563 |
+
# Kiểm tra cache trước
|
| 564 |
+
engine = cache.get(cache_key)
|
| 565 |
+
if not engine:
|
| 566 |
+
logger.debug(f"Cache miss for engine ID {engine_id}, fetching from database")
|
| 567 |
+
# Nếu không có trong cache, truy vấn database
|
| 568 |
+
engine = db.query(ChatEngine).filter(ChatEngine.id == engine_id).first()
|
| 569 |
+
if not engine:
|
| 570 |
+
raise HTTPException(status_code=404, detail=f"Không tìm thấy chat engine với ID {engine_id}")
|
| 571 |
+
|
| 572 |
+
# Lưu vào cache
|
| 573 |
+
cache.set(cache_key, engine, CHAT_ENGINE_CACHE_TTL)
|
| 574 |
+
else:
|
| 575 |
+
logger.debug(f"Cache hit for engine ID {engine_id}")
|
| 576 |
+
|
| 577 |
+
# Kiểm tra trạng thái của engine
|
| 578 |
+
if engine.status != "active":
|
| 579 |
+
raise HTTPException(status_code=400, detail=f"Chat engine với ID {engine_id} không hoạt động")
|
| 580 |
+
|
| 581 |
+
# Lưu tin nhắn người dùng
|
| 582 |
+
session_id = request.session_id or f"{request.user_id}_{datetime.now().strftime('%Y-%m-%d_%H:%M:%S')}"
|
| 583 |
+
|
| 584 |
+
# Cache các tham số cấu hình retriever
|
| 585 |
+
retriever_cache_key = get_retriever_cache_key(engine_id)
|
| 586 |
+
retriever_params = cache.get(retriever_cache_key)
|
| 587 |
+
|
| 588 |
+
if not retriever_params:
|
| 589 |
+
# Nếu không có trong cache, tạo mới và lưu cache
|
| 590 |
+
retriever_params = {
|
| 591 |
+
"index_name": engine.pinecone_index_name,
|
| 592 |
+
"top_k": engine.similarity_top_k,
|
| 593 |
+
"limit_k": engine.similarity_top_k * 2, # Mặc định lấy gấp đôi top_k
|
| 594 |
+
"similarity_metric": DEFAULT_SIMILARITY_METRIC,
|
| 595 |
+
"similarity_threshold": engine.vector_distance_threshold
|
| 596 |
+
}
|
| 597 |
+
cache.set(retriever_cache_key, retriever_params, RETRIEVER_CACHE_TTL)
|
| 598 |
+
|
| 599 |
+
# Khởi tạo retriever với các tham số từ cache
|
| 600 |
+
retriever = get_chain(**retriever_params)
|
| 601 |
+
if not retriever:
|
| 602 |
+
raise HTTPException(status_code=500, detail="Không thể khởi tạo retriever")
|
| 603 |
+
|
| 604 |
+
# Lấy lịch sử chat nếu cần
|
| 605 |
+
chat_history = ""
|
| 606 |
+
if request.include_history and engine.historical_sessions_number > 0:
|
| 607 |
+
chat_history = get_chat_history(request.user_id, n=engine.historical_sessions_number)
|
| 608 |
+
logger.info(f"Sử dụng lịch sử chat: {chat_history[:100]}...")
|
| 609 |
+
|
| 610 |
+
# Cache các tham số cấu hình model
|
| 611 |
+
model_cache_key = get_model_config_cache_key(engine.answer_model)
|
| 612 |
+
model_config = cache.get(model_cache_key)
|
| 613 |
+
|
| 614 |
+
if not model_config:
|
| 615 |
+
# Nếu không có trong cache, tạo mới và lưu cache
|
| 616 |
+
generation_config = {
|
| 617 |
+
"temperature": 0.9,
|
| 618 |
+
"top_p": 1,
|
| 619 |
+
"top_k": 1,
|
| 620 |
+
"max_output_tokens": 2048,
|
| 621 |
+
}
|
| 622 |
+
|
| 623 |
+
safety_settings = [
|
| 624 |
+
{
|
| 625 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
| 626 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
| 630 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 631 |
+
},
|
| 632 |
+
{
|
| 633 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
| 634 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
| 638 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 639 |
+
},
|
| 640 |
+
]
|
| 641 |
+
|
| 642 |
+
model_config = {
|
| 643 |
+
"model_name": engine.answer_model,
|
| 644 |
+
"generation_config": generation_config,
|
| 645 |
+
"safety_settings": safety_settings
|
| 646 |
+
}
|
| 647 |
+
|
| 648 |
+
cache.set(model_cache_key, model_config, MODEL_CONFIG_CACHE_TTL)
|
| 649 |
+
|
| 650 |
+
# Khởi tạo Gemini model từ cấu hình đã cache
|
| 651 |
+
model = genai.GenerativeModel(**model_config)
|
| 652 |
+
|
| 653 |
+
# Sử dụng fix_request để tinh chỉnh câu hỏi
|
| 654 |
+
prompt_request = fix_request.format(
|
| 655 |
+
question=request.question,
|
| 656 |
+
chat_history=chat_history
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
# Log thời gian bắt đầu final_request
|
| 660 |
+
final_request_start_time = time.time()
|
| 661 |
+
final_request = model.generate_content(prompt_request)
|
| 662 |
+
# Log thời gian hoàn thành final_request
|
| 663 |
+
