Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	| from torch.nn.parallel import DistributedDataParallel as DDP | |
| import importlib | |
| import argparse | |
| import gc | |
| import math | |
| import os | |
| import random | |
| import time | |
| import json | |
| import toml | |
| from multiprocessing import Value | |
| from tqdm import tqdm | |
| import torch | |
| from accelerate.utils import set_seed | |
| from diffusers import DDPMScheduler | |
| import library.train_util as train_util | |
| from library.train_util import ( | |
| DreamBoothDataset, | |
| ) | |
| import library.config_util as config_util | |
| from library.config_util import ( | |
| ConfigSanitizer, | |
| BlueprintGenerator, | |
| ) | |
| import library.custom_train_functions as custom_train_functions | |
| from library.custom_train_functions import apply_snr_weight | |
| # TODO 他のスクリプトと共通化する | |
| def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler): | |
| logs = {"loss/current": current_loss, "loss/average": avr_loss} | |
| if args.network_train_unet_only: | |
| logs["lr/unet"] = float(lr_scheduler.get_last_lr()[0]) | |
| elif args.network_train_text_encoder_only: | |
| logs["lr/textencoder"] = float(lr_scheduler.get_last_lr()[0]) | |
| else: | |
| logs["lr/textencoder"] = float(lr_scheduler.get_last_lr()[0]) | |
| logs["lr/unet"] = float(lr_scheduler.get_last_lr()[-1]) # may be same to textencoder | |
| if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value of unet. | |
| logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"] | |
| return logs | |
| def train(args): | |
| session_id = random.randint(0, 2**32) | |
| training_started_at = time.time() | |
| train_util.verify_training_args(args) | |
| train_util.prepare_dataset_args(args, True) | |
| cache_latents = args.cache_latents | |
| use_dreambooth_method = args.in_json is None | |
| use_user_config = args.dataset_config is not None | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| tokenizer = train_util.load_tokenizer(args) | |
| # データセットを準備する | |
| blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, True)) | |
| if use_user_config: | |
| print(f"Load dataset config from {args.dataset_config}") | |
| user_config = config_util.load_user_config(args.dataset_config) | |
| ignored = ["train_data_dir", "reg_data_dir", "in_json"] | |
| if any(getattr(args, attr) is not None for attr in ignored): | |
| print( | |
| "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( | |
| ", ".join(ignored) | |
| ) | |
| ) | |
| else: | |
| if use_dreambooth_method: | |
| print("Use DreamBooth method.") | |
| user_config = { | |
| "datasets": [ | |
| {"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)} | |
| ] | |
| } | |
| else: | |
| print("Train with captions.") | |
| user_config = { | |
| "datasets": [ | |
| { | |
| "subsets": [ | |
| { | |
| "image_dir": args.train_data_dir, | |
| "metadata_file": args.in_json, | |
| } | |
| ] | |
| } | |
| ] | |
| } | |
| blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) | |
| train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) | |
| current_epoch = Value('i',0) | |
| current_step = Value('i',0) | |
| ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None | |
| collater = train_util.collater_class(current_epoch,current_step, ds_for_collater) | |
| if args.debug_dataset: | |
| train_util.debug_dataset(train_dataset_group) | |
| return | |
| if len(train_dataset_group) == 0: | |
| print( | |
| "No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)" | |
| ) | |
| return | |
| if cache_latents: | |
| assert ( | |
| train_dataset_group.is_latent_cacheable() | |
| ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" | |
| # acceleratorを準備する | |
| print("prepare accelerator") | |
| accelerator, unwrap_model = train_util.prepare_accelerator(args) | |
| is_main_process = accelerator.is_main_process | |
| # mixed precisionに対応した型を用意しておき適宜castする | |
| weight_dtype, save_dtype = train_util.prepare_dtype(args) | |
| # モデルを読み込む | |
| for pi in range(accelerator.state.num_processes): | |
| # TODO: modify other training scripts as well | |
| if pi == accelerator.state.local_process_index: | |
| print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}") | |
| text_encoder, vae, unet, _ = train_util.load_target_model( | |
