Spaces:
Sleeping
Sleeping
| import transformers | |
| import re | |
| from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM | |
| from vllm import LLM, SamplingParams | |
| import torch | |
| import gradio as gr | |
| import json | |
| import os | |
| import shutil | |
| import requests | |
| import chromadb | |
| import pandas as pd | |
| from chromadb.config import Settings | |
| from chromadb.utils import embedding_functions | |
| from FlagEmbedding import BGEM3FlagModel | |
| model = BGEM3FlagModel('BAAI/bge-m3', | |
| use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation | |
| embeddings = np.load("embeddings_with_api.npy") | |
| embeddings_data = pd.read_json("embeddings_tchap.json") | |
| embeddings_text = embeddings_data["text_with_context"].tolist() | |
| # Define the device | |
| #device = "cuda" if torch.cuda.is_available() else "cpu" | |
| #Define variables | |
| temperature=0.2 | |
| max_new_tokens=1000 | |
| top_p=0.92 | |
| repetition_penalty=1.7 | |
| #model_name = "Pclanglais/Tchap" | |
| #llm = LLM(model_name, max_model_len=4096) | |
| #Vector search over the database | |
| def vector_search(sentence_query): | |
| query_embedding = model.encode(sentence_query, | |
| batch_size=12, | |
| max_length=256, # If you don't need such a long length, you can set a smaller value to speed up the encoding process. | |
| )['dense_vecs'] | |
| # Reshape the query embedding to fit the cosine_similarity function requirements | |
| query_embedding_reshaped = query_embedding.reshape(1, -1) | |
| # Compute cosine similarities | |
| similarities = cosine_similarity(query_embedding_reshaped, embeddings) | |
| # Find the index of the closest document (highest similarity) | |
| closest_doc_index = np.argmax(similarities) | |
| # Closest document's embedding | |
| closest_doc_embedding = sentences_1[closest_doc_index] | |
| return closest_doc_embedding | |
| class StopOnTokens(StoppingCriteria): | |
| def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
| stop_ids = [29, 0] | |
| for stop_id in stop_ids: | |
| if input_ids[0][-1] == stop_id: | |
| return True | |
| return False | |
| def predict(message, history): | |
| text = vector_search(message) | |
| message = message + "\n\n### Source ###\n" | |
| history_transformer_format = history + [[message, ""]] | |
| stop = StopOnTokens() | |
| messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) | |
| for item in history_transformer_format]) | |
| return messages | |
| def predict_alt(message, history): | |
| history_transformer_format = history + [[message, ""]] | |
| stop = StopOnTokens() | |
| messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) | |
| for item in history_transformer_format]) | |
| model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| model_inputs, | |
| streamer=streamer, | |
| max_new_tokens=1024, | |
| do_sample=True, | |
| top_p=0.95, | |
| top_k=1000, | |
| temperature=1.0, | |
| num_beams=1, | |
| stopping_criteria=StoppingCriteriaList([stop]) | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| partial_message = "" | |
| for new_token in streamer: | |
| if new_token != '<': | |
| partial_message += new_token | |
| yield partial_message | |
| # Define the Gradio interface | |
| title = "Tchap" | |
| description = "Le chatbot du service public" | |
| examples = [ | |
| [ | |
| "Qui peut bénéficier de l'AIP?", # user_message | |
| 0.7 # temperature | |
| ] | |
| ] | |
| demo = gr.Blocks() | |
| with gr.Blocks(theme='JohnSmith9982/small_and_pretty', css=css) as demo: | |
| gr.HTML("""<h1 style="text-align:center">Albert-Tchap</h1>""") | |
| gr.ChatInterface(predict).launch() | |
| if __name__ == "__main__": | |
| demo.queue().launch() |