Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	| import gradio as gr | |
| import json | |
| import math | |
| import os | |
| import subprocess | |
| import pathlib | |
| import argparse | |
| from library.common_gui import ( | |
| get_folder_path, | |
| get_file_path, | |
| get_saveasfile_path, | |
| save_inference_file, | |
| gradio_advanced_training, | |
| run_cmd_advanced_training, | |
| gradio_training, | |
| run_cmd_advanced_training, | |
| gradio_config, | |
| gradio_source_model, | |
| color_aug_changed, | |
| run_cmd_training, | |
| # set_legacy_8bitadam, | |
| update_my_data, | |
| check_if_model_exist, | |
| ) | |
| from library.tensorboard_gui import ( | |
| gradio_tensorboard, | |
| start_tensorboard, | |
| stop_tensorboard, | |
| ) | |
| from library.utilities import utilities_tab | |
| from library.sampler_gui import sample_gradio_config, run_cmd_sample | |
| folder_symbol = '\U0001f4c2' # 📂 | |
| refresh_symbol = '\U0001f504' # 🔄 | |
| save_style_symbol = '\U0001f4be' # 💾 | |
| document_symbol = '\U0001F4C4' # 📄 | |
| PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe' | |
| def save_configuration( | |
| save_as, | |
| file_path, | |
| pretrained_model_name_or_path, | |
| v2, | |
| v_parameterization, | |
| train_dir, | |
| image_folder, | |
| output_dir, | |
| logging_dir, | |
| max_resolution, | |
| min_bucket_reso, | |
| max_bucket_reso, | |
| batch_size, | |
| flip_aug, | |
| caption_metadata_filename, | |
| latent_metadata_filename, | |
| full_path, | |
| learning_rate, | |
| lr_scheduler, | |
| lr_warmup, | |
| dataset_repeats, | |
| train_batch_size, | |
| epoch, | |
| save_every_n_epochs, | |
| mixed_precision, | |
| save_precision, | |
| seed, | |
| num_cpu_threads_per_process, | |
| train_text_encoder, | |
| create_caption, | |
| create_buckets, | |
| save_model_as, | |
| caption_extension, | |
| # use_8bit_adam, | |
| xformers, | |
| clip_skip, | |
| save_state, | |
| resume, | |
| gradient_checkpointing, | |
| gradient_accumulation_steps, | |
| mem_eff_attn, | |
| shuffle_caption, | |
| output_name, | |
| max_token_length, | |
| max_train_epochs, | |
| max_data_loader_n_workers, | |
| full_fp16, | |
| color_aug, | |
| model_list, | |
| cache_latents, | |
| use_latent_files, | |
| keep_tokens, | |
| persistent_data_loader_workers, | |
| bucket_no_upscale, | |
| random_crop, | |
| bucket_reso_steps, | |
| caption_dropout_every_n_epochs, | |
| caption_dropout_rate, | |
| optimizer, | |
| optimizer_args, | |
| noise_offset, | |
| sample_every_n_steps, | |
| sample_every_n_epochs, | |
| sample_sampler, | |
| sample_prompts, | |
| additional_parameters, | |
| vae_batch_size, | |
| min_snr_gamma, | |
| ): | |
| # Get list of function parameters and values | |
| parameters = list(locals().items()) | |
| original_file_path = file_path | |
| save_as_bool = True if save_as.get('label') == 'True' else False | |
| if save_as_bool: | |
| print('Save as...') | |
| file_path = get_saveasfile_path(file_path) | |
| else: | |
| print('Save...') | |
| if file_path == None or file_path == '': | |
| file_path = get_saveasfile_path(file_path) | |
| # print(file_path) | |
| if file_path == None or file_path == '': | |
| return original_file_path # In case a file_path was provided and the user decide to cancel the open action | |
| # Return the values of the variables as a dictionary | |
| variables = { | |
| name: value | |
| for name, value in parameters # locals().items() | |
| if name | |
