Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -97,11 +97,12 @@ iface = gr.Interface(
|
|
| 97 |
fn=predict_emotion,
|
| 98 |
inputs=gr.Image(type="pil", label="Upload an Image"),
|
| 99 |
outputs=[gr.Textbox(label="Emotion"), gr.Textbox(label="Memorability Score")],
|
| 100 |
-
title="PerceptCLIP",
|
| 101 |
-
description="This is an official demo of PerceptCLIP from the paper: [Don’t Judge Before You CLIP: A Unified Approach for Perceptual Tasks](https://arxiv.org/pdf/2503.13260). For each specific task, we fine-tune CLIP with LoRA and an MLP head. Our models achieve state-of-the-art performance.
|
| 102 |
examples=example_images
|
| 103 |
)
|
| 104 |
|
| 105 |
|
|
|
|
| 106 |
if __name__ == "__main__":
|
| 107 |
iface.launch()
|
|
|
|
| 97 |
fn=predict_emotion,
|
| 98 |
inputs=gr.Image(type="pil", label="Upload an Image"),
|
| 99 |
outputs=[gr.Textbox(label="Emotion"), gr.Textbox(label="Memorability Score")],
|
| 100 |
+
title="<div style='text-align: center;'>PerceptCLIP</div>",
|
| 101 |
+
description="<div style='text-align: center;'>This is an official demo of PerceptCLIP from the paper: [Don’t Judge Before You CLIP: A Unified Approach for Perceptual Tasks](https://arxiv.org/pdf/2503.13260). For each specific task, we fine-tune CLIP with LoRA and an MLP head. Our models achieve state-of-the-art performance. <br>This demo shows results from three models, one for each task - visual emotion analysis, memorability prediction, and image quality assessment.</div>",
|
| 102 |
examples=example_images
|
| 103 |
)
|
| 104 |
|
| 105 |
|
| 106 |
+
|
| 107 |
if __name__ == "__main__":
|
| 108 |
iface.launch()
|