Spaces:
Build error
Build error
| # extract approximating LoRA by svd from two SD models | |
| # The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py | |
| # Thanks to cloneofsimo! | |
| import argparse | |
| import os | |
| import torch | |
| from safetensors.torch import load_file, save_file | |
| from tqdm import tqdm | |
| import library.model_util as model_util | |
| import lora | |
| import numpy as np | |
| CLAMP_QUANTILE = 1 # 0.99 | |
| MIN_DIFF = 1e-6 | |
| def save_to_file(file_name, model, state_dict, dtype): | |
| if dtype is not None: | |
| for key in list(state_dict.keys()): | |
| if type(state_dict[key]) == torch.Tensor: | |
| state_dict[key] = state_dict[key].to(dtype) | |
| if os.path.splitext(file_name)[1] == '.safetensors': | |
| save_file(model, file_name) | |
| else: | |
| torch.save(model, file_name) | |
| def svd(args): | |
| def str_to_dtype(p): | |
| if p == 'float': | |
| return torch.float | |
| if p == 'fp16': | |
| return torch.float16 | |
| if p == 'bf16': | |
| return torch.bfloat16 | |
| return None | |
| save_dtype = str_to_dtype(args.save_precision) | |
| print(f"loading SD model : {args.model_org}") | |
| text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_org) | |
| print(f"loading SD model : {args.model_tuned}") | |
| text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_tuned) | |
| # create LoRA network to extract weights: Use dim (rank) as alpha | |
| lora_network_o = lora.create_network(1.0, args.dim, args.dim * 1.5, None, text_encoder_o, unet_o) | |
| lora_network_t = lora.create_network(1.0, args.dim, args.dim * 1.5, None, text_encoder_t, unet_t) | |
| assert len(lora_network_o.text_encoder_loras) == len( | |
| lora_network_t.text_encoder_loras), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) " | |
| # get diffs | |
| diffs = {} | |
| text_encoder_different = False | |
| for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)): | |
| lora_name = lora_o.lora_name | |
| module_o = lora_o.org_module | |
| module_t = lora_t.org_module | |
| diff = module_t.weight - module_o.weight | |
| # Text Encoder might be same | |
| if torch.max(torch.abs(diff)) > MIN_DIFF: | |
| text_encoder_different = True | |
| diff = diff.float() | |
| diffs[lora_name] = diff | |
| if not text_encoder_different: | |
| print("Text encoder is same. Extract U-Net only.") | |
| lora_network_o.text_encoder_loras = [] | |
| diffs = {} | |
| for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)): | |
| lora_name = lora_o.lora_name | |
| module_o = lora_o.org_module | |
| module_t = lora_t.org_module | |
| diff = module_t.weight - module_o.weight | |
| diff = diff.float() | |
| if args.device: | |
| diff = diff.to(args.device) | |
| diffs[lora_name] = diff | |
| # make LoRA with SVD | |
| print("calculating by SVD") | |
| rank = args.dim | |
| lora_weights = {} | |
| with torch.no_grad(): | |
| for lora_name, mat in tqdm(list(diffs.items())): | |
| conv2d = (len(mat.size()) == 4) | |
| if conv2d: | |
| mat = mat.squeeze() | |
| U, S, Vt = torch.linalg.svd(mat) | |
| U = U[:, :rank] | |
| S = S[:rank] | |
| U = U @ torch.diag(S) | |
| Vt = Vt[:rank, :] | |
| lora_weights[lora_name] = (U, Vt) | |
| # # make LoRA with svd | |
| # print("calculating by svd") | |
| # rank = args.dim | |
| # lora_weights = {} | |
| # with torch.no_grad(): | |
| # for lora_name, mat in tqdm(list(diffs.items())): | |
| # conv2d = (len(mat.size()) == 4) | |
| # if conv2d: | |
| # mat = mat.squeeze() | |
| # U, S, Vh = torch.linalg.svd(mat) | |
| # U = U[:, :rank] | |
| # S = S[:rank] | |
| # U = U @ torch.diag(S) | |
| # Vh = Vh[:rank, :] | |
| # # create new tensors directly from the numpy arrays | |
| # U = torch.as_tensor(U) | |
| # Vh = torch.as_tensor(Vh) | |
| # # dist = torch.cat([U.flatten(), Vh.flatten()]) | |
| # # hi_val = torch.quantile(dist, CLAMP_QUANTILE) | |
| # # low_val = -hi_val | |
| # # U = U.clamp(low_val, hi_val) | |
| # # Vh = Vh.clamp(low_val, hi_val) | |
| # # # soft thresholding | |
| # # alpha = S[-1] / 1000.0 # adjust this parameter as needed | |
| # # U = torch.sign(U) * torch.nn.functional.relu(torch.abs(U) - alpha) | |
| # # Vh = torch.sign(Vh) * torch.nn.functional.relu(torch.abs(Vh) - alpha) | |
| # lora_weights[lora_name] = (U, Vh) | |
| # make state dict for LoRA | |
| lora_network_o.apply_to(text_encoder_o, unet_o, text_encoder_different, True) # to make state dict | |
| lora_sd = lora_network_o.state_dict() | |
| print(f"LoRA has {len(lora_sd)} weights.") | |
| for key in list(lora_sd.keys()): | |
| if "alpha" in key: | |
| continue | |
| lora_name = key.split('.')[0] | |
| i = 0 if "lora_up" in key else 1 | |
| weights = lora_weights[lora_name][i] | |
| # print(key, i, weights.size(), lora_sd[key].size()) | |
| if len(lora_sd[key].size()) == 4: | |
| weights = weights.unsqueeze(2).unsqueeze(3) | |
| assert weights.size() == lora_sd[key].size(), f"size unmatch: {key}" | |
| lora_sd[key] = weights | |
| # load state dict to LoRA and save it | |
| info = lora_network_o.load_state_dict(lora_sd) | |
| print(f"Loading extracted LoRA weights: {info}") | |
| dir_name = os.path.dirname(args.save_to) | |
| if dir_name and not os.path.exists(dir_name): | |
| os.makedirs(dir_name, exist_ok=True) | |
| # minimum metadata | |
| metadata = {"ss_network_dim": str(args.dim), "ss_network_alpha": str(args.dim * 1.5)} | |
| lora_network_o.save_weights(args.save_to, save_dtype, metadata) | |
| print(f"LoRA weights are saved to: {args.save_to}") | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--v2", action='store_true', | |
| help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む') | |
| parser.add_argument("--save_precision", type=str, default=None, | |
| choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat") | |
| parser.add_argument("--model_org", type=str, default=None, | |
| help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors") | |
| parser.add_argument("--model_tuned", type=str, default=None, | |
| help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors") | |
| parser.add_argument("--save_to", type=str, default=None, | |
| help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors") | |
| parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)") | |
| parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") | |
| args = parser.parse_args() | |
| svd(args) | |