| not in [ | |
| 'file_path', | |
| 'save_as', | |
| ] | |
| } | |
| # Extract the destination directory from the file path | |
| destination_directory = os.path.dirname(file_path) | |
| # Create the destination directory if it doesn't exist | |
| if not os.path.exists(destination_directory): | |
| os.makedirs(destination_directory) | |
| # Save the data to the selected file | |
| with open(file_path, 'w') as file: | |
| json.dump(variables, file, indent=2) | |
| return file_path | |
| def open_configuration( | |
| ask_for_file, | |
| file_path, | |
| pretrained_model_name_or_path, | |
| v2, | |
| v_parameterization, | |
| train_dir, | |
| image_folder, | |
| output_dir, | |
| logging_dir, | |
| max_resolution, | |
| min_bucket_reso, | |
| max_bucket_reso, | |
| batch_size, | |
| flip_aug, | |
| caption_metadata_filename, | |
| latent_metadata_filename, | |
| full_path, | |
| learning_rate, | |
| lr_scheduler, | |
| lr_warmup, | |
| dataset_repeats, | |
| train_batch_size, | |
| epoch, | |
| save_every_n_epochs, | |
| mixed_precision, | |
| save_precision, | |
| seed, | |
| num_cpu_threads_per_process, | |
| train_text_encoder, | |
| create_caption, | |
| create_buckets, | |
| save_model_as, | |
| caption_extension, | |
| # use_8bit_adam, | |
| xformers, | |
| clip_skip, | |
| save_state, | |
| resume, | |
| gradient_checkpointing, | |
| gradient_accumulation_steps, | |
| mem_eff_attn, | |
| shuffle_caption, | |
| output_name, | |
| max_token_length, | |
| max_train_epochs, | |
| max_data_loader_n_workers, | |
| full_fp16, | |
| color_aug, | |
| model_list, | |
| cache_latents, | |
| use_latent_files, | |
| keep_tokens, | |
| persistent_data_loader_workers, | |
| bucket_no_upscale, | |
| random_crop, | |
| bucket_reso_steps, | |
| caption_dropout_every_n_epochs, | |
| caption_dropout_rate, | |
| optimizer, | |
| optimizer_args, | |
| noise_offset, | |
| sample_every_n_steps, | |
| sample_every_n_epochs, | |
| sample_sampler, | |
| sample_prompts, | |
| additional_parameters, | |
| vae_batch_size, | |
| min_snr_gamma, | |
| ): | |
| # Get list of function parameters and values | |
| parameters = list(locals().items()) | |
| ask_for_file = True if ask_for_file.get('label') == 'True' else False | |
| original_file_path = file_path | |
| if ask_for_file: | |
| file_path = get_file_path(file_path) | |
| if not file_path == '' and not file_path == None: | |
| # load variables from JSON file | |
| with open(file_path, 'r') as f: | |
| my_data = json.load(f) | |
| print('Loading config...') | |
| # Update values to fix deprecated use_8bit_adam checkbox and set appropriate optimizer if it is set to True | |
| my_data = update_my_data(my_data) | |
| else: | |
| file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action | |
| my_data = {} | |
| values = [file_path] | |
| for key, value in parameters: | |
| # Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found | |
| if not key in ['ask_for_file', 'file_path']: | |
| values.append(my_data.get(key, value)) | |
| return tuple(values) | |
| def train_model( | |
| pretrained_model_name_or_path, | |
| v2, | |
| v_parameterization, | |
| train_dir, | |
| image_folder, | |
| output_dir, | |
| logging_dir, | |
| max_resolution, | |
| min_bucket_reso, | |
| max_bucket_reso, | |
| batch_size, | |
| flip_aug, | |
| caption_metadata_filename, | |
| latent_metadata_filename, | |
| full_path, | |
| learning_rate, | |
| lr_scheduler, | |
| lr_warmup, | |
| dataset_repeats, | |