| args, weight_dtype, accelerator.device if args.lowram else "cpu" | |
| ) | |
| # work on low-ram device | |
| if args.lowram: | |
| text_encoder.to(accelerator.device) | |
| unet.to(accelerator.device) | |
| vae.to(accelerator.device) | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| accelerator.wait_for_everyone() | |
| # モデルに xformers とか memory efficient attention を組み込む | |
| train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers) | |
| # 学習を準備する | |
| if cache_latents: | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| vae.requires_grad_(False) | |
| vae.eval() | |
| with torch.no_grad(): | |
| train_dataset_group.cache_latents(vae, args.vae_batch_size) | |
| vae.to("cpu") | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| # prepare network | |
| import sys | |
| sys.path.append(os.path.dirname(__file__)) | |
| print("import network module:", args.network_module) | |
| network_module = importlib.import_module(args.network_module) | |
| net_kwargs = {} | |
| if args.network_args is not None: | |
| for net_arg in args.network_args: | |
| key, value = net_arg.split("=") | |
| net_kwargs[key] = value | |
| # if a new network is added in future, add if ~ then blocks for each network (;'∀') | |
| network = network_module.create_network(1.0, args.network_dim, args.network_alpha, vae, text_encoder, unet, **net_kwargs) | |
| if network is None: | |
| return | |
| if args.network_weights is not None: | |
| print("load network weights from:", args.network_weights) | |
| network.load_weights(args.network_weights) | |
| train_unet = not args.network_train_text_encoder_only | |
| train_text_encoder = not args.network_train_unet_only | |
| network.apply_to(text_encoder, unet, train_text_encoder, train_unet) | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| text_encoder.gradient_checkpointing_enable() | |
| network.enable_gradient_checkpointing() # may have no effect | |
| # 学習に必要なクラスを準備する | |
| print("prepare optimizer, data loader etc.") | |
| trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr) | |
| optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params) | |
| # dataloaderを準備する | |
| # DataLoaderのプロセス数:0はメインプロセスになる | |
| n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset_group, | |
| batch_size=1, | |
| shuffle=True, | |
| collate_fn=collater, | |
| num_workers=n_workers, | |
| persistent_workers=args.persistent_data_loader_workers, | |
| ) | |
| # 学習ステップ数を計算する | |
| if args.max_train_epochs is not None: | |
| args.max_train_steps = args.max_train_epochs * math.ceil(len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps) | |
| if is_main_process: | |
| print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}") | |
| # データセット側にも学習ステップを送信 | |
| train_dataset_group.set_max_train_steps(args.max_train_steps) | |
| # lr schedulerを用意する | |
| lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) | |
| # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする | |
| if args.full_fp16: | |
| assert ( | |
| args.mixed_precision == "fp16" | |
| ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" | |
| print("enable full fp16 training.") | |
| network.to(weight_dtype) | |
| # acceleratorがなんかよろしくやってくれるらしい | |
| if train_unet and train_text_encoder: | |
| unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| elif train_unet: | |
| unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, network, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| elif train_text_encoder: | |
| text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| text_encoder, network, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| else: | |
| network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(network, optimizer, train_dataloader, lr_scheduler) | |
| unet.requires_grad_(False) | |
| unet.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder.requires_grad_(False) | |
| text_encoder.to(accelerator.device) | |
| if args.gradient_checkpointing: # according to TI example in Diffusers, train is required | |
| unet.train() | |
| text_encoder.train() | |
| # set top parameter requires_grad = True for gradient checkpointing works | |
| if type(text_encoder) == DDP: | |
| text_encoder.module.text_model.embeddings.requires_grad_(True) | |
| else: | |
