Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	File size: 33,510 Bytes
			
			| e69a9f5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 | from tkinter import filedialog, Tk
from easygui import msgbox
import os
import gradio as gr
import easygui
import shutil
folder_symbol = '\U0001f4c2'  # 📂
refresh_symbol = '\U0001f504'  # 🔄
save_style_symbol = '\U0001f4be'  # 💾
document_symbol = '\U0001F4C4'   # 📄
# define a list of substrings to search for v2 base models
V2_BASE_MODELS = [
    'stabilityai/stable-diffusion-2-1-base',
    'stabilityai/stable-diffusion-2-base',
]
# define a list of substrings to search for v_parameterization models
V_PARAMETERIZATION_MODELS = [
    'stabilityai/stable-diffusion-2-1',
    'stabilityai/stable-diffusion-2',
]
# define a list of substrings to v1.x models
V1_MODELS = [
    'CompVis/stable-diffusion-v1-4',
    'runwayml/stable-diffusion-v1-5',
]
# define a list of substrings to search for
ALL_PRESET_MODELS = V2_BASE_MODELS + V_PARAMETERIZATION_MODELS + V1_MODELS
FILE_ENV_EXCLUSION = ['COLAB_GPU', 'RUNPOD_POD_ID']
def check_if_model_exist(output_name, output_dir, save_model_as):
    if save_model_as in ['diffusers', 'diffusers_safetendors']:
        ckpt_folder = os.path.join(output_dir, output_name)
        if os.path.isdir(ckpt_folder):
            msg = f'A diffuser model with the same name {ckpt_folder} already exists. Do you want to overwrite it?'
            if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
                print(
                    'Aborting training due to existing model with same name...'
                )
                return True
    elif save_model_as in ['ckpt', 'safetensors']:
        ckpt_file = os.path.join(output_dir, output_name + '.' + save_model_as)
        if os.path.isfile(ckpt_file):
            msg = f'A model with the same file name {ckpt_file} already exists. Do you want to overwrite it?'
            if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
                print(
                    'Aborting training due to existing model with same name...'
                )
                return True
    else:
        print(
            'Can\'t verify if existing model exist when save model is set a "same as source model", continuing to train model...'
        )
        return False
    return False
def update_my_data(my_data):
    # Update the optimizer based on the use_8bit_adam flag
    use_8bit_adam = my_data.get('use_8bit_adam', False)
    my_data.setdefault('optimizer', 'AdamW8bit' if use_8bit_adam else 'AdamW')
    # Update model_list to custom if empty or pretrained_model_name_or_path is not a preset model
    model_list = my_data.get('model_list', [])
    pretrained_model_name_or_path = my_data.get('pretrained_model_name_or_path', '')
    if not model_list or pretrained_model_name_or_path not in ALL_PRESET_MODELS:
        my_data['model_list'] = 'custom'
    # Convert epoch and save_every_n_epochs values to int if they are strings
    for key in ['epoch', 'save_every_n_epochs']:
        value = my_data.get(key, -1)
        if isinstance(value, str) and value.isdigit():
            my_data[key] = int(value)
        elif not value:
            my_data[key] = -1
    # Update LoRA_type if it is set to LoCon
    if my_data.get('LoRA_type', 'Standard') == 'LoCon':
        my_data['LoRA_type'] = 'LyCORIS/LoCon'
    # Update model save choices due to changes for LoRA and TI training
    if (
        (my_data.get('LoRA_type') or my_data.get('num_vectors_per_token'))
        and my_data.get('save_model_as') not in ['safetensors', 'ckpt']
    ):
        message = (
            'Updating save_model_as to safetensors because the current value in the config file is no longer applicable to {}'
        )
        if my_data.get('LoRA_type'):
            print(message.format('LoRA'))
        if my_data.get('num_vectors_per_token'):
            print(message.format('TI'))
        my_data['save_model_as'] = 'safetensors'
    return my_data
def get_dir_and_file(file_path):
    dir_path, file_name = os.path.split(file_path)
    return (dir_path, file_name)
# def has_ext_files(directory, extension):
#     # Iterate through all the files in the directory
#     for file in os.listdir(directory):
#         # If the file name ends with extension, return True
#         if file.endswith(extension):
#             return True
#     # If no extension files were found, return False
#     return False
def get_file_path(
    file_path='', default_extension='.json', extension_name='Config files'
):
    if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
        current_file_path = file_path
        # print(f'current file path: {current_file_path}')
        initial_dir, initial_file = get_dir_and_file(file_path)
        # Create a hidden Tkinter root window
