Spaces:
Build error
Build error
| import gradio as gr | |
| from easygui import msgbox | |
| import subprocess | |
| import os | |
| from .common_gui import ( | |
| get_saveasfilename_path, | |
| get_any_file_path, | |
| get_file_path, | |
| ) | |
| folder_symbol = '\U0001f4c2' # 📂 | |
| refresh_symbol = '\U0001f504' # 🔄 | |
| save_style_symbol = '\U0001f4be' # 💾 | |
| document_symbol = '\U0001F4C4' # 📄 | |
| PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe' | |
| def extract_lora( | |
| model_tuned, | |
| model_org, | |
| save_to, | |
| save_precision, | |
| dim, | |
| v2, | |
| conv_dim, | |
| device, | |
| ): | |
| # Check for caption_text_input | |
| if model_tuned == '': | |
| msgbox('Invalid finetuned model file') | |
| return | |
| if model_org == '': | |
| msgbox('Invalid base model file') | |
| return | |
| # Check if source model exist | |
| if not os.path.isfile(model_tuned): | |
| msgbox('The provided finetuned model is not a file') | |
| return | |
| if not os.path.isfile(model_org): | |
| msgbox('The provided base model is not a file') | |
| return | |
| run_cmd = ( | |
| f'{PYTHON} "{os.path.join("networks","extract_lora_from_models.py")}"' | |
| ) | |
| run_cmd += f' --save_precision {save_precision}' | |
| run_cmd += f' --save_to "{save_to}"' | |
| run_cmd += f' --model_org "{model_org}"' | |
| run_cmd += f' --model_tuned "{model_tuned}"' | |
| run_cmd += f' --dim {dim}' | |
| run_cmd += f' --device {device}' | |
| if conv_dim > 0: | |
| run_cmd += f' --conv_dim {conv_dim}' | |
| if v2: | |
| run_cmd += f' --v2' | |
| print(run_cmd) | |
| # Run the command | |
| if os.name == 'posix': | |
| os.system(run_cmd) | |
| else: | |
| subprocess.run(run_cmd) | |
| ### | |
| # Gradio UI | |
| ### | |
| def gradio_extract_lora_tab(): | |
| with gr.Tab('Extract LoRA'): | |
| gr.Markdown( | |
| 'This utility can extract a LoRA network from a finetuned model.' | |
| ) | |
| lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False) | |
| lora_ext_name = gr.Textbox(value='LoRA model types', visible=False) | |
| model_ext = gr.Textbox(value='*.ckpt *.safetensors', visible=False) | |
| model_ext_name = gr.Textbox(value='Model types', visible=False) | |
| with gr.Row(): | |
| model_tuned = gr.Textbox( | |
| label='Finetuned model', | |
| placeholder='Path to the finetuned model to extract', | |
| interactive=True, | |
| ) | |
| button_model_tuned_file = gr.Button( | |
| folder_symbol, elem_id='open_folder_small' | |
| ) | |
| button_model_tuned_file.click( | |
| get_file_path, | |
| inputs=[model_tuned, model_ext, model_ext_name], | |
| outputs=model_tuned, | |
| show_progress=False, | |
| ) | |
| model_org = gr.Textbox( | |
| label='Stable Diffusion base model', | |
| placeholder='Stable Diffusion original model: ckpt or safetensors file', | |
| interactive=True, | |
| ) | |
| button_model_org_file = gr.Button( | |
| folder_symbol, elem_id='open_folder_small' | |
| ) | |
| button_model_org_file.click( | |
| get_file_path, | |
| inputs=[model_org, model_ext, model_ext_name], | |
| outputs=model_org, | |
| show_progress=False, | |
| ) | |
| with gr.Row(): | |
| save_to = gr.Textbox( | |
| label='Save to', | |
| placeholder='path where to save the extracted LoRA model...', | |
| interactive=True, | |
| ) | |
| button_save_to = gr.Button( | |
| folder_symbol, elem_id='open_folder_small' | |
| ) | |
| button_save_to.click( | |
| get_saveasfilename_path, | |
| inputs=[save_to, lora_ext, lora_ext_name], | |
| outputs=save_to, | |
| show_progress=False, | |
| ) | |
| save_precision = gr.Dropdown( | |
| label='Save precision', | |
| choices=['fp16', 'bf16', 'float'], | |
| value='float', | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| dim = gr.Slider( | |
| minimum=4, | |
| maximum=1024, | |
| label='Network Dimension (Rank)', | |
| value=128, | |
| step=1, | |
| interactive=True, | |
| ) | |
| conv_dim = gr.Slider( | |
| minimum=0, | |
| maximum=1024, | |
| label='Conv Dimension (Rank)', | |
| value=128, | |
| step=1, | |
| interactive=True, | |
| ) | |
| v2 = gr.Checkbox(label='v2', value=False, interactive=True) | |
| device = gr.Dropdown( | |
| label='Device', | |
| choices=[ | |
| 'cpu', | |
| 'cuda', | |
| ], | |
| value='cuda', | |
| interactive=True, | |
| ) | |
| extract_button = gr.Button('Extract LoRA model') | |
| extract_button.click( | |
| extract_lora, | |
| inputs=[ | |
| model_tuned, | |
| model_org, | |
| save_to, | |
| save_precision, | |
| dim, | |
| v2, | |
| conv_dim, | |
| device | |
| ], | |
| show_progress=False, | |
| ) | |