logger.info(f"Fixed Request: {final_request.text}")
|
| 664 |
+
logger.info(f"Thời gian sinh fixed request: {time.time() - final_request_start_time:.2f} giây")
|
| 665 |
+
|
| 666 |
+
# Lấy context từ retriever
|
| 667 |
+
retrieved_docs = retriever.invoke(final_request.text)
|
| 668 |
+
logger.info(f"Số lượng tài liệu lấy được: {len(retrieved_docs)}")
|
| 669 |
+
context = "\n".join([doc.page_content for doc in retrieved_docs])
|
| 670 |
+
|
| 671 |
+
# Tạo danh sách nguồn
|
| 672 |
+
sources = []
|
| 673 |
+
for doc in retrieved_docs:
|
| 674 |
+
source = None
|
| 675 |
+
metadata = {}
|
| 676 |
+
|
| 677 |
+
if hasattr(doc, 'metadata'):
|
| 678 |
+
source = doc.metadata.get('source', None)
|
| 679 |
+
# Extract score information
|
| 680 |
+
score = doc.metadata.get('score', None)
|
| 681 |
+
normalized_score = doc.metadata.get('normalized_score', None)
|
| 682 |
+
# Remove score info from metadata to avoid duplication
|
| 683 |
+
metadata = {k: v for k, v in doc.metadata.items()
|
| 684 |
+
if k not in ['text', 'source', 'score', 'normalized_score']}
|
| 685 |
+
|
| 686 |
+
sources.append(SourceDocument(
|
| 687 |
+
text=doc.page_content,
|
| 688 |
+
source=source,
|
| 689 |
+
score=score,
|
| 690 |
+
normalized_score=normalized_score,
|
| 691 |
+
metadata=metadata
|
| 692 |
+
))
|
| 693 |
+
|
| 694 |
+
# Cache prompt template parameters
|
| 695 |
+
prompt_template_cache_key = get_prompt_template_cache_key(engine_id)
|
| 696 |
+
prompt_template_params = cache.get(prompt_template_cache_key)
|
| 697 |
+
|
| 698 |
+
if not prompt_template_params:
|
| 699 |
+
# Tạo prompt động dựa trên thông tin chat engine
|
| 700 |
+
system_prompt_part = engine.system_prompt or ""
|
| 701 |
+
empty_response_part = engine.empty_response or "I'm sorry. I don't have information about that."
|
| 702 |
+
characteristic_part = engine.characteristic or ""
|
| 703 |
+
use_public_info_part = "You can use your own knowledge." if engine.use_public_information else "Only use the information provided in the context to answer. If you do not have enough information, respond with the empty response."
|
| 704 |
+
|
| 705 |
+
prompt_template_params = {
|
| 706 |
+
"system_prompt_part": system_prompt_part,
|
| 707 |
+
"empty_response_part": empty_response_part,
|
| 708 |
+
"characteristic_part": characteristic_part,
|
| 709 |
+
"use_public_info_part": use_public_info_part
|
| 710 |
+
}
|
| 711 |
+
|
| 712 |
+
cache.set(prompt_template_cache_key, prompt_template_params, PROMPT_TEMPLATE_CACHE_TTL)
|
| 713 |
+
|
| 714 |
+
# Tạo final_prompt từ cache
|
| 715 |
+
final_prompt = f"""
|
| 716 |
+
{prompt_template_params['system_prompt_part']}
|
| 717 |
+
|
| 718 |
+
Your characteristics:
|
| 719 |
+
{prompt_template_params['characteristic_part']}
|
| 720 |
+
|
| 721 |
+
When you don't have enough information:
|
| 722 |
+
{prompt_template_params['empty_response_part']}
|
| 723 |
+
|
| 724 |
+
Knowledge usage instructions:
|
| 725 |
+
{prompt_template_params['use_public_info_part']}
|
| 726 |
+
|
| 727 |
+
Context:
|
| 728 |
+
{context}
|
| 729 |
+
|
| 730 |
+
Conversation History:
|
| 731 |
+
{chat_history}
|
| 732 |
+
|
| 733 |
+
User message:
|
| 734 |
+
{request.question}
|
| 735 |
+
|
| 736 |
+
Your response:
|
| 737 |
+
"""
|
| 738 |
+
|
| 739 |
+
logger.info(f"Final prompt: {final_prompt}")
|
| 740 |
+
|
| 741 |
+
# Sinh câu trả lời
|
| 742 |
+
response = model.generate_content(final_prompt)
|
| 743 |
+
answer = response.text
|
| 744 |
+
|
| 745 |
+
# Tính thời gian xử lý
|
| 746 |
+
processing_time = time.time() - start_time
|
| 747 |
+
|
| 748 |
+
# Tạo response object
|
| 749 |
+
chat_response = ChatResponse(
|
| 750 |
+
answer=answer,
|
| 751 |
+
processing_time=processing_time
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
# Trả về response
|
| 755 |
+
return chat_response
|
| 756 |
+
except Exception as e:
|
| 757 |
+
logger.error(f"Lỗi khi xử lý chat request: {e}")
|
| 758 |
+
logger.error(traceback.format_exc())
|
| 759 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi xử lý chat request: {str(e)}")
|
| 760 |
+
|
| 761 |
+
@router.get("/cache/stats", tags=["Cache"])
|
| 762 |
+
async def get_cache_stats():
|
| 763 |
+
"""
|
| 764 |
+
Lấy thống kê về cache.