| train_batch_size, | |
| epoch, | |
| save_every_n_epochs, | |
| mixed_precision, | |
| save_precision, | |
| seed, | |
| num_cpu_threads_per_process, | |
| train_text_encoder, | |
| generate_caption_database, | |
| generate_image_buckets, | |
| save_model_as, | |
| caption_extension, | |
| # use_8bit_adam, | |
| xformers, | |
| clip_skip, | |
| save_state, | |
| resume, | |
| gradient_checkpointing, | |
| gradient_accumulation_steps, | |
| mem_eff_attn, | |
| shuffle_caption, | |
| output_name, | |
| max_token_length, | |
| max_train_epochs, | |
| max_data_loader_n_workers, | |
| full_fp16, | |
| color_aug, | |
| model_list, # Keep this. Yes, it is unused here but required given the common list used | |
| cache_latents, | |
| use_latent_files, | |
| keep_tokens, | |
| persistent_data_loader_workers, | |
| bucket_no_upscale, | |
| random_crop, | |
| bucket_reso_steps, | |
| caption_dropout_every_n_epochs, | |
| caption_dropout_rate, | |
| optimizer, | |
| optimizer_args, | |
| noise_offset, | |
| sample_every_n_steps, | |
| sample_every_n_epochs, | |
| sample_sampler, | |
| sample_prompts, | |
| additional_parameters, | |
| vae_batch_size, | |
| min_snr_gamma, | |
| ): | |
| if check_if_model_exist(output_name, output_dir, save_model_as): | |
| return | |
| # create caption json file | |
| if generate_caption_database: | |
| if not os.path.exists(train_dir): | |
| os.mkdir(train_dir) | |
| run_cmd = f'{PYTHON} finetune/merge_captions_to_metadata.py' | |
| if caption_extension == '': | |
| run_cmd += f' --caption_extension=".caption"' | |
| else: | |
| run_cmd += f' --caption_extension={caption_extension}' | |
| run_cmd += f' "{image_folder}"' | |
| run_cmd += f' "{train_dir}/{caption_metadata_filename}"' | |
| if full_path: | |
| run_cmd += f' --full_path' | |
| print(run_cmd) | |
| # Run the command | |
| if os.name == 'posix': | |
| os.system(run_cmd) | |
| else: | |
| subprocess.run(run_cmd) | |
| # create images buckets | |
| if generate_image_buckets: | |
| run_cmd = f'{PYTHON} finetune/prepare_buckets_latents.py' | |
| run_cmd += f' "{image_folder}"' | |
| run_cmd += f' "{train_dir}/{caption_metadata_filename}"' | |
| run_cmd += f' "{train_dir}/{latent_metadata_filename}"' | |
| run_cmd += f' "{pretrained_model_name_or_path}"' | |
| run_cmd += f' --batch_size={batch_size}' | |
| run_cmd += f' --max_resolution={max_resolution}' | |
| run_cmd += f' --min_bucket_reso={min_bucket_reso}' | |
| run_cmd += f' --max_bucket_reso={max_bucket_reso}' | |
| run_cmd += f' --mixed_precision={mixed_precision}' | |
| # if flip_aug: | |
| # run_cmd += f' --flip_aug' | |
| if full_path: | |
| run_cmd += f' --full_path' | |
| print(run_cmd) | |
| # Run the command | |
| if os.name == 'posix': | |
| os.system(run_cmd) | |
| else: | |
| subprocess.run(run_cmd) | |
| image_num = len( | |
| [ | |
| f | |
| for f, lower_f in ( | |
| (file, file.lower()) for file in os.listdir(image_folder) | |
| ) | |
| if lower_f.endswith(('.jpg', '.jpeg', '.png', '.webp')) | |
| ] | |
| ) | |
| print(f'image_num = {image_num}') | |
| repeats = int(image_num) * int(dataset_repeats) | |
| print(f'repeats = {str(repeats)}') | |
| # calculate max_train_steps | |
| max_train_steps = int( | |
| math.ceil(float(repeats) / int(train_batch_size) * int(epoch)) | |
| ) | |
| # Divide by two because flip augmentation create two copied of the source images | |
| if flip_aug: | |
| max_train_steps = int(math.ceil(float(max_train_steps) / 2)) | |
