Spaces:
Build error
Build error
| import os, sys | |
| sys.path.insert(0, os.getcwd()) | |
| import argparse | |
| def get_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "base_model", help="The model which use it to train the dreambooth model", | |
| default='', type=str | |
| ) | |
| parser.add_argument( | |
| "db_model", help="the dreambooth model you want to extract the locon", | |
| default='', type=str | |
| ) | |
| parser.add_argument( | |
| "output_name", help="the output model", | |
| default='./out.pt', type=str | |
| ) | |
| parser.add_argument( | |
| "--is_v2", help="Your base/db model is sd v2 or not", | |
| default=False, action="store_true" | |
| ) | |
| parser.add_argument( | |
| "--device", help="Which device you want to use to extract the locon", | |
| default='cpu', type=str | |
| ) | |
| parser.add_argument( | |
| "--mode", | |
| help=( | |
| 'extraction mode, can be "fixed", "threshold", "ratio", "quantile". ' | |
| 'If not "fixed", network_dim and conv_dim will be ignored' | |
| ), | |
| default='fixed', type=str | |
| ) | |
| parser.add_argument( | |
| "--safetensors", help='use safetensors to save locon model', | |
| default=False, action="store_true" | |
| ) | |
| parser.add_argument( | |
| "--linear_dim", help="network dim for linear layer in fixed mode", | |
| default=1, type=int | |
| ) | |
| parser.add_argument( | |
| "--conv_dim", help="network dim for conv layer in fixed mode", | |
| default=1, type=int | |
| ) | |
| parser.add_argument( | |
| "--linear_threshold", help="singular value threshold for linear layer in threshold mode", | |
| default=0., type=float | |
| ) | |
| parser.add_argument( | |
| "--conv_threshold", help="singular value threshold for conv layer in threshold mode", | |
| default=0., type=float | |
| ) | |
| parser.add_argument( | |
| "--linear_ratio", help="singular ratio for linear layer in ratio mode", | |
| default=0., type=float | |
| ) | |
| parser.add_argument( | |
| "--conv_ratio", help="singular ratio for conv layer in ratio mode", | |
| default=0., type=float | |
| ) | |
| parser.add_argument( | |
| "--linear_quantile", help="singular value quantile for linear layer quantile mode", | |
| default=1., type=float | |
| ) | |
| parser.add_argument( | |
| "--conv_quantile", help="singular value quantile for conv layer quantile mode", | |
| default=1., type=float | |
| ) | |
| parser.add_argument( | |
| "--use_sparse_bias", help="enable sparse bias", | |
| default=False, action="store_true" | |
| ) | |
| parser.add_argument( | |
| "--sparsity", help="sparsity for sparse bias", | |
| default=0.98, type=float | |
| ) | |
| parser.add_argument( | |
| "--disable_cp", help="don't use cp decomposition", | |
| default=False, action="store_true" | |
| ) | |
| return parser.parse_args() | |
| ARGS = get_args() | |
| from lycoris.utils import extract_diff | |
| from lycoris.kohya_model_utils import load_models_from_stable_diffusion_checkpoint | |
| import torch | |
| from safetensors.torch import save_file | |
| def main(): | |
| args = ARGS | |
| base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model) | |
| db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model) | |
| linear_mode_param = { | |
| 'fixed': args.linear_dim, | |
| 'threshold': args.linear_threshold, | |
| 'ratio': args.linear_ratio, | |
| 'quantile': args.linear_quantile, | |
| }[args.mode] | |
| conv_mode_param = { | |
| 'fixed': args.conv_dim, | |
| 'threshold': args.conv_threshold, | |
| 'ratio': args.conv_ratio, | |
| 'quantile': args.conv_quantile, | |
| }[args.mode] | |
| state_dict = extract_diff( | |
| base, db, | |
| args.mode, | |
| linear_mode_param, conv_mode_param, | |
| args.device, | |
| args.use_sparse_bias, args.sparsity, | |
| not args.disable_cp | |
| ) | |
| if args.safetensors: | |
| save_file(state_dict, args.output_name) | |
| else: | |
| torch.save(state_dict, args.output_name) | |
| if __name__ == '__main__': | |
| main() |