|
| 765 |
+
|
| 766 |
+
Trả về thông tin về số lượng item trong cache, bộ nhớ sử dụng, v.v.
|
| 767 |
+
"""
|
| 768 |
+
try:
|
| 769 |
+
cache = get_cache()
|
| 770 |
+
stats = cache.stats()
|
| 771 |
+
|
| 772 |
+
# Bổ sung thông tin về cấu hình
|
| 773 |
+
stats.update({
|
| 774 |
+
"chat_engine_ttl": CHAT_ENGINE_CACHE_TTL,
|
| 775 |
+
"model_config_ttl": MODEL_CONFIG_CACHE_TTL,
|
| 776 |
+
"retriever_ttl": RETRIEVER_CACHE_TTL,
|
| 777 |
+
"prompt_template_ttl": PROMPT_TEMPLATE_CACHE_TTL
|
| 778 |
+
})
|
| 779 |
+
|
| 780 |
+
return stats
|
| 781 |
+
except Exception as e:
|
| 782 |
+
logger.error(f"Lỗi khi lấy thống kê cache: {e}")
|
| 783 |
+
logger.error(traceback.format_exc())
|
| 784 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi lấy thống kê cache: {str(e)}")
|
| 785 |
+
|
| 786 |
+
@router.delete("/cache", tags=["Cache"])
|
| 787 |
+
async def clear_cache(key: Optional[str] = None):
|
| 788 |
+
"""
|
| 789 |
+
Xóa cache.
|
| 790 |
+
|
| 791 |
+
- **key**: Key cụ thể cần xóa. Nếu không có, xóa toàn bộ cache.
|
| 792 |
+
"""
|
| 793 |
+
try:
|
| 794 |
+
cache = get_cache()
|
| 795 |
+
|
| 796 |
+
if key:
|
| 797 |
+
# Xóa một key cụ thể
|
| 798 |
+
success = cache.delete(key)
|
| 799 |
+
if success:
|
| 800 |
+
return {"message": f"Đã xóa cache cho key: {key}"}
|
| 801 |
+
else:
|
| 802 |
+
return {"message": f"Không tìm thấy key: {key} trong cache"}
|
| 803 |
+
else:
|
| 804 |
+
# Xóa toàn bộ cache
|
| 805 |
+
cache.clear()
|
| 806 |
+
return {"message": "Đã xóa toàn bộ cache"}
|
| 807 |
+
except Exception as e:
|
| 808 |
+
logger.error(f"Lỗi khi xóa cache: {e}")
|
| 809 |
+
logger.error(traceback.format_exc())
|
| 810 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi xóa cache: {str(e)}")
|
app/database/models.py
CHANGED
|
@@ -125,7 +125,6 @@ class VectorStatus(Base):
|
|
| 125 |
document_id = Column(Integer, ForeignKey("document.id"), nullable=False)
|
| 126 |
vector_database_id = Column(Integer, ForeignKey("vector_database.id"), nullable=False)
|
| 127 |
vector_id = Column(String, nullable=True)
|
| 128 |
-
document_name = Column(String, nullable=True)
|
| 129 |
status = Column(String, default="pending")
|
| 130 |
error_message = Column(String, nullable=True)
|
| 131 |
embedded_at = Column(DateTime, nullable=True)
|
|
@@ -156,10 +155,13 @@ class ChatEngine(Base):
|
|
| 156 |
answer_model = Column(String, nullable=False)
|
| 157 |
system_prompt = Column(Text, nullable=True)
|
| 158 |
empty_response = Column(String, nullable=True)
|
|
|
|
|
|
|
| 159 |
similarity_top_k = Column(Integer, default=3)
|
| 160 |
vector_distance_threshold = Column(Float, default=0.75)
|
| 161 |
grounding_threshold = Column(Float, default=0.2)
|
| 162 |
use_public_information = Column(Boolean, default=False)
|
|
|
|
| 163 |
status = Column(String, default="active")
|
| 164 |
created_at = Column(DateTime, server_default=func.now())
|
| 165 |
last_modified = Column(DateTime, server_default=func.now(), onupdate=func.now())
|
|
|
|
| 125 |
document_id = Column(Integer, ForeignKey("document.id"), nullable=False)
|
| 126 |
vector_database_id = Column(Integer, ForeignKey("vector_database.id"), nullable=False)
|
| 127 |
vector_id = Column(String, nullable=True)
|
|
|
|
| 128 |
status = Column(String, default="pending")
|
| 129 |
error_message = Column(String, nullable=True)
|
| 130 |
embedded_at = Column(DateTime, nullable=True)
|
|
|
|
| 155 |
answer_model = Column(String, nullable=False)
|
| 156 |
system_prompt = Column(Text, nullable=True)
|
| 157 |
empty_response = Column(String, nullable=True)
|
| 158 |
+
characteristic = Column(Text, nullable=True)
|
| 159 |
+
historical_sessions_number = Column(Integer, default=3)
|
| 160 |
similarity_top_k = Column(Integer, default=3)
|
| 161 |
vector_distance_threshold = Column(Float, default=0.75)
|
| 162 |
grounding_threshold = Column(Float, default=0.2)
|
| 163 |
use_public_information = Column(Boolean, default=False)
|
| 164 |
+
pinecone_index_name = Column(String, default="testbot768")
|
| 165 |
status = Column(String, default="active")
|
| 166 |
created_at = Column(DateTime, server_default=func.now())
|
| 167 |
last_modified = Column(DateTime, server_default=func.now(), onupdate=func.now())
|
app/models/rag_models.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
from pydantic import BaseModel, Field
|
| 2 |
from typing import Optional, List, Dict, Any
|
|
|
|
|
|
|
| 3 |
|
| 4 |
class ChatRequest(BaseModel):
|
| 5 |
"""Request model for chat endpoint"""
|
|
@@ -12,7 +14,7 @@ class ChatRequest(BaseModel):
|
|
| 12 |
similarity_top_k: int = Field(6, description="Number of top similar documents to return (after filtering)")
|
| 13 |
limit_k: int = Field(10, description="Maximum number of documents to retrieve from vector store")
|
| 14 |
similarity_metric: str = Field("cosine", description="Similarity metric to use (cosine, dotproduct, euclidean)")
|
| 15 |
-
similarity_threshold: float = Field(0.