| print(f'max_train_steps = {max_train_steps}') | |
| lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100)) | |
| print(f'lr_warmup_steps = {lr_warmup_steps}') | |
| run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "./fine_tune.py"' | |
| if v2: | |
| run_cmd += ' --v2' | |
| if v_parameterization: | |
| run_cmd += ' --v_parameterization' | |
| if train_text_encoder: | |
| run_cmd += ' --train_text_encoder' | |
| run_cmd += ( | |
| f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"' | |
| ) | |
| if use_latent_files == 'Yes': | |
| run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"' | |
| else: | |
| run_cmd += f' --in_json="{train_dir}/{caption_metadata_filename}"' | |
| run_cmd += f' --train_data_dir="{image_folder}"' | |
| run_cmd += f' --output_dir="{output_dir}"' | |
| if not logging_dir == '': | |
| run_cmd += f' --logging_dir="{logging_dir}"' | |
| run_cmd += f' --dataset_repeats={dataset_repeats}' | |
| run_cmd += f' --learning_rate={learning_rate}' | |
| run_cmd += ' --enable_bucket' | |
| run_cmd += f' --resolution={max_resolution}' | |
| run_cmd += f' --min_bucket_reso={min_bucket_reso}' | |
| run_cmd += f' --max_bucket_reso={max_bucket_reso}' | |
| if not save_model_as == 'same as source model': | |
| run_cmd += f' --save_model_as={save_model_as}' | |
| if int(gradient_accumulation_steps) > 1: | |
| run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}' | |
| # if save_state: | |
| # run_cmd += ' --save_state' | |
| # if not resume == '': | |
| # run_cmd += f' --resume={resume}' | |
| if not output_name == '': | |
| run_cmd += f' --output_name="{output_name}"' | |
| if int(max_token_length) > 75: | |
| run_cmd += f' --max_token_length={max_token_length}' | |
| run_cmd += run_cmd_training( | |
| learning_rate=learning_rate, | |
| lr_scheduler=lr_scheduler, | |
| lr_warmup_steps=lr_warmup_steps, | |
| train_batch_size=train_batch_size, | |
| max_train_steps=max_train_steps, | |
| save_every_n_epochs=save_every_n_epochs, | |
| mixed_precision=mixed_precision, | |
| save_precision=save_precision, | |
| seed=seed, | |
| caption_extension=caption_extension, | |
| cache_latents=cache_latents, | |
| optimizer=optimizer, | |
| optimizer_args=optimizer_args, | |
| ) | |
| run_cmd += run_cmd_advanced_training( | |
| max_train_epochs=max_train_epochs, | |
| max_data_loader_n_workers=max_data_loader_n_workers, | |
| max_token_length=max_token_length, | |
| resume=resume, | |
| save_state=save_state, | |
| mem_eff_attn=mem_eff_attn, | |
| clip_skip=clip_skip, | |
| flip_aug=flip_aug, | |
| color_aug=color_aug, | |
| shuffle_caption=shuffle_caption, | |
| gradient_checkpointing=gradient_checkpointing, | |
| full_fp16=full_fp16, | |
| xformers=xformers, | |
| # use_8bit_adam=use_8bit_adam, | |
| keep_tokens=keep_tokens, | |
| persistent_data_loader_workers=persistent_data_loader_workers, | |
| bucket_no_upscale=bucket_no_upscale, | |
| random_crop=random_crop, | |
| bucket_reso_steps=bucket_reso_steps, | |
| caption_dropout_every_n_epochs=caption_dropout_every_n_epochs, | |
| caption_dropout_rate=caption_dropout_rate, | |
| noise_offset=noise_offset, | |
| additional_parameters=additional_parameters, | |
| vae_batch_size=vae_batch_size, | |
| min_snr_gamma=min_snr_gamma, | |
| ) | |
| run_cmd += run_cmd_sample( | |
| sample_every_n_steps, | |
| sample_every_n_epochs, | |
| sample_sampler, | |
| sample_prompts, | |
| output_dir, | |
| ) | |
| print(run_cmd) | |
| # Run the command | |