        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()
        # Show the open file dialog and get the selected file path
        file_path = filedialog.askopenfilename(
            filetypes=(
                (extension_name, f'*{default_extension}'),
                ('All files', '*.*'),
            ),
            defaultextension=default_extension,
            initialfile=initial_file,
            initialdir=initial_dir,
        )
        # Destroy the hidden root window
        root.destroy()
        # If no file is selected, use the current file path
        if not file_path:
            file_path = current_file_path
        current_file_path = file_path
        # print(f'current file path: {current_file_path}')
    return file_path
def get_any_file_path(file_path=''):
    if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
        current_file_path = file_path
        # print(f'current file path: {current_file_path}')
        initial_dir, initial_file = get_dir_and_file(file_path)
        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()
        file_path = filedialog.askopenfilename(
            initialdir=initial_dir,
            initialfile=initial_file,
        )
        root.destroy()
        if file_path == '':
            file_path = current_file_path
    return file_path
def remove_doublequote(file_path):
    if file_path != None:
        file_path = file_path.replace('"', '')
    return file_path
# def set_legacy_8bitadam(optimizer, use_8bit_adam):
#     if optimizer == 'AdamW8bit':
#         # use_8bit_adam = True
#         return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
#             value=True, interactive=False, visible=True
#         )
#     else:
#         # use_8bit_adam = False
#         return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
#             value=False, interactive=False, visible=True
#         )
def get_folder_path(folder_path=''):
    if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
        current_folder_path = folder_path
        initial_dir, initial_file = get_dir_and_file(folder_path)
        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()
        folder_path = filedialog.askdirectory(initialdir=initial_dir)
        root.destroy()
        if folder_path == '':
            folder_path = current_folder_path
    return folder_path
def get_saveasfile_path(
    file_path='', defaultextension='.json', extension_name='Config files'
):
    if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
        current_file_path = file_path
        # print(f'current file path: {current_file_path}')
        initial_dir, initial_file = get_dir_and_file(file_path)
        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()
        save_file_path = filedialog.asksaveasfile(
            filetypes=(
                (f'{extension_name}', f'{defaultextension}'),
                ('All files', '*'),
            ),
            defaultextension=defaultextension,
            initialdir=initial_dir,
            initialfile=initial_file,
        )
        root.destroy()
        # print(save_file_path)
        if save_file_path == None:
            file_path = current_file_path
        else:
            print(save_file_path.name)
            file_path = save_file_path.name
        # print(file_path)
    return file_path
def get_saveasfilename_path(
    file_path='', extensions='*', extension_name='Config files'
):
    if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
        current_file_path = file_path
        # print(f'current file path: {current_file_path}')
        initial_dir, initial_file = get_dir_and_file(file_path)
        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()
        save_file_path = filedialog.asksaveasfilename(
            filetypes=((f'{extension_name}', f'{extensions}'), ('All files', '*')),
            defaultextension=extensions,
            initialdir=initial_dir,
            initialfile=initial_file,
        )
        root.destroy()
        if save_file_path == '':
            file_path = current_file_path
        else:
            # print(save_file_path)
            file_path = save_file_path
    return file_path
def add_pre_postfix(
    folder: str = '',
    prefix: str = '',
    postfix: str = '',
    caption_file_ext: str = '.caption',
) -> None:
    """
    Add prefix and/or postfix to the content of caption files within a folder.
    If no caption files are found, create one with the requested prefix and/or postfix.
    Args:
        folder (str): Path to the folder containing caption files.
        prefix (str, optional): Prefix to add to the content of the caption files.
        postfix (str, optional): Postfix to add to the content of the caption files.
        caption_file_ext (str, optional): Extension of the caption files.