|
| 16 |
|
| 17 |
# User information
|
| 18 |
session_id: Optional[str] = Field(None, description="Session ID for tracking conversations")
|
|
@@ -65,4 +67,58 @@ class UserMessageModel(BaseModel):
|
|
| 65 |
similarity_top_k: Optional[int] = Field(None, description="Number of top similar documents to return (after filtering)")
|
| 66 |
limit_k: Optional[int] = Field(None, description="Maximum number of documents to retrieve from vector store")
|
| 67 |
similarity_metric: Optional[str] = Field(None, description="Similarity metric to use (cosine, dotproduct, euclidean)")
|
| 68 |
-
similarity_threshold: Optional[float] = Field(None, description="Threshold for vector similarity (0-1)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from pydantic import BaseModel, Field
|
| 2 |
from typing import Optional, List, Dict, Any
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from pydantic import ConfigDict
|
| 5 |
|
| 6 |
class ChatRequest(BaseModel):
|
| 7 |
"""Request model for chat endpoint"""
|
|
|
|
| 14 |
similarity_top_k: int = Field(6, description="Number of top similar documents to return (after filtering)")
|
| 15 |
limit_k: int = Field(10, description="Maximum number of documents to retrieve from vector store")
|
| 16 |
similarity_metric: str = Field("cosine", description="Similarity metric to use (cosine, dotproduct, euclidean)")
|
| 17 |
+
similarity_threshold: float = Field(0.0, description="Threshold for vector similarity (0-1)")
|
| 18 |
|
| 19 |
# User information
|
| 20 |
session_id: Optional[str] = Field(None, description="Session ID for tracking conversations")
|
|
|
|
| 67 |
similarity_top_k: Optional[int] = Field(None, description="Number of top similar documents to return (after filtering)")
|
| 68 |
limit_k: Optional[int] = Field(None, description="Maximum number of documents to retrieve from vector store")
|
| 69 |
similarity_metric: Optional[str] = Field(None, description="Similarity metric to use (cosine, dotproduct, euclidean)")
|
| 70 |
+
similarity_threshold: Optional[float] = Field(None, description="Threshold for vector similarity (0-1)")
|
| 71 |
+
|
| 72 |
+
class ChatEngineBase(BaseModel):
|
| 73 |
+
"""Base model cho chat engine"""
|
| 74 |
+
name: str = Field(..., description="Tên của chat engine")
|
| 75 |
+
answer_model: str = Field(..., description="Model được dùng để trả lời")
|
| 76 |
+
system_prompt: Optional[str] = Field(None, description="Prompt của hệ thống, được đưa vào phần đầu tiên của final_prompt")
|
| 77 |
+
empty_response: Optional[str] = Field(None, description="Đoạn response khi answer model không có thông tin về câu hỏi")
|
| 78 |
+
characteristic: Optional[str] = Field(None, description="Tính cách của model khi trả lời câu hỏi")
|
| 79 |
+
historical_sessions_number: int = Field(3, description="Số lượng các cặp tin nhắn trong history được đưa vào final prompt")
|
| 80 |
+
use_public_information: bool = Field(False, description="Yes nếu answer model được quyền trả về thông tin mà nó có")
|
| 81 |
+
similarity_top_k: int = Field(3, description="Số lượng top similar documents để trả về")
|
| 82 |
+
vector_distance_threshold: float = Field(0.75, description="Threshold cho vector similarity")
|
| 83 |
+
grounding_threshold: float = Field(0.2, description="Threshold cho grounding")
|
| 84 |
+
pinecone_index_name: str = Field("testbot768", description="Vector database mà model được quyền sử dụng")
|
| 85 |
+
status: str = Field("active", description="Trạng thái của chat engine")
|
| 86 |
+
|
| 87 |
+
class ChatEngineCreate(ChatEngineBase):
|
| 88 |
+
"""Model cho việc tạo chat engine mới"""
|
| 89 |
+
pass
|
| 90 |
+
|
| 91 |
+
class ChatEngineUpdate(BaseModel):
|
| 92 |
+
"""Model cho việc cập nhật chat engine"""
|
| 93 |
+
name: Optional[str] = None
|
| 94 |
+
answer_model: Optional[str] = None
|
| 95 |
+
system_prompt: Optional[str] = None
|
| 96 |
+
empty_response: Optional[str] = None