| text_encoder.text_model.embeddings.requires_grad_(True) | |
| else: | |
| unet.eval() | |
| text_encoder.eval() | |
| # support DistributedDataParallel | |
| if type(text_encoder) == DDP: | |
| text_encoder = text_encoder.module | |
| unet = unet.module | |
| network = network.module | |
| network.prepare_grad_etc(text_encoder, unet) | |
| if not cache_latents: | |
| vae.requires_grad_(False) | |
| vae.eval() | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする | |
| if args.full_fp16: | |
| train_util.patch_accelerator_for_fp16_training(accelerator) | |
| # resumeする | |
| if args.resume is not None: | |
| print(f"resume training from state: {args.resume}") | |
| accelerator.load_state(args.resume) | |
| # epoch数を計算する | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): | |
| args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 | |
| # 学習する | |
| # TODO: find a way to handle total batch size when there are multiple datasets | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| if is_main_process: | |
| print("running training / 学習開始") | |
| print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") | |
| print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") | |
| print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") | |
| print(f" num epochs / epoch数: {num_train_epochs}") | |
| print(f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}") | |
| # print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}") | |
| print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") | |
| print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") | |
| # TODO refactor metadata creation and move to util | |
| metadata = { | |
| "ss_session_id": session_id, # random integer indicating which group of epochs the model came from | |
| "ss_training_started_at": training_started_at, # unix timestamp | |
| "ss_output_name": args.output_name, | |
| "ss_learning_rate": args.learning_rate, | |
| "ss_text_encoder_lr": args.text_encoder_lr, | |
| "ss_unet_lr": args.unet_lr, | |
| "ss_num_train_images": train_dataset_group.num_train_images, | |
| "ss_num_reg_images": train_dataset_group.num_reg_images, | |
| "ss_num_batches_per_epoch": len(train_dataloader), | |
| "ss_num_epochs": num_train_epochs, | |
| "ss_gradient_checkpointing": args.gradient_checkpointing, | |
| "ss_gradient_accumulation_steps": args.gradient_accumulation_steps, | |
| "ss_max_train_steps": args.max_train_steps, | |
| "ss_lr_warmup_steps": args.lr_warmup_steps, | |
| "ss_lr_scheduler": args.lr_scheduler, | |
| "ss_network_module": args.network_module, | |
| "ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim | |
| "ss_network_alpha": args.network_alpha, # some networks may not use this value | |
| "ss_mixed_precision": args.mixed_precision, | |
| "ss_full_fp16": bool(args.full_fp16), | |
| "ss_v2": bool(args.v2), | |
| "ss_clip_skip": args.clip_skip, | |
| "ss_max_token_length": args.max_token_length, | |
| "ss_cache_latents": bool(args.cache_latents), | |
| "ss_seed": args.seed, | |
| "ss_lowram": args.lowram, | |
| "ss_noise_offset": args.noise_offset, | |
| "ss_training_comment": args.training_comment, # will not be updated after training | |
| "ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(), | |
| "ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""), | |
| "ss_max_grad_norm": args.max_grad_norm, | |
| "ss_caption_dropout_rate": args.caption_dropout_rate, | |
| "ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs, | |
| "ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate, | |
| "ss_face_crop_aug_range": args.face_crop_aug_range, | |
| "ss_prior_loss_weight": args.prior_loss_weight, | |
| } | |
| if use_user_config: | |
| # save metadata of multiple datasets | |
| # NOTE: pack "ss_datasets" value as json one time | |
| # or should also pack nested collections as json? | |
| datasets_metadata = [] | |
| tag_frequency = {} # merge tag frequency for metadata editor | |
| dataset_dirs_info = {} # merge subset dirs for metadata editor | |
| for dataset in train_dataset_group.datasets: | |
| is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset) | |
| dataset_metadata = { | |
| "is_dreambooth": is_dreambooth_dataset, | |
| "batch_size_per_device": dataset.batch_size, | |
