Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							Β·
						
						06a685c
	
0
								Parent(s):
							
							
Initial commit
Browse filesCo-authored-by: Amp <amp@ampcode.com>
Amp-Thread-ID: https://ampcode.com/threads/T-702cb6b1-8290-4c2e-8522-1ed38473ca1f
This view is limited to 50 files because it contains too many changes. Β 
							See raw diff
- .gitattributes +57 -0
- README.md +147 -0
- app.py +306 -0
- llava/__init__.py +8 -0
- llava/cli/infer_audio.py +88 -0
- llava/constants.py +55 -0
- llava/conversation.py +197 -0
- llava/data/__init__.py +9 -0
- llava/data/base.py +95 -0
- llava/data/builder.py +193 -0
- llava/data/collate.py +166 -0
- llava/data/dataset.py +1635 -0
- llava/data/datasets_mixture.py +80 -0
- llava/data/registry/datasets/audio_test.yaml +97 -0
- llava/data/registry/datasets/default.yaml +5 -0
- llava/data/registry/mixtures.yaml +78 -0
- llava/entry.py +60 -0
- llava/eval/__init__.py +15 -0
- llava/eval/eval_audio_bench.py +117 -0
- llava/eval/mmmu_utils/__pycache__/eval_utils.cpython-311.pyc +0 -0
- llava/eval/mmmu_utils/eval_utils.py +61 -0
- llava/eval/registry_audio.yaml +93 -0
- llava/media.py +47 -0
- llava/mm_utils.py +641 -0
- llava/model/FloatPointQuantizeTorch.py +85 -0
- llava/model/FloatPointQuantizeTriton.py +199 -0
- llava/model/__init__.py +35 -0
- llava/model/apply_delta.py +77 -0
- llava/model/builder.py +161 -0
- llava/model/coat/activation/__init__.py +6 -0
- llava/model/coat/activation/fake_quantization/FloatPointQuantizeTorch.py +101 -0
- llava/model/coat/activation/fake_quantization/FloatPointQuantizeTriton.py +181 -0
- llava/model/coat/activation/fake_quantization/quantize_function.py +239 -0
- llava/model/coat/activation/fake_quantization/utils.py +115 -0
- llava/model/coat/activation/models/_fp8_quantization_config.py +67 -0
- llava/model/coat/activation/models/_fp8_weightcache.py +48 -0
- llava/model/coat/activation/models/_fp8manager.py +31 -0
- llava/model/coat/activation/models/coat_llama.py +1479 -0
- llava/model/coat/activation/models/coat_llama_convert_from_hf.py +71 -0
- llava/model/coat/activation/models/coat_olmo.py +1942 -0
- llava/model/coat/activation/real_quantization/__init__.py +31 -0
- llava/model/coat/activation/real_quantization/_dequantize.py +162 -0
- llava/model/coat/activation/real_quantization