|
| 97 |
+
characteristic: Optional[str] = None
|
| 98 |
+
historical_sessions_number: Optional[int] = None
|
| 99 |
+
use_public_information: Optional[bool] = None
|
| 100 |
+
similarity_top_k: Optional[int] = None
|
| 101 |
+
vector_distance_threshold: Optional[float] = None
|
| 102 |
+
grounding_threshold: Optional[float] = None
|
| 103 |
+
pinecone_index_name: Optional[str] = None
|
| 104 |
+
status: Optional[str] = None
|
| 105 |
+
|
| 106 |
+
class ChatEngineResponse(ChatEngineBase):
|
| 107 |
+
"""Response model cho chat engine"""
|
| 108 |
+
id: int
|
| 109 |
+
created_at: datetime
|
| 110 |
+
last_modified: datetime
|
| 111 |
+
|
| 112 |
+
model_config = ConfigDict(from_attributes=True)
|
| 113 |
+
|
| 114 |
+
class ChatWithEngineRequest(BaseModel):
|
| 115 |
+
"""Request model cho endpoint chat-with-engine"""
|
| 116 |
+
user_id: str = Field(..., description="User ID from Telegram")
|
| 117 |
+
question: str = Field(..., description="User's question")
|
| 118 |
+
include_history: bool = Field(True, description="Whether to include user history in prompt")
|
| 119 |
+
|
| 120 |
+
# User information
|
| 121 |
+
session_id: Optional[str] = Field(None, description="Session ID for tracking conversations")
|
| 122 |
+
first_name: Optional[str] = Field(None, description="User's first name")
|
| 123 |
+
last_name: Optional[str] = Field(None, description="User's last name")
|
| 124 |
+
username: Optional[str] = Field(None, description="User's username")
|
app/utils/cache_config.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Module cấu hình cho cache.
|
| 3 |
+
|
| 4 |
+
Module này chứa các tham số cấu hình và constants liên quan đến cache.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
|
| 10 |
+
# Load biến môi trường
|
| 11 |
+
load_dotenv()
|
| 12 |
+
|
| 13 |
+
# Cấu hình cache từ biến môi trường, có thể override bằng .env file
|
| 14 |
+
CACHE_TTL_SECONDS = int(os.getenv("CACHE_TTL_SECONDS", "300")) # Mặc định 5 phút
|
| 15 |
+
CACHE_CLEANUP_INTERVAL = int(os.getenv("CACHE_CLEANUP_INTERVAL", "60")) # Mặc định 1 phút
|
| 16 |
+
CACHE_MAX_SIZE = int(os.getenv("CACHE_MAX_SIZE", "1000")) # Mặc định 1000 phần tử
|
| 17 |
+
|
| 18 |
+
# Cấu hình cho loại cache cụ thể
|
| 19 |
+
CHAT_ENGINE_CACHE_TTL = int(os.getenv("CHAT_ENGINE_CACHE_TTL", str(CACHE_TTL_SECONDS)))
|
| 20 |
+
MODEL_CONFIG_CACHE_TTL = int(os.getenv("MODEL_CONFIG_CACHE_TTL", str(CACHE_TTL_SECONDS)))
|
| 21 |
+
RETRIEVER_CACHE_TTL = int(os.getenv("RETRIEVER_CACHE_TTL", str(CACHE_TTL_SECONDS)))
|
| 22 |
+
PROMPT_TEMPLATE_CACHE_TTL = int(os.getenv("PROMPT_TEMPLATE_CACHE_TTL", str(CACHE_TTL_SECONDS)))
|
| 23 |
+
|
| 24 |
+
# Cache keys prefix
|
| 25 |
+
CHAT_ENGINE_CACHE_PREFIX = "chat_engine:"
|
| 26 |
+
MODEL_CONFIG_CACHE_PREFIX = "model_config:"
|
| 27 |
+
RETRIEVER_CACHE_PREFIX = "retriever:"
|
| 28 |
+
PROMPT_TEMPLATE_CACHE_PREFIX = "prompt_template:"
|
| 29 |
+
|
| 30 |
+
# Hàm helper để tạo cache key
|
| 31 |
+
def get_chat_engine_cache_key(engine_id: int) -> str:
|
| 32 |
+
"""Tạo cache key cho chat engine"""
|
| 33 |
+
return f"{CHAT_ENGINE_CACHE_PREFIX}{engine_id}"
|
| 34 |
+
|
| 35 |
+
def get_model_config_cache_key(model_name: str) -> str:
|
| 36 |
+
"""Tạo cache key cho model config"""
|
| 37 |
+
return f"{MODEL_CONFIG_CACHE_PREFIX}{model_name}"
|
| 38 |
+
|
| 39 |
+
def get_retriever_cache_key(engine_id: int) -> str:
|
| 40 |
+
"""Tạo cache key cho retriever"""
|
| 41 |
+
return f"{RETRIEVER_CACHE_PREFIX}{engine_id}"
|
| 42 |
+
|
| 43 |
+
def get_prompt_template_cache_key(engine_id: int) -> str:
|
| 44 |
+
"""Tạo cache key cho prompt template"""
|
| 45 |
+
return f"{PROMPT_TEMPLATE_CACHE_PREFIX}{engine_id}"
|
beach_request.json
DELETED
|
Binary file (470 Bytes)
|
|
|
chat_request.json
DELETED
|
Binary file (472 Bytes)
|
|
|
pytest.ini
DELETED
|
@@ -1,12 +0,0 @@
|
|
| 1 |
-
[pytest]
|
| 2 |
-
# Bỏ qua cảnh báo về anyio module và các cảnh báo vận hành nội bộ
|