| if os.name == 'posix': | |
| os.system(run_cmd) | |
| else: | |
| subprocess.run(run_cmd) | |
| # check if output_dir/last is a folder... therefore it is a diffuser model | |
| last_dir = pathlib.Path(f'{output_dir}/{output_name}') | |
| if not last_dir.is_dir(): | |
| # Copy inference model for v2 if required | |
| save_inference_file(output_dir, v2, v_parameterization, output_name) | |
| def remove_doublequote(file_path): | |
| if file_path != None: | |
| file_path = file_path.replace('"', '') | |
| return file_path | |
| def finetune_tab(): | |
| dummy_db_true = gr.Label(value=True, visible=False) | |
| dummy_db_false = gr.Label(value=False, visible=False) | |
| gr.Markdown('Train a custom model using kohya finetune python code...') | |
| ( | |
| button_open_config, | |
| button_save_config, | |
| button_save_as_config, | |
| config_file_name, | |
| button_load_config, | |
| ) = gradio_config() | |
| ( | |
| pretrained_model_name_or_path, | |
| v2, | |
| v_parameterization, | |
| save_model_as, | |
| model_list, | |
| ) = gradio_source_model() | |
| with gr.Tab('Folders'): | |
| with gr.Row(): | |
| train_dir = gr.Textbox( | |
| label='Training config folder', | |
| placeholder='folder where the training configuration files will be saved', | |
| ) | |
| train_dir_folder = gr.Button( | |
| folder_symbol, elem_id='open_folder_small' | |
| ) | |
| train_dir_folder.click( | |
| get_folder_path, | |
| outputs=train_dir, | |
| show_progress=False, | |
| ) | |
| image_folder = gr.Textbox( | |
| label='Training Image folder', | |
| placeholder='folder where the training images are located', | |
| ) | |
| image_folder_input_folder = gr.Button( | |
| folder_symbol, elem_id='open_folder_small' | |
| ) | |
| image_folder_input_folder.click( | |
| get_folder_path, | |
| outputs=image_folder, | |
| show_progress=False, | |
| ) | |
| with gr.Row(): | |
| output_dir = gr.Textbox( | |
| label='Model output folder', | |
| placeholder='folder where the model will be saved', | |
| ) | |
| output_dir_input_folder = gr.Button( | |
| folder_symbol, elem_id='open_folder_small' | |
| ) | |
| output_dir_input_folder.click( | |
| get_folder_path, | |
| outputs=output_dir, | |
| show_progress=False, | |
| ) | |
| logging_dir = gr.Textbox( | |
| label='Logging folder', | |
| placeholder='Optional: enable logging and output TensorBoard log to this folder', | |
| ) | |
| logging_dir_input_folder = gr.Button( | |
| folder_symbol, elem_id='open_folder_small' | |
| ) | |
| logging_dir_input_folder.click( | |
| get_folder_path, | |
| outputs=logging_dir, | |
| show_progress=False, | |
| ) | |
| with gr.Row(): | |
| output_name = gr.Textbox( | |
| label='Model output name', | |
| placeholder='Name of the model to output', | |
| value='last', | |
| interactive=True, | |
| ) | |
| train_dir.change( | |
| remove_doublequote, | |
| inputs=[train_dir], | |
| outputs=[train_dir], | |
| ) | |
| image_folder.change( | |
| remove_doublequote, | |
| inputs=[image_folder], | |
| outputs=[image_folder], | |
| ) | |
| output_dir.change( | |
| remove_doublequote, | |
| inputs=[output_dir], | |
| outputs=[output_dir], | |
| ) | |
| with gr.Tab('Dataset preparation'): | |
| with gr.Row(): | |
| max_resolution = gr.Textbox( | |
| label='Resolution (width,height)', value='512,512' | |
| ) | |
| min_bucket_reso = gr.Textbox( | |
| label='Min bucket resolution', value='256' | |
| ) | |
| max_bucket_reso = gr.Textbox( | |
| label='Max bucket resolution', value='1024' | |