    """
    if prefix == '' and postfix == '':
        return
    image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
    image_files = [
        f for f in os.listdir(folder) if f.lower().endswith(image_extensions)
    ]
    for image_file in image_files:
        caption_file_name = os.path.splitext(image_file)[0] + caption_file_ext
        caption_file_path = os.path.join(folder, caption_file_name)
        if not os.path.exists(caption_file_path):
            with open(caption_file_path, 'w') as f:
                separator = ' ' if prefix and postfix else ''
                f.write(f'{prefix}{separator}{postfix}')
        else:
            with open(caption_file_path, 'r+') as f:
                content = f.read()
                content = content.rstrip()
                f.seek(0, 0)
                prefix_separator = ' ' if prefix else ''
                postfix_separator = ' ' if postfix else ''
                f.write(
                    f'{prefix}{prefix_separator}{content}{postfix_separator}{postfix}'
                )
def has_ext_files(folder_path: str, file_extension: str) -> bool:
    """
    Check if there are any files with the specified extension in the given folder.
    Args:
        folder_path (str): Path to the folder containing files.
        file_extension (str): Extension of the files to look for.
    Returns:
        bool: True if files with the specified extension are found, False otherwise.
    """
    for file in os.listdir(folder_path):
        if file.endswith(file_extension):
            return True
    return False
def find_replace(
    folder_path: str = '',
    caption_file_ext: str = '.caption',
    search_text: str = '',
    replace_text: str = '',
) -> None:
    """
    Find and replace text in caption files within a folder.
    Args:
        folder_path (str, optional): Path to the folder containing caption files.
        caption_file_ext (str, optional): Extension of the caption files.
        search_text (str, optional): Text to search for in the caption files.
        replace_text (str, optional): Text to replace the search text with.
    """
    print('Running caption find/replace')
    if not has_ext_files(folder_path, caption_file_ext):
        msgbox(
            f'No files with extension {caption_file_ext} were found in {folder_path}...'
        )
        return
    if search_text == '':
        return
    caption_files = [
        f for f in os.listdir(folder_path) if f.endswith(caption_file_ext)
    ]
    for caption_file in caption_files:
        with open(
            os.path.join(folder_path, caption_file), 'r', errors='ignore'
        ) as f:
            content = f.read()
        content = content.replace(search_text, replace_text)
        with open(os.path.join(folder_path, caption_file), 'w') as f:
            f.write(content)
def color_aug_changed(color_aug):
    if color_aug:
        msgbox(
            'Disabling "Cache latent" because "Color augmentation" has been selected...'
        )
        return gr.Checkbox.update(value=False, interactive=False)
    else:
        return gr.Checkbox.update(value=True, interactive=True)
def save_inference_file(output_dir, v2, v_parameterization, output_name):
    # List all files in the directory
    files = os.listdir(output_dir)
    # Iterate over the list of files
    for file in files:
        # Check if the file starts with the value of output_name
        if file.startswith(output_name):
            # Check if it is a file or a directory
            if os.path.isfile(os.path.join(output_dir, file)):
                # Split the file name and extension
                file_name, ext = os.path.splitext(file)
                # Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
                if v2 and v_parameterization:
                    print(
                        f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml'
                    )
                    shutil.copy(
                        f'./v2_inference/v2-inference-v.yaml',
                        f'{output_dir}/{file_name}.yaml',
                    )
                elif v2:
                    print(
                        f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml'
                    )
                    shutil.copy(
                        f'./v2_inference/v2-inference.yaml',
                        f'{output_dir}/{file_name}.yaml',
                    )
def set_pretrained_model_name_or_path_input(
    model_list, pretrained_model_name_or_path, v2, v_parameterization
):
    # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
    if str(model_list) in V2_BASE_MODELS:
        print('SD v2 model detected. Setting --v2 parameter')
        v2 = True
        v_parameterization = False
        pretrained_model_name_or_path = str(model_list)
    # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
    if str(model_list) in V_PARAMETERIZATION_MODELS:
        print(
            'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
        )
        v2 = True
        v_parameterization = True
        pretrained_model_name_or_path = str(model_list)
    if str(model_list) in V1_MODELS:
        v2 = False
        v_parameterization = False
        pretrained_model_name_or_path = str(model_list)
    if model_list == 'custom':
        if (
            str(pretrained_model_name_or_path) in V1_MODELS
            or str(pretrained_model_name_or_path) in V2_BASE_MODELS
            or str(pretrained_model_name_or_path) in V_PARAMETERIZATION_MODELS
        ):
            pretrained_model_name_or_path = ''
            v2 = False
            v_parameterization = False
    return model_list, pretrained_model_name_or_path, v2, v_parameterization
def set_v2_checkbox(model_list, v2, v_parameterization):
    # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
    if str(model_list) in V2_BASE_MODELS:
        v2 = True
        v_parameterization = False
    # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
    if str(model_list) in V_PARAMETERIZATION_MODELS:
        v2 = True
        v_parameterization = True
    if str(model_list) in V1_MODELS:
        v2 = False
        v_parameterization = False
    return v2, v_parameterization
def set_model_list(
    model_list,
    pretrained_model_name_or_path,
    v2,
    v_parameterization,
):
    if not pretrained_model_name_or_path in ALL_PRESET_MODELS:
        model_list = 'custom'
    else:
        model_list = pretrained_model_name_or_path
    return model_list, v2, v_parameterization
###
### Gradio common GUI section
###
def gradio_config():
    with gr.Accordion('Configuration file', open=False):
        with gr.Row():
            button_open_config = gr.Button('Open 📂', elem_id='open_folder')
            button_save_config = gr.Button('Save 💾', elem_id='open_folder')
            button_save_as_config = gr.Button(
                'Save as... 💾', elem_id='open_folder'
            )
            config_file_name = gr.Textbox(
                label='',
                placeholder="type the configuration file path or use the 'Open' button above to select it...",
                interactive=True,
            )
            button_load_config = gr.Button('Load 💾', elem_id='open_folder')
            config_file_name.change(
                remove_doublequote,
                inputs=[config_file_name],
                outputs=[config_file_name],
            )
    return (
        button_open_config,
        button_save_config,
        button_save_as_config,
        config_file_name,
        button_load_config,
    )
def get_pretrained_model_name_or_path_file(
    model_list, pretrained_model_name_or_path
):
    pretrained_model_name_or_path = get_any_file_path(
        pretrained_model_name_or_path
    )
    set_model_list(model_list, pretrained_model_name_or_path)
def gradio_source_model(save_model_as_choices = [
                    'same as source model',
                    'ckpt',
                    'diffusers',
                    'diffusers_safetensors',
                    'safetensors',
                ]):
    with gr.Tab('Source model'):
        # Define the input elements
        with gr.Row():
            pretrained_model_name_or_path = gr.Textbox(
                label='Pretrained model name or path',
                placeholder='enter the path to custom model or name of pretrained model',
                value='runwayml/stable-diffusion-v1-5',
            )
            pretrained_model_name_or_path_file = gr.Button(
                document_symbol, elem_id='open_folder_small'
            )
            pretrained_model_name_or_path_file.click(
                get_any_file_path,
                inputs=pretrained_model_name_or_path,
                outputs=pretrained_model_name_or_path,
                show_progress=False,
            )
            pretrained_model_name_or_path_folder = gr.Button(
                folder_symbol, elem_id='open_folder_small'
            )
            pretrained_model_name_or_path_folder.click(
                get_folder_path,
                inputs=pretrained_model_name_or_path,
                outputs=pretrained_model_name_or_path,
                show_progress=False,
            )
            model_list = gr.Dropdown(
                label='Model Quick Pick',
                choices=[