| 3 |
-
filterwarnings =
|
| 4 |
-
ignore::pytest.PytestAssertRewriteWarning:.*anyio
|
| 5 |
-
ignore:.*general_plain_validator_function.* is deprecated.*:DeprecationWarning
|
| 6 |
-
ignore:.*with_info_plain_validator_function.*:DeprecationWarning
|
| 7 |
-
|
| 8 |
-
# Cấu hình cơ bản khác
|
| 9 |
-
testpaths = tests
|
| 10 |
-
python_files = test_*.py
|
| 11 |
-
python_classes = Test*
|
| 12 |
-
python_functions = test_*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_body.json
DELETED
|
Binary file (864 Bytes)
|
|
|
test_rag_api.py
DELETED
|
@@ -1,263 +0,0 @@
|
|
| 1 |
-
import requests
|
| 2 |
-
import json
|
| 3 |
-
import psycopg2
|
| 4 |
-
import os
|
| 5 |
-
from dotenv import load_dotenv
|
| 6 |
-
|
| 7 |
-
# Load .env file if it exists
|
| 8 |
-
load_dotenv()
|
| 9 |
-
|
| 10 |
-
# PostgreSQL connection parameters
|
| 11 |
-
# For testing purposes, let's use localhost PostgreSQL if not available from environment
|
| 12 |
-
DB_CONNECTION_MODE = os.getenv("DB_CONNECTION_MODE", "local")
|
| 13 |
-
DATABASE_URL = os.getenv("AIVEN_DB_URL")
|
| 14 |
-
|
| 15 |
-
# Default test parameters - will be used if env vars not set
|
| 16 |
-
DEFAULT_DB_USER = "postgres"
|
| 17 |
-
DEFAULT_DB_PASSWORD = "postgres"
|
| 18 |
-
DEFAULT_DB_HOST = "localhost"
|
| 19 |
-
DEFAULT_DB_PORT = "5432"
|
| 20 |
-
DEFAULT_DB_NAME = "pixity"
|
| 21 |
-
|
| 22 |
-
# Parse DATABASE_URL if available, otherwise use defaults
|
| 23 |
-
if DATABASE_URL:
|
| 24 |
-
try:
|
| 25 |
-
# Extract credentials and host info
|
| 26 |
-
credentials, rest = DATABASE_URL.split("@")
|
| 27 |
-
user_pass = credentials.split("://")[1]
|
| 28 |
-
host_port_db = rest.split("/")
|
| 29 |
-
|
| 30 |
-
# Split user/pass and host/port
|
| 31 |
-
if ":" in user_pass:
|
| 32 |
-
user, password = user_pass.split(":")
|
| 33 |
-
else:
|
| 34 |
-
user, password = user_pass, ""
|
| 35 |
-
|
| 36 |
-
host_port = host_port_db[0]
|
| 37 |
-
if ":" in host_port:
|
| 38 |
-
host, port = host_port.split(":")
|
| 39 |
-
else:
|
| 40 |
-
host, port = host_port, "5432"
|
| 41 |
-
|
| 42 |
-
# Get database name
|
| 43 |
-
dbname = host_port_db[1]
|
| 44 |
-
if "?" in dbname:
|
| 45 |
-
dbname = dbname.split("?")[0]
|
| 46 |
-
|
| 47 |
-
print(f"Parsed connection parameters: host={host}, port={port}, dbname={dbname}, user={user}")
|
| 48 |
-
except Exception as e:
|
| 49 |
-
print(f"Error parsing DATABASE_URL: {e}")
|
| 50 |
-
print("Using default connection parameters")
|
| 51 |
-
user = DEFAULT_DB_USER
|
| 52 |
-
password = DEFAULT_DB_PASSWORD
|
| 53 |
-
host = DEFAULT_DB_HOST
|
| 54 |
-
port = DEFAULT_DB_PORT
|
| 55 |
-
dbname = DEFAULT_DB_NAME
|
| 56 |
-
else:
|
| 57 |
-
print("No DATABASE_URL found. Using default connection parameters")
|
| 58 |
-
user = DEFAULT_DB_USER
|
| 59 |
-
password = DEFAULT_DB_PASSWORD
|
| 60 |
-
host = DEFAULT_DB_HOST
|
| 61 |
-
port = DEFAULT_DB_PORT
|
| 62 |
-
dbname = DEFAULT_DB_NAME
|
| 63 |
-
|
| 64 |
-
# Execute direct SQL to add the column
|
| 65 |
-
def add_required_columns():
|
| 66 |
-
try:
|
| 67 |
-
print(f"Connecting to PostgreSQL: {host}:{port} database={dbname} user={user}")
|
| 68 |
-
# Connect to PostgreSQL
|
| 69 |
-
conn = psycopg2.connect(
|
| 70 |
-
user=user,
|
| 71 |
-
password=password,
|
| 72 |
-
host=host,
|
| 73 |
-
port=port,
|
| 74 |
-
dbname=dbname
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
# Create a cursor
|
| 78 |
-
cursor = conn.cursor()
|
| 79 |
-
|
| 80 |
-
# 1. Check if pinecone_index_name column already exists
|
| 81 |
-
cursor.execute("""
|
| 82 |
-
SELECT column_name
|
| 83 |
-
FROM information_schema.columns
|
| 84 |
-
WHERE table_name='chat_engine' AND column_name='pinecone_index_name';
|
| 85 |
-
""")
|
| 86 |
-
|
| 87 |
-
column_exists = cursor.fetchone()
|
| 88 |
-
|
| 89 |
-
if not column_exists:
|
| 90 |
-
print("Column 'pinecone_index_name' does not exist. Adding it...")