| ) | |
| batch_size = gr.Textbox(label='Batch size', value='1') | |
| with gr.Row(): | |
| create_caption = gr.Checkbox( | |
| label='Generate caption metadata', value=True | |
| ) | |
| create_buckets = gr.Checkbox( | |
| label='Generate image buckets metadata', value=True | |
| ) | |
| use_latent_files = gr.Dropdown( | |
| label='Use latent files', | |
| choices=[ | |
| 'No', | |
| 'Yes', | |
| ], | |
| value='Yes', | |
| ) | |
| with gr.Accordion('Advanced parameters', open=False): | |
| with gr.Row(): | |
| caption_metadata_filename = gr.Textbox( | |
| label='Caption metadata filename', value='meta_cap.json' | |
| ) | |
| latent_metadata_filename = gr.Textbox( | |
| label='Latent metadata filename', value='meta_lat.json' | |
| ) | |
| full_path = gr.Checkbox(label='Use full path', value=True) | |
| with gr.Tab('Training parameters'): | |
| ( | |
| learning_rate, | |
| lr_scheduler, | |
| lr_warmup, | |
| train_batch_size, | |
| epoch, | |
| save_every_n_epochs, | |
| mixed_precision, | |
| save_precision, | |
| num_cpu_threads_per_process, | |
| seed, | |
| caption_extension, | |
| cache_latents, | |
| optimizer, | |
| optimizer_args, | |
| ) = gradio_training(learning_rate_value='1e-5') | |
| with gr.Row(): | |
| dataset_repeats = gr.Textbox(label='Dataset repeats', value=40) | |
| train_text_encoder = gr.Checkbox( | |
| label='Train text encoder', value=True | |
| ) | |
| with gr.Accordion('Advanced parameters', open=False): | |
| with gr.Row(): | |
| gradient_accumulation_steps = gr.Number( | |
| label='Gradient accumulate steps', value='1' | |
| ) | |
| ( | |
| # use_8bit_adam, | |
| xformers, | |
| full_fp16, | |
| gradient_checkpointing, | |
| shuffle_caption, | |
| color_aug, | |
| flip_aug, | |
| clip_skip, | |
| mem_eff_attn, | |
| save_state, | |
| resume, | |
| max_token_length, | |
| max_train_epochs, | |
| max_data_loader_n_workers, | |
| keep_tokens, | |
| persistent_data_loader_workers, | |
| bucket_no_upscale, | |
| random_crop, | |
| bucket_reso_steps, | |
| caption_dropout_every_n_epochs, | |
| caption_dropout_rate, | |
| noise_offset, | |
| additional_parameters, | |
| vae_batch_size, | |
| min_snr_gamma, | |
| ) = gradio_advanced_training() | |
| color_aug.change( | |
| color_aug_changed, | |
| inputs=[color_aug], | |
| outputs=[cache_latents], # Not applicable to fine_tune.py | |
| ) | |
| ( | |
| sample_every_n_steps, | |
| sample_every_n_epochs, | |
| sample_sampler, | |
| sample_prompts, | |
| ) = sample_gradio_config() | |
| button_run = gr.Button('Train model', variant='primary') | |
| # Setup gradio tensorboard buttons | |
| button_start_tensorboard, button_stop_tensorboard = gradio_tensorboard() | |
| button_start_tensorboard.click( | |
| start_tensorboard, | |
| inputs=logging_dir, | |
| ) | |
| button_stop_tensorboard.click( | |
| stop_tensorboard, | |
| show_progress=False, | |
| ) | |
| settings_list = [ | |
| pretrained_model_name_or_path, | |
| v2, | |
| v_parameterization, | |
| train_dir, | |
| image_folder, | |
| output_dir, | |
| logging_dir, | |
| max_resolution, | |
| min_bucket_reso, | |
| max_bucket_reso, | |
| batch_size, | |
| flip_aug, | |
| caption_metadata_filename, | |
| latent_metadata_filename, | |
| full_path, | |
| learning_rate, | |
| lr_scheduler, | |
| lr_warmup, | |
| dataset_repeats, | |
| train_batch_size, | |
| epoch, | |
| save_every_n_epochs, | |
| mixed_precision, | |
| save_precision, | |
| seed, | |
| num_cpu_threads_per_process, | |