                    'custom',
                    'stabilityai/stable-diffusion-2-1-base',
                    'stabilityai/stable-diffusion-2-base',
                    'stabilityai/stable-diffusion-2-1',
                    'stabilityai/stable-diffusion-2',
                    'runwayml/stable-diffusion-v1-5',
                    'CompVis/stable-diffusion-v1-4',
                ],
                value='runwayml/stable-diffusion-v1-5',
            )
            save_model_as = gr.Dropdown(
                label='Save trained model as',
                choices=save_model_as_choices,
                value='safetensors',
            )
        with gr.Row():
            v2 = gr.Checkbox(label='v2', value=False)
            v_parameterization = gr.Checkbox(
                label='v_parameterization', value=False
            )
            v2.change(
                set_v2_checkbox,
                inputs=[model_list, v2, v_parameterization],
                outputs=[v2, v_parameterization],
                show_progress=False,
            )
            v_parameterization.change(
                set_v2_checkbox,
                inputs=[model_list, v2, v_parameterization],
                outputs=[v2, v_parameterization],
                show_progress=False,
            )
        model_list.change(
            set_pretrained_model_name_or_path_input,
            inputs=[
                model_list,
                pretrained_model_name_or_path,
                v2,
                v_parameterization,
            ],
            outputs=[
                model_list,
                pretrained_model_name_or_path,
                v2,
                v_parameterization,
            ],
            show_progress=False,
        )
        # Update the model list and parameters when user click outside the button or field
        pretrained_model_name_or_path.change(
            set_model_list,
            inputs=[
                model_list,
                pretrained_model_name_or_path,
                v2,
                v_parameterization,
            ],
            outputs=[
                model_list,
                v2,
                v_parameterization,
            ],
            show_progress=False,
        )
    return (
        pretrained_model_name_or_path,
        v2,
        v_parameterization,
        save_model_as,
        model_list,
    )
def gradio_training(
    learning_rate_value='1e-6',
    lr_scheduler_value='constant',
    lr_warmup_value='0',
):
    with gr.Row():
        train_batch_size = gr.Slider(
            minimum=1,
            maximum=64,
            label='Train batch size',
            value=1,
            step=1,
        )
        epoch = gr.Number(label='Epoch', value=1, precision=0)
        save_every_n_epochs = gr.Number(
            label='Save every N epochs', value=1, precision=0
        )
        caption_extension = gr.Textbox(
            label='Caption Extension',
            placeholder='(Optional) Extension for caption files. default: .caption',
        )
    with gr.Row():
        mixed_precision = gr.Dropdown(
            label='Mixed precision',
            choices=[
                'no',
                'fp16',
                'bf16',
            ],
            value='fp16',
        )
        save_precision = gr.Dropdown(
            label='Save precision',
            choices=[
                'float',
                'fp16',
                'bf16',
            ],
            value='fp16',
        )
        num_cpu_threads_per_process = gr.Slider(
            minimum=1,
            maximum=os.cpu_count(),
            step=1,
            label='Number of CPU threads per core',
            value=2,
        )
        seed = gr.Textbox(label='Seed', placeholder='(Optional) eg:1234')
        cache_latents = gr.Checkbox(label='Cache latent', value=True)
    with gr.Row():
        learning_rate = gr.Textbox(
            label='Learning rate', value=learning_rate_value
        )
        lr_scheduler = gr.Dropdown(
            label='LR Scheduler',
            choices=[
                'adafactor',
                'constant',
                'constant_with_warmup',
                'cosine',
                'cosine_with_restarts',
                'linear',
                'polynomial',
            ],
            value=lr_scheduler_value,
        )
        lr_warmup = gr.Textbox(
            label='LR warmup (% of steps)', value=lr_warmup_value
        )
        optimizer = gr.Dropdown(
            label='Optimizer',
            choices=[
                'AdamW',
                'AdamW8bit',
                'Adafactor',
                'DAdaptation',