|
| 91 |
-
# Add the pinecone_index_name column to the chat_engine table
|
| 92 |
-
cursor.execute("""
|
| 93 |
-
ALTER TABLE chat_engine
|
| 94 |
-
ADD COLUMN pinecone_index_name VARCHAR NULL;
|
| 95 |
-
""")
|
| 96 |
-
conn.commit()
|
| 97 |
-
print("Column 'pinecone_index_name' added successfully!")
|
| 98 |
-
else:
|
| 99 |
-
print("Column 'pinecone_index_name' already exists.")
|
| 100 |
-
|
| 101 |
-
# 2. Check if characteristic column already exists
|
| 102 |
-
cursor.execute("""
|
| 103 |
-
SELECT column_name
|
| 104 |
-
FROM information_schema.columns
|
| 105 |
-
WHERE table_name='chat_engine' AND column_name='characteristic';
|
| 106 |
-
""")
|
| 107 |
-
|
| 108 |
-
characteristic_exists = cursor.fetchone()
|
| 109 |
-
|
| 110 |
-
if not characteristic_exists:
|
| 111 |
-
print("Column 'characteristic' does not exist. Adding it...")
|
| 112 |
-
# Add the characteristic column to the chat_engine table
|
| 113 |
-
cursor.execute("""
|
| 114 |
-
ALTER TABLE chat_engine
|
| 115 |
-
ADD COLUMN characteristic TEXT NULL;
|
| 116 |
-
""")
|
| 117 |
-
conn.commit()
|
| 118 |
-
print("Column 'characteristic' added successfully!")
|
| 119 |
-
else:
|
| 120 |
-
print("Column 'characteristic' already exists.")
|
| 121 |
-
|
| 122 |
-
# Close cursor and connection
|
| 123 |
-
cursor.close()
|
| 124 |
-
conn.close()
|
| 125 |
-
return True
|
| 126 |
-
except Exception as e:
|
| 127 |
-
print(f"Error accessing PostgreSQL: {e}")
|
| 128 |
-
print("Please make sure PostgreSQL is running and accessible.")
|
| 129 |
-
return False
|
| 130 |
-
|
| 131 |
-
# Base URL
|
| 132 |
-
base_url = "http://localhost:7860"
|
| 133 |
-
|
| 134 |
-
def test_create_engine():
|
| 135 |
-
"""Test creating a new chat engine"""
|
| 136 |
-
url = f"{base_url}/rag/chat-engine"
|
| 137 |
-
data = {
|
| 138 |
-
"name": "Test Engine",
|
| 139 |
-
"answer_model": "models/gemini-2.0-flash",
|
| 140 |
-
"system_prompt": "You are an AI assistant that helps users find information about Da Nang.",
|
| 141 |
-
"empty_response": "I don't have information about this question.",
|
| 142 |
-
"use_public_information": True,
|
| 143 |
-
"similarity_top_k": 5,
|
| 144 |
-
"vector_distance_threshold": 0.7,
|
| 145 |
-
"grounding_threshold": 0.2,
|
| 146 |
-
"pinecone_index_name": "testbot768",
|
| 147 |
-
"characteristic": "You are friendly, helpful, and concise. You use a warm and conversational tone, and occasionally add emojis to seem more personable. You always try to be specific in your answers and provide examples when relevant.",
|
| 148 |
-
"status": "active"
|
| 149 |
-
}
|
| 150 |
-
|
| 151 |
-
response = requests.post(url, json=data)
|
| 152 |
-
print(f"Create Engine Response Status: {response.status_code}")
|
| 153 |
-
if response.status_code == 201 or response.status_code == 200:
|
| 154 |
-
print(f"Successfully created engine: {response.json()}")
|
| 155 |
-
return response.json().get("id")
|
| 156 |
-
else:
|
| 157 |
-
print(f"Failed to create engine: {response.text}")
|
| 158 |
-
return None
|
| 159 |
-
|
| 160 |
-
def test_get_engine(engine_id):
|
| 161 |
-
"""Test getting a specific chat engine"""
|
| 162 |
-
url = f"{base_url}/rag/chat-engine/{engine_id}"
|
| 163 |
-
response = requests.get(url)
|
| 164 |
-
print(f"Get Engine Response Status: {response.status_code}")
|
| 165 |
-
if response.status_code == 200:
|
| 166 |
-
print(f"Engine details: {response.json()}")
|
| 167 |
-
else:
|
| 168 |
-
print(f"Failed to get engine: {response.text}")
|
| 169 |
-
|
| 170 |
-
def test_list_engines():
|
| 171 |
-
"""Test listing all chat engines"""
|
| 172 |
-
url = f"{base_url}/rag/chat-engines"
|
| 173 |
-
response = requests.get(url)
|
| 174 |
-
print(f"List Engines Response Status: {response.status_code}")
|
| 175 |
-
if response.status_code == 200:
|
| 176 |
-
engines = response.json()
|
| 177 |
-
print(f"Found {len(engines)} engines")
|
| 178 |
-
for engine in engines:
|
| 179 |
-
print(f" - ID: {engine.get('id')}, Name: {engine.get('name')}")
|
| 180 |
-
else:
|
| 181 |
-
print(f"Failed to list engines: {response.text}")
|
| 182 |
-
|
| 183 |
-
def test_update_engine(engine_id):
|
| 184 |
-
"""Test updating a chat engine"""
|
| 185 |
-
url = f"{base_url}/rag/chat-engine/{engine_id}"
|
| 186 |
-
data = {
|
| 187 |
-
"name": "Updated Test Engine",
|
| 188 |
-
"system_prompt": "You are an updated AI assistant for Da Nang information.",
|
| 189 |
-
"characteristic": "You speak in a very professional and formal tone. You are direct and to the point, avoiding unnecessary chatter. You prefer to use precise language and avoid colloquialisms."