| train_text_encoder, | |
| create_caption, | |
| create_buckets, | |
| save_model_as, | |
| caption_extension, | |
| # use_8bit_adam, | |
| xformers, | |
| clip_skip, | |
| save_state, | |
| resume, | |
| gradient_checkpointing, | |
| gradient_accumulation_steps, | |
| mem_eff_attn, | |
| shuffle_caption, | |
| output_name, | |
| max_token_length, | |
| max_train_epochs, | |
| max_data_loader_n_workers, | |
| full_fp16, | |
| color_aug, | |
| model_list, | |
| cache_latents, | |
| use_latent_files, | |
| keep_tokens, | |
| persistent_data_loader_workers, | |
| bucket_no_upscale, | |
| random_crop, | |
| bucket_reso_steps, | |
| caption_dropout_every_n_epochs, | |
| caption_dropout_rate, | |
| optimizer, | |
| optimizer_args, | |
| noise_offset, | |
| sample_every_n_steps, | |
| sample_every_n_epochs, | |
| sample_sampler, | |
| sample_prompts, | |
| additional_parameters, | |
| vae_batch_size, | |
| min_snr_gamma, | |
| ] | |
| button_run.click(train_model, inputs=settings_list) | |
| button_open_config.click( | |
| open_configuration, | |
| inputs=[dummy_db_true, config_file_name] + settings_list, | |
| outputs=[config_file_name] + settings_list, | |
| show_progress=False, | |
| ) | |
| button_load_config.click( | |
| open_configuration, | |
| inputs=[dummy_db_false, config_file_name] + settings_list, | |
| outputs=[config_file_name] + settings_list, | |
| show_progress=False, | |
| ) | |
| button_save_config.click( | |
| save_configuration, | |
| inputs=[dummy_db_false, config_file_name] + settings_list, | |
| outputs=[config_file_name], | |
| show_progress=False, | |
| ) | |
| button_save_as_config.click( | |
| save_configuration, | |
| inputs=[dummy_db_true, config_file_name] + settings_list, | |
| outputs=[config_file_name], | |
| show_progress=False, | |
| ) | |
| def UI(**kwargs): | |
| css = '' | |
| if os.path.exists('./style.css'): | |
| with open(os.path.join('./style.css'), 'r', encoding='utf8') as file: | |
| print('Load CSS...') | |
| css += file.read() + '\n' | |
| interface = gr.Blocks(css=css) | |
| with interface: | |
| with gr.Tab('Finetune'): | |
| finetune_tab() | |
| with gr.Tab('Utilities'): | |
| utilities_tab(enable_dreambooth_tab=False) | |
| # Show the interface | |
| launch_kwargs = {} | |
| if not kwargs.get('username', None) == '': | |
| launch_kwargs['auth'] = ( | |
| kwargs.get('username', None), | |
| kwargs.get('password', None), | |
| ) | |
| if kwargs.get('server_port', 0) > 0: | |
| launch_kwargs['server_port'] = kwargs.get('server_port', 0) | |
| if kwargs.get('inbrowser', False): | |
| launch_kwargs['inbrowser'] = kwargs.get('inbrowser', False) | |
| print(launch_kwargs) | |
| interface.launch(**launch_kwargs) | |
| if __name__ == '__main__': | |
| # torch.cuda.set_per_process_memory_fraction(0.48) | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| '--username', type=str, default='', help='Username for authentication' | |
| ) | |
| parser.add_argument( | |
| '--password', type=str, default='', help='Password for authentication' | |
| ) | |
| parser.add_argument( | |
| '--server_port', | |
| type=int, | |
| default=0, | |
| help='Port to run the server listener on', | |
| ) | |
| parser.add_argument( | |
| '--inbrowser', action='store_true', help='Open in browser' | |
| ) | |
| args = parser.parse_args() | |
| UI( | |
| username=args.username, | |
| password=args.password, | |
| inbrowser=args.inbrowser, | |
| server_port=args.server_port, | |
| ) | |