| "num_train_images": dataset.num_train_images, # includes repeating | |
| "num_reg_images": dataset.num_reg_images, | |
| "resolution": (dataset.width, dataset.height), | |
| "enable_bucket": bool(dataset.enable_bucket), | |
| "min_bucket_reso": dataset.min_bucket_reso, | |
| "max_bucket_reso": dataset.max_bucket_reso, | |
| "tag_frequency": dataset.tag_frequency, | |
| "bucket_info": dataset.bucket_info, | |
| } | |
| subsets_metadata = [] | |
| for subset in dataset.subsets: | |
| subset_metadata = { | |
| "img_count": subset.img_count, | |
| "num_repeats": subset.num_repeats, | |
| "color_aug": bool(subset.color_aug), | |
| "flip_aug": bool(subset.flip_aug), | |
| "random_crop": bool(subset.random_crop), | |
| "shuffle_caption": bool(subset.shuffle_caption), | |
| "keep_tokens": subset.keep_tokens, | |
| } | |
| image_dir_or_metadata_file = None | |
| if subset.image_dir: | |
| image_dir = os.path.basename(subset.image_dir) | |
| subset_metadata["image_dir"] = image_dir | |
| image_dir_or_metadata_file = image_dir | |
| if is_dreambooth_dataset: | |
| subset_metadata["class_tokens"] = subset.class_tokens | |
| subset_metadata["is_reg"] = subset.is_reg | |
| if subset.is_reg: | |
| image_dir_or_metadata_file = None # not merging reg dataset | |
| else: | |
| metadata_file = os.path.basename(subset.metadata_file) | |
| subset_metadata["metadata_file"] = metadata_file | |
| image_dir_or_metadata_file = metadata_file # may overwrite | |
| subsets_metadata.append(subset_metadata) | |
| # merge dataset dir: not reg subset only | |
| # TODO update additional-network extension to show detailed dataset config from metadata | |
| if image_dir_or_metadata_file is not None: | |
| # datasets may have a certain dir multiple times | |
| v = image_dir_or_metadata_file | |
| i = 2 | |
| while v in dataset_dirs_info: | |
| v = image_dir_or_metadata_file + f" ({i})" | |
| i += 1 | |
| image_dir_or_metadata_file = v | |
| dataset_dirs_info[image_dir_or_metadata_file] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count} | |
| dataset_metadata["subsets"] = subsets_metadata | |
| datasets_metadata.append(dataset_metadata) | |
| # merge tag frequency: | |
| for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items(): | |
| # あるディレクトリが複数のdatasetで使用されている場合、一度だけ数える | |
| # もともと繰り返し回数を指定しているので、キャプション内でのタグの出現回数と、それが学習で何度使われるかは一致しない | |
| # なので、ここで複数datasetの回数を合算してもあまり意味はない | |
| if ds_dir_name in tag_frequency: | |
| continue | |
| tag_frequency[ds_dir_name] = ds_freq_for_dir | |
| metadata["ss_datasets"] = json.dumps(datasets_metadata) | |
| metadata["ss_tag_frequency"] = json.dumps(tag_frequency) | |
| metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info) | |
| else: | |
| # conserving backward compatibility when using train_dataset_dir and reg_dataset_dir | |
| assert ( | |
| len(train_dataset_group.datasets) == 1 | |
| ), f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug. / データセットは1個だけ存在するはずですが、実際には{len(train_dataset_group.datasets)}個でした。プログラムのバグかもしれません。" | |
| dataset = train_dataset_group.datasets[0] | |
| dataset_dirs_info = {} | |
| reg_dataset_dirs_info = {} | |
| if use_dreambooth_method: | |
| for subset in dataset.subsets: | |
| info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info | |
| info[os.path.basename(subset.image_dir)] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count} | |
| else: | |
| for subset in dataset.subsets: | |
| dataset_dirs_info[os.path.basename(subset.metadata_file)] = { | |
| "n_repeats": subset.num_repeats, | |
| "img_count": subset.img_count, | |
| } | |
| metadata.update( | |
| { | |
| "ss_batch_size_per_device": args.train_batch_size, | |
| "ss_total_batch_size": total_batch_size, | |
| "ss_resolution": args.resolution, | |
| "ss_color_aug": bool(args.color_aug), | |
| "ss_flip_aug": bool(args.flip_aug), | |
| "ss_random_crop": bool(args.random_crop), | |
| "ss_shuffle_caption": bool(args.shuffle_caption), | |
| "ss_enable_bucket": bool(dataset.enable_bucket), | |
| "ss_bucket_no_upscale": bool(dataset.bucket_no_upscale), | |
| "ss_min_bucket_reso": dataset.min_bucket_reso, | |
| "ss_max_bucket_reso": dataset.max_bucket_reso, | |
| "ss_keep_tokens": args.keep_tokens, | |
| "ss_dataset_dirs": json.dumps(dataset_dirs_info), | |
