Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -100,21 +100,6 @@ class StopOnTokens(StoppingCriteria):
|
|
| 100 |
return False
|
| 101 |
|
| 102 |
|
| 103 |
-
def user(message, history):
|
| 104 |
-
global source_text
|
| 105 |
-
global assess_rag
|
| 106 |
-
#For now, we only query the vector database once, at the start.
|
| 107 |
-
if len(history) == 0:
|
| 108 |
-
assess_rag = classification_chatrag(message)
|
| 109 |
-
if assess_rag:
|
| 110 |
-
source_text = vector_search(message)
|
| 111 |
-
else:
|
| 112 |
-
source_text = "Albert-Tchap n'utilise pas de sources comme votre requête n'a pas l'air d'en recueillir."
|
| 113 |
-
|
| 114 |
-
history_transformer_format = history + [[message, ""]]
|
| 115 |
-
|
| 116 |
-
return history_transformer_format
|
| 117 |
-
|
| 118 |
def predict(history_transformer_format):
|
| 119 |
|
| 120 |
print(history_transformer_format)
|
|
@@ -144,6 +129,8 @@ def predict(history_transformer_format):
|
|
| 144 |
|
| 145 |
messages = system_prompt + messages
|
| 146 |
|
|
|
|
|
|
|
| 147 |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
| 148 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 149 |
generate_kwargs = dict(
|
|
@@ -165,6 +152,23 @@ def predict(history_transformer_format):
|
|
| 165 |
yield partial_message
|
| 166 |
return messages
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
# Define the Gradio interface
|
| 169 |
title = "Tchap"
|
| 170 |
description = "Le chatbot du service public"
|
|
|
|
| 100 |
return False
|
| 101 |
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
def predict(history_transformer_format):
|
| 104 |
|
| 105 |
print(history_transformer_format)
|
|
|
|
| 129 |
|
| 130 |
messages = system_prompt + messages
|
| 131 |
|
| 132 |
+
print(messages)
|
| 133 |
+
|
| 134 |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
| 135 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 136 |
generate_kwargs = dict(
|
|
|
|
| 152 |
yield partial_message
|
| 153 |
return messages
|
| 154 |
|
| 155 |
+
def user(message, history):
|
| 156 |
+
global source_text
|
| 157 |
+
global assess_rag
|
| 158 |
+
#For now, we only query the vector database once, at the start.
|
| 159 |
+
if len(history) == 0:
|
| 160 |
+
assess_rag = classification_chatrag(message)
|
| 161 |
+
if assess_rag:
|
| 162 |
+
source_text = vector_search(message)
|
| 163 |
+
else:
|
| 164 |
+
source_text = "Albert-Tchap n'utilise pas de sources comme votre requête n'a pas l'air d'en recueillir."
|
| 165 |
+
|
| 166 |
+
history_transformer_format = history + [[message, ""]]
|
| 167 |
+
|
| 168 |
+
print(history_transformer_format)
|
| 169 |
+
|
| 170 |
+
return history_transformer_format
|
| 171 |
+
|
| 172 |
# Define the Gradio interface
|
| 173 |
title = "Tchap"
|
| 174 |
description = "Le chatbot du service public"
|