                'Lion',
                'SGDNesterov',
                'SGDNesterov8bit',
            ],
            value='AdamW8bit',
            interactive=True,
        )
    with gr.Row():
        optimizer_args = gr.Textbox(
            label='Optimizer extra arguments',
            placeholder='(Optional) eg: relative_step=True scale_parameter=True warmup_init=True',
        )
    return (
        learning_rate,
        lr_scheduler,
        lr_warmup,
        train_batch_size,
        epoch,
        save_every_n_epochs,
        mixed_precision,
        save_precision,
        num_cpu_threads_per_process,
        seed,
        caption_extension,
        cache_latents,
        optimizer,
        optimizer_args,
    )
def run_cmd_training(**kwargs):
    options = [
        f' --learning_rate="{kwargs.get("learning_rate", "")}"'
        if kwargs.get('learning_rate')
        else '',
        f' --lr_scheduler="{kwargs.get("lr_scheduler", "")}"'
        if kwargs.get('lr_scheduler')
        else '',
        f' --lr_warmup_steps="{kwargs.get("lr_warmup_steps", "")}"'
        if kwargs.get('lr_warmup_steps')
        else '',
        f' --train_batch_size="{kwargs.get("train_batch_size", "")}"'
        if kwargs.get('train_batch_size')
        else '',
        f' --max_train_steps="{kwargs.get("max_train_steps", "")}"'
        if kwargs.get('max_train_steps')
        else '',
        f' --save_every_n_epochs="{int(kwargs.get("save_every_n_epochs", 1))}"'
        if int(kwargs.get('save_every_n_epochs'))
        else '',
        f' --mixed_precision="{kwargs.get("mixed_precision", "")}"'
        if kwargs.get('mixed_precision')
        else '',
        f' --save_precision="{kwargs.get("save_precision", "")}"'
        if kwargs.get('save_precision')
        else '',
        f' --seed="{kwargs.get("seed", "")}"'
        if kwargs.get('seed') != ''
        else '',
        f' --caption_extension="{kwargs.get("caption_extension", "")}"'
        if kwargs.get('caption_extension')
        else '',
        ' --cache_latents' if kwargs.get('cache_latents') else '',
        # ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '',
        f' --optimizer_type="{kwargs.get("optimizer", "AdamW")}"',
        f' --optimizer_args {kwargs.get("optimizer_args", "")}'
        if not kwargs.get('optimizer_args') == ''
        else '',
    ]
    run_cmd = ''.join(options)
    return run_cmd
def gradio_advanced_training():
    with gr.Row():
        additional_parameters = gr.Textbox(
            label='Additional parameters',
            placeholder='(Optional) Use to provide additional parameters not handled by the GUI. Eg: --some_parameters "value"',
        )
    with gr.Row():
        keep_tokens = gr.Slider(
            label='Keep n tokens', value='0', minimum=0, maximum=32, step=1
        )
        clip_skip = gr.Slider(
            label='Clip skip', value='1', minimum=1, maximum=12, step=1
        )
        max_token_length = gr.Dropdown(
            label='Max Token Length',
            choices=[
                '75',
                '150',
                '225',
            ],
            value='75',
        )
        full_fp16 = gr.Checkbox(
            label='Full fp16 training (experimental)', value=False
        )
    with gr.Row():
        gradient_checkpointing = gr.Checkbox(
            label='Gradient checkpointing', value=False
        )
        shuffle_caption = gr.Checkbox(label='Shuffle caption', value=False)
        persistent_data_loader_workers = gr.Checkbox(
            label='Persistent data loader', value=False
        )
        mem_eff_attn = gr.Checkbox(
            label='Memory efficient attention', value=False
        )
    with gr.Row():
        # This use_8bit_adam element should be removed in a future release as it is no longer used
        # use_8bit_adam = gr.Checkbox(
        #     label='Use 8bit adam', value=False, visible=False
        # )
        xformers = gr.Checkbox(label='Use xformers', value=True)
        color_aug = gr.Checkbox(label='Color augmentation', value=False)
        flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
        min_snr_gamma = gr.Slider(label='Min SNR gamma', value = 0, minimum=0, maximum=20, step=1)
    with gr.Row():
        bucket_no_upscale = gr.Checkbox(
            label="Don't upscale bucket resolution", value=True
        )
        bucket_reso_steps = gr.Number(
            label='Bucket resolution steps', value=64
        )
        random_crop = gr.Checkbox(
            label='Random crop instead of center crop', value=False
        )
        noise_offset = gr.Textbox(