| "ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info), | |
| "ss_tag_frequency": json.dumps(dataset.tag_frequency), | |
| "ss_bucket_info": json.dumps(dataset.bucket_info), | |
| } | |
| ) | |
| # add extra args | |
| if args.network_args: | |
| metadata["ss_network_args"] = json.dumps(net_kwargs) | |
| # for key, value in net_kwargs.items(): | |
| # metadata["ss_arg_" + key] = value | |
| # model name and hash | |
| if args.pretrained_model_name_or_path is not None: | |
| sd_model_name = args.pretrained_model_name_or_path | |
| if os.path.exists(sd_model_name): | |
| metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name) | |
| metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name) | |
| sd_model_name = os.path.basename(sd_model_name) | |
| metadata["ss_sd_model_name"] = sd_model_name | |
| if args.vae is not None: | |
| vae_name = args.vae | |
| if os.path.exists(vae_name): | |
| metadata["ss_vae_hash"] = train_util.model_hash(vae_name) | |
| metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name) | |
| vae_name = os.path.basename(vae_name) | |
| metadata["ss_vae_name"] = vae_name | |
| metadata = {k: str(v) for k, v in metadata.items()} | |
| # make minimum metadata for filtering | |
| minimum_keys = ["ss_network_module", "ss_network_dim", "ss_network_alpha", "ss_network_args"] | |
| minimum_metadata = {} | |
| for key in minimum_keys: | |
| if key in metadata: | |
| minimum_metadata[key] = metadata[key] | |
| progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") | |
| global_step = 0 | |
| noise_scheduler = DDPMScheduler( | |
| beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False | |
| ) | |
| if accelerator.is_main_process: | |
| accelerator.init_trackers("network_train") | |
| loss_list = [] | |
| loss_total = 0.0 | |
| del train_dataset_group | |
| for epoch in range(num_train_epochs): | |
| if is_main_process: | |
| print(f"epoch {epoch+1}/{num_train_epochs}") | |
| current_epoch.value = epoch+1 | |
| metadata["ss_epoch"] = str(epoch + 1) | |
| network.on_epoch_start(text_encoder, unet) | |
| for step, batch in enumerate(train_dataloader): | |
| current_step.value = global_step | |
| with accelerator.accumulate(network): | |
| with torch.no_grad(): | |
| if "latents" in batch and batch["latents"] is not None: | |
| latents = batch["latents"].to(accelerator.device) | |
| else: | |
| # latentに変換 | |
| latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() | |
| latents = latents * 0.18215 | |
| b_size = latents.shape[0] | |
| with torch.set_grad_enabled(train_text_encoder): | |
| # Get the text embedding for conditioning | |
| input_ids = batch["input_ids"].to(accelerator.device) | |
| encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype) | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(latents, device=latents.device) | |
| if args.noise_offset: | |
| # https://www.crosslabs.org//blog/diffusion-with-offset-noise | |
| noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device) | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) | |
| timesteps = timesteps.long() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| # Predict the noise residual | |
| with accelerator.autocast(): | |
| noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
| if args.v_parameterization: | |
| # v-parameterization training | |
| target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
| else: | |
| target = noise | |
| loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none") | |
| loss = loss.mean([1, 2, 3]) | |
| loss_weights = batch["loss_weights"] # 各sampleごとのweight | |
| loss = loss * loss_weights | |
| if args.min_snr_gamma: | |
| loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma) | |
| loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients and args.max_grad_norm != 0.0: | |
| params_to_clip = network.get_trainable_params() | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad(set_to_none=True) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| train_util.sample_images( | |
| accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet | |
| ) | |
| current_loss = loss.detach().item() | |
| if epoch == 0: | |
| loss_list.append(current_loss) | |
| else: | |
| loss_total -= loss_list[step] | |
| loss_list[step] = current_loss | |