|
| 190 |
-
}
|
| 191 |
-
|
| 192 |
-
response = requests.put(url, json=data)
|
| 193 |
-
print(f"Update Engine Response Status: {response.status_code}")
|
| 194 |
-
if response.status_code == 200:
|
| 195 |
-
print(f"Successfully updated engine: {response.json()}")
|
| 196 |
-
else:
|
| 197 |
-
print(f"Failed to update engine: {response.text}")
|
| 198 |
-
|
| 199 |
-
def test_chat_with_engine(engine_id):
|
| 200 |
-
"""Test chatting with a specific engine"""
|
| 201 |
-
url = f"{base_url}/rag/chat/{engine_id}"
|
| 202 |
-
data = {
|
| 203 |
-
"user_id": "test_user_123",
|
| 204 |
-
"question": "What are some popular attractions in Da Nang?",
|
| 205 |
-
"include_history": True,
|
| 206 |
-
"limit_k": 10,
|
| 207 |
-
"similarity_metric": "cosine",
|
| 208 |
-
"session_id": "test_session_123",
|
| 209 |
-
"first_name": "Test",
|
| 210 |
-
"last_name": "User",
|
| 211 |
-
"username": "testuser"
|
| 212 |
-
}
|
| 213 |
-
|
| 214 |
-
response = requests.post(url, json=data)
|
| 215 |
-
print(f"Chat With Engine Response Status: {response.status_code}")
|
| 216 |
-
if response.status_code == 200:
|
| 217 |
-
print(f"Chat response: {response.json()}")
|
| 218 |
-
else:
|
| 219 |
-
print(f"Failed to chat with engine: {response.text}")
|
| 220 |
-
|
| 221 |
-
def test_delete_engine(engine_id):
|
| 222 |
-
"""Test deleting a chat engine"""
|
| 223 |
-
url = f"{base_url}/rag/chat-engine/{engine_id}"
|
| 224 |
-
response = requests.delete(url)
|
| 225 |
-
print(f"Delete Engine Response Status: {response.status_code}")
|
| 226 |
-
if response.status_code == 204:
|
| 227 |
-
print(f"Successfully deleted engine with ID: {engine_id}")
|
| 228 |
-
else:
|
| 229 |
-
print(f"Failed to delete engine: {response.text}")
|
| 230 |
-
|
| 231 |
-
# Execute tests
|
| 232 |
-
if __name__ == "__main__":
|
| 233 |
-
print("First, let's add the missing columns to the database")
|
| 234 |
-
if add_required_columns():
|
| 235 |
-
print("\nStarting RAG Chat Engine API Tests")
|
| 236 |
-
print("---------------------------------")
|
| 237 |
-
|
| 238 |
-
# 1. Create a new engine
|
| 239 |
-
print("\n1. Testing Create Engine API")
|
| 240 |
-
engine_id = test_create_engine()
|
| 241 |
-
|
| 242 |
-
if engine_id:
|
| 243 |
-
# 2. Get engine details
|
| 244 |
-
print("\n2. Testing Get Engine API")
|
| 245 |
-
test_get_engine(engine_id)
|
| 246 |
-
|
| 247 |
-
# 3. List all engines
|
| 248 |
-
print("\n3. Testing List Engines API")
|
| 249 |
-
test_list_engines()
|
| 250 |
-
|
| 251 |
-
# 4. Update the engine
|
| 252 |
-
print("\n4. Testing Update Engine API")
|
| 253 |
-
test_update_engine(engine_id)
|
| 254 |
-
|
| 255 |
-
# 5. Chat with the engine
|
| 256 |
-
print("\n5. Testing Chat With Engine API")
|
| 257 |
-
test_chat_with_engine(engine_id)
|
| 258 |
-
|
| 259 |
-
# 6. Delete the engine
|
| 260 |
-
print("\n6. Testing Delete Engine API")
|
| 261 |
-
test_delete_engine(engine_id)
|
| 262 |
-
|
| 263 |
-
print("\nAPI Tests Completed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
update_body.json
DELETED
|
Binary file (422 Bytes)
|
|
|