Spaces:
Build error
Build error
| # DreamBooth training | |
| # XXX dropped option: fine_tune | |
| import gc | |
| import time | |
| import argparse | |
| import itertools | |
| import math | |
| import os | |
| import toml | |
| from multiprocessing import Value | |
| from tqdm import tqdm | |
| import torch | |
| from accelerate.utils import set_seed | |
| import diffusers | |
| from diffusers import DDPMScheduler | |
| import library.train_util as train_util | |
| import library.config_util as config_util | |
| from library.config_util import ( | |
| ConfigSanitizer, | |
| BlueprintGenerator, | |
| ) | |
| import library.custom_train_functions as custom_train_functions | |
| from library.custom_train_functions import apply_snr_weight | |
| def train(args): | |
| train_util.verify_training_args(args) | |
| train_util.prepare_dataset_args(args, False) | |
| cache_latents = args.cache_latents | |
| if args.seed is not None: | |
| set_seed(args.seed) # 乱数系列を初期化する | |
| tokenizer = train_util.load_tokenizer(args) | |
| blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, False, True)) | |
| if args.dataset_config is not None: | |
| print(f"Load dataset config from {args.dataset_config}") | |
| user_config = config_util.load_user_config(args.dataset_config) | |
| ignored = ["train_data_dir", "reg_data_dir"] | |
| if any(getattr(args, attr) is not None for attr in ignored): | |
| print( | |
| "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( | |
| ", ".join(ignored) | |
| ) | |
| ) | |
| else: | |
| user_config = { | |
| "datasets": [ | |
| {"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)} | |
| ] | |
| } | |
| blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) | |
| train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) | |
| current_epoch = Value("i", 0) | |
| current_step = Value("i", 0) | |
| ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None | |
| collater = train_util.collater_class(current_epoch, current_step, ds_for_collater) | |
| if args.no_token_padding: | |
| train_dataset_group.disable_token_padding() | |
| if args.debug_dataset: | |
| train_util.debug_dataset(train_dataset_group) | |
| return | |
| if cache_latents: | |
| assert ( | |
| train_dataset_group.is_latent_cacheable() | |
| ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" | |
| # acceleratorを準備する | |
| print("prepare accelerator") | |
| if args.gradient_accumulation_steps > 1: | |
| print( | |
| f"gradient_accumulation_steps is {args.gradient_accumulation_steps}. accelerate does not support gradient_accumulation_steps when training multiple models (U-Net and Text Encoder), so something might be wrong" | |
| ) | |
| print( | |
| f"gradient_accumulation_stepsが{args.gradient_accumulation_steps}に設定されています。accelerateは複数モデル(U-NetおよびText Encoder)の学習時にgradient_accumulation_stepsをサポートしていないため結果は未知数です" | |
| ) | |
| accelerator, unwrap_model = train_util.prepare_accelerator(args) | |
| # mixed precisionに対応した型を用意しておき適宜castする | |
| weight_dtype, save_dtype = train_util.prepare_dtype(args) | |
| # モデルを読み込む | |
| text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype) | |
| # verify load/save model formats | |
| if load_stable_diffusion_format: | |
| src_stable_diffusion_ckpt = args.pretrained_model_name_or_path | |
| src_diffusers_model_path = None | |
| else: | |
| src_stable_diffusion_ckpt = None | |
| src_diffusers_model_path = args.pretrained_model_name_or_path | |
| if args.save_model_as is None: | |
| save_stable_diffusion_format = load_stable_diffusion_format | |
| use_safetensors = args.use_safetensors | |
| else: | |
| save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors" | |
| use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower()) | |
| # モデルに xformers とか memory efficient attention を組み込む | |
| train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers) | |
| # 学習を準備する | |
| if cache_latents: | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| vae.requires_grad_(False) | |
| vae.eval() | |
| with torch.no_grad(): | |
| train_dataset_group.cache_latents(vae, args.vae_batch_size) | |
| vae.to("cpu") | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| # 学習を準備する:モデルを適切な状態にする | |
| train_text_encoder = args.stop_text_encoder_training is None or args.stop_text_encoder_training >= 0 | |
| unet.requires_grad_(True) # 念のため追加 | |
| text_encoder.requires_grad_(train_text_encoder) | |
| if not train_text_encoder: | |
| print("Text Encoder is not trained.") | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| text_encoder.gradient_checkpointing_enable() | |
| if not cache_latents: | |