| loss_total += current_loss | |
| avr_loss = loss_total / len(loss_list) | |
| logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| if args.logging_dir is not None: | |
| logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| if args.logging_dir is not None: | |
| logs = {"loss/epoch": loss_total / len(loss_list)} | |
| accelerator.log(logs, step=epoch + 1) | |
| accelerator.wait_for_everyone() | |
| if args.save_every_n_epochs is not None: | |
| model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name | |
| def save_func(): | |
| ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + "." + args.save_model_as | |
| ckpt_file = os.path.join(args.output_dir, ckpt_name) | |
| metadata["ss_training_finished_at"] = str(time.time()) | |
| print(f"saving checkpoint: {ckpt_file}") | |
| unwrap_model(network).save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata) | |
| def remove_old_func(old_epoch_no): | |
| old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + "." + args.save_model_as | |
| old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name) | |
| if os.path.exists(old_ckpt_file): | |
| print(f"removing old checkpoint: {old_ckpt_file}") | |
| os.remove(old_ckpt_file) | |
| if is_main_process: | |
| saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs) | |
| if saving and args.save_state: | |
| train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1) | |
| train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) | |
| # end of epoch | |
| metadata["ss_epoch"] = str(num_train_epochs) | |
| metadata["ss_training_finished_at"] = str(time.time()) | |
| if is_main_process: | |
| network = unwrap_model(network) | |
| accelerator.end_training() | |
| if args.save_state: | |
| train_util.save_state_on_train_end(args, accelerator) | |
| del accelerator # この後メモリを使うのでこれは消す | |
| if is_main_process: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name | |
| ckpt_name = model_name + "." + args.save_model_as | |
| ckpt_file = os.path.join(args.output_dir, ckpt_name) | |
| print(f"save trained model to {ckpt_file}") | |
| network.save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata) | |
| print("model saved.") | |
| def setup_parser() -> argparse.ArgumentParser: | |
| parser = argparse.ArgumentParser() | |
| train_util.add_sd_models_arguments(parser) | |
| train_util.add_dataset_arguments(parser, True, True, True) | |
| train_util.add_training_arguments(parser, True) | |
| train_util.add_optimizer_arguments(parser) | |
| config_util.add_config_arguments(parser) | |
| custom_train_functions.add_custom_train_arguments(parser) | |
| parser.add_argument("--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない") | |
| parser.add_argument( | |
| "--save_model_as", | |
| type=str, | |
| default="safetensors", | |
| choices=[None, "ckpt", "pt", "safetensors"], | |
| help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)", | |
| ) | |
| parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率") | |
| parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率") | |
| parser.add_argument("--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み") | |
| parser.add_argument("--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール") | |
| parser.add_argument( | |
| "--network_dim", type=int, default=None, help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)" | |
| ) | |
| parser.add_argument( | |
| "--network_alpha", | |
| type=float, | |
| default=1, | |
| help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)", | |
| ) | |
| parser.add_argument( | |
| "--network_args", type=str, default=None, nargs="*", help="additional argmuments for network (key=value) / ネットワークへの追加の引数" | |
| ) | |
| parser.add_argument("--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する") | |
| parser.add_argument( | |
| "--network_train_text_encoder_only", action="store_true", help="only training Text Encoder part / Text Encoder関連部分のみ学習する" | |
| ) | |
| parser.add_argument( | |
| "--training_comment", type=str, default=None, help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列" | |
| ) | |
| return parser | |
| if __name__ == "__main__": | |
| parser = setup_parser() | |
| args = parser.parse_args() | |
| args = train_util.read_config_from_file(args, parser) | |
| train(args) | |