            label='Noise offset (0 - 1)', placeholder='(Oprional) eg: 0.1'
        )
    with gr.Row():
        caption_dropout_every_n_epochs = gr.Number(
            label='Dropout caption every n epochs', value=0
        )
        caption_dropout_rate = gr.Slider(
            label='Rate of caption dropout', value=0, minimum=0, maximum=1
        )
        vae_batch_size = gr.Slider(
            label='VAE batch size',
            minimum=0,
            maximum=32,
            value=0,
            step=1
        )
    with gr.Row():
        save_state = gr.Checkbox(label='Save training state', value=False)
        resume = gr.Textbox(
            label='Resume from saved training state',
            placeholder='path to "last-state" state folder to resume from',
        )
        resume_button = gr.Button('📂', elem_id='open_folder_small')
        resume_button.click(
            get_folder_path,
            outputs=resume,
            show_progress=False,
        )
        max_train_epochs = gr.Textbox(
            label='Max train epoch',
            placeholder='(Optional) Override number of epoch',
        )
        max_data_loader_n_workers = gr.Textbox(
            label='Max num workers for DataLoader',
            placeholder='(Optional) Override number of epoch. Default: 8',
            value="0",
        )
    return (
        # use_8bit_adam,
        xformers,
        full_fp16,
        gradient_checkpointing,
        shuffle_caption,
        color_aug,
        flip_aug,
        clip_skip,
        mem_eff_attn,
        save_state,
        resume,
        max_token_length,
        max_train_epochs,
        max_data_loader_n_workers,
        keep_tokens,
        persistent_data_loader_workers,
        bucket_no_upscale,
        random_crop,
        bucket_reso_steps,
        caption_dropout_every_n_epochs,
        caption_dropout_rate,
        noise_offset,
        additional_parameters,
        vae_batch_size,
        min_snr_gamma,
    )
def run_cmd_advanced_training(**kwargs):
    options = [
        f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"'
        if kwargs.get('max_train_epochs')
        else '',
        f' --max_data_loader_n_workers="{kwargs.get("max_data_loader_n_workers", "")}"'
        if kwargs.get('max_data_loader_n_workers')
        else '',
        f' --max_token_length={kwargs.get("max_token_length", "")}'
        if int(kwargs.get('max_token_length', 75)) > 75
        else '',
        f' --clip_skip={kwargs.get("clip_skip", "")}'
        if int(kwargs.get('clip_skip', 1)) > 1
        else '',
        f' --resume="{kwargs.get("resume", "")}"'
        if kwargs.get('resume')
        else '',
        f' --keep_tokens="{kwargs.get("keep_tokens", "")}"'
        if int(kwargs.get('keep_tokens', 0)) > 0
        else '',
        f' --caption_dropout_every_n_epochs="{int(kwargs.get("caption_dropout_every_n_epochs", 0))}"'
        if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0
        else '',
        f' --caption_dropout_every_n_epochs="{int(kwargs.get("caption_dropout_every_n_epochs", 0))}"'
        if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0
        else '',
        f' --vae_batch_size="{kwargs.get("vae_batch_size", 0)}"'
        if int(kwargs.get('vae_batch_size', 0)) > 0
        else '',
        f' --bucket_reso_steps={int(kwargs.get("bucket_reso_steps", 1))}'
        if int(kwargs.get('bucket_reso_steps', 64)) >= 1
        else '',
        f' --min_snr_gamma={int(kwargs.get("min_snr_gamma", 0))}'
        if int(kwargs.get('min_snr_gamma', 0)) >= 1
        else '',
        ' --save_state' if kwargs.get('save_state') else '',
        ' --mem_eff_attn' if kwargs.get('mem_eff_attn') else '',
        ' --color_aug' if kwargs.get('color_aug') else '',
        ' --flip_aug' if kwargs.get('flip_aug') else '',
        ' --shuffle_caption' if kwargs.get('shuffle_caption') else '',
        ' --gradient_checkpointing' if kwargs.get('gradient_checkpointing')
        else '',
        ' --full_fp16' if kwargs.get('full_fp16') else '',
        ' --xformers' if kwargs.get('xformers') else '',
        # ' --use_8bit_adam' if kwargs.get('use_8bit_adam') else '',
        ' --persistent_data_loader_workers'
        if kwargs.get('persistent_data_loader_workers')
        else '',
        ' --bucket_no_upscale' if kwargs.get('bucket_no_upscale') else '',
        ' --random_crop' if kwargs.get('random_crop') else '',
        f' --noise_offset={float(kwargs.get("noise_offset", 0))}'
        if not kwargs.get('noise_offset', '') == ''
        else '',
        f' {kwargs.get("additional_parameters", "")}',
    ]
    run_cmd = ''.join(options)
    return run_cmd
 |