| vae.requires_grad_(False) | |
| vae.eval() | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| # 学習に必要なクラスを準備する | |
| print("prepare optimizer, data loader etc.") | |
| if train_text_encoder: | |
| trainable_params = itertools.chain(unet.parameters(), text_encoder.parameters()) | |
| else: | |
| trainable_params = unet.parameters() | |
| _, _, optimizer = train_util.get_optimizer(args, trainable_params) | |
| # dataloaderを準備する | |
| # DataLoaderのプロセス数:0はメインプロセスになる | |
| n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset_group, | |
| batch_size=1, | |
| shuffle=True, | |
| collate_fn=collater, | |
| num_workers=n_workers, | |
| persistent_workers=args.persistent_data_loader_workers, | |
| ) | |
| # 学習ステップ数を計算する | |
| if args.max_train_epochs is not None: | |
| args.max_train_steps = args.max_train_epochs * math.ceil( | |
| len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps | |
| ) | |
| print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}") | |
| # データセット側にも学習ステップを送信 | |
| train_dataset_group.set_max_train_steps(args.max_train_steps) | |
| if args.stop_text_encoder_training is None: | |
| args.stop_text_encoder_training = args.max_train_steps + 1 # do not stop until end | |
| # lr schedulerを用意する TODO gradient_accumulation_stepsの扱いが何かおかしいかもしれない。後で確認する | |
| lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) | |
| # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする | |
| if args.full_fp16: | |
| assert ( | |
| args.mixed_precision == "fp16" | |
| ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" | |
| print("enable full fp16 training.") | |
| unet.to(weight_dtype) | |
| text_encoder.to(weight_dtype) | |
| # acceleratorがなんかよろしくやってくれるらしい | |
| if train_text_encoder: | |
| unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, text_encoder, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| else: | |
| unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) | |
| if not train_text_encoder: | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) # to avoid 'cpu' vs 'cuda' error | |
| # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする | |
| if args.full_fp16: | |
| train_util.patch_accelerator_for_fp16_training(accelerator) | |
| # resumeする | |
| if args.resume is not None: | |
| print(f"resume training from state: {args.resume}") | |
| accelerator.load_state(args.resume) | |
| # epoch数を計算する | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): | |
| args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 | |
| # 学習する | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| print("running training / 学習開始") | |
| print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") | |
| print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") | |
| print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") | |
| print(f" num epochs / epoch数: {num_train_epochs}") | |
| print(f" batch size per device / バッチサイズ: {args.train_batch_size}") | |
| print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}") | |
| print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") | |
| print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") | |
| progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") | |
| global_step = 0 | |
| noise_scheduler = DDPMScheduler( | |
| beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False | |
| ) | |
| if accelerator.is_main_process: | |
| accelerator.init_trackers("dreambooth") | |
| loss_list = [] | |
| loss_total = 0.0 | |
| for epoch in range(num_train_epochs): | |
| print(f"epoch {epoch+1}/{num_train_epochs}") | |
| current_epoch.value = epoch + 1 | |
| # 指定したステップ数までText Encoderを学習する:epoch最初の状態 | |
| unet.train() | |
| # train==True is required to enable gradient_checkpointing | |
| if args.gradient_checkpointing or global_step < args.stop_text_encoder_training: | |
| text_encoder.train() | |
| for step, batch in enumerate(train_dataloader): | |
| current_step.value = global_step | |
| # 指定したステップ数でText Encoderの学習を止める | |
| if global_step == args.stop_text_encoder_training: | |
| print(f"stop text encoder training at step {global_step}") | |
| if not args.gradient_checkpointing: | |
| text_encoder.train(False) | |
| text_encoder.requires_grad_(False) | |
| with accelerator.accumulate(unet): | |
| with torch.no_grad(): | |
| # latentに変換 | |
| if cache_latents: | |
| latents = batch["latents"].to(accelerator.device) | |
| else: | |
| latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() | |
| latents = latents * 0.18215 | |
| b_size = latents.shape[0] | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(latents, device=latents.device) | |
| if args.noise_offset: | |
| # https://www.crosslabs.org//blog/diffusion-with-offset-noise | |
| noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device) | |
| # Get the text embedding for conditioning | |
| with torch.set_grad_enabled(global_step < args.stop_text_encoder_training): | |
| input_ids = batch["input_ids"].to(accelerator.device) | |
| encoder_hidden_states = train_util.get_hidden_states( | |
| args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype | |
| ) | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) | |
| timesteps = timesteps.long() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| # Predict the noise residual | |
| noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
| if args.v_parameterization: | |
| # v-parameterization training | |
| target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
| else: | |
| target = noise | |
| loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none") | |
| loss = loss.mean([1, 2, 3]) | |
| loss_weights = batch["loss_weights"] # 各sampleごとのweight | |
| loss = loss * loss_weights | |
| if args.min_snr_gamma: | |
| loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma) | |
| loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients and args.max_grad_norm != 0.0: | |
| if train_text_encoder: | |
| params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters()) | |
| else: | |
| params_to_clip = unet.parameters() | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad(set_to_none=True) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| train_util.sample_images( | |
| accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet | |
| ) | |
| current_loss = loss.detach().item() | |
| if args.logging_dir is not None: | |
| logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])} | |
| if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value | |
| logs["lr/d*lr"] = ( | |
| lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"] | |
| ) | |
| accelerator.log(logs, step=global_step) | |
| if epoch == 0: | |
| loss_list.append(current_loss) | |
| else: | |
| loss_total -= loss_list[step] | |
| loss_list[step] = current_loss | |
| loss_total += current_loss | |
| avr_loss = loss_total / len(loss_list) | |
| logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| if global_step >= args.max_train_steps: | |
| break | |
| if args.logging_dir is not None: | |
| logs = {"loss/epoch": loss_total / len(loss_list)} | |
| accelerator.log(logs, step=epoch + 1) | |
| accelerator.wait_for_everyone() | |
| if args.save_every_n_epochs is not None: | |
| src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path | |
| train_util.save_sd_model_on_epoch_end( | |
| args, | |
| accelerator, | |
| src_path, | |
| save_stable_diffusion_format, | |
| use_safetensors, | |
| save_dtype, | |
| epoch, | |
| num_train_epochs, | |
| global_step, | |
| unwrap_model(text_encoder), | |
| unwrap_model(unet), | |
| vae, | |
| ) | |
| train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) | |
| is_main_process = accelerator.is_main_process | |
| if is_main_process: | |
| unet = unwrap_model(unet) | |
| text_encoder = unwrap_model(text_encoder) | |
| accelerator.end_training() | |
| if args.save_state: | |
| train_util.save_state_on_train_end(args, accelerator) | |
| del accelerator # この後メモリを使うのでこれは消す | |
| if is_main_process: | |
| src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path | |
| train_util.save_sd_model_on_train_end( | |
| args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae | |
| ) | |
| print("model saved.") | |
| def setup_parser() -> argparse.ArgumentParser: | |
| parser = argparse.ArgumentParser() | |
| train_util.add_sd_models_arguments(parser) | |
| train_util.add_dataset_arguments(parser, True, False, True) | |
| train_util.add_training_arguments(parser, True) | |
| train_util.add_sd_saving_arguments(parser) | |
| train_util.add_optimizer_arguments(parser) | |
| config_util.add_config_arguments(parser) | |
| custom_train_functions.add_custom_train_arguments(parser) | |
| parser.add_argument( | |
| "--no_token_padding", | |
| action="store_true", | |
| help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)", | |
| ) | |
| parser.add_argument( | |
| "--stop_text_encoder_training", | |
| type=int, | |
| default=None, | |
| help="steps to stop text encoder training, -1 for no training / Text Encoderの学習を止めるステップ数、-1で最初から学習しない", | |
| ) | |
| return parser | |
| if __name__ == "__main__": | |
| parser = setup_parser() | |
| args = parser.parse_args() | |
| args = train_util.read_config_from_file(args, parser) | |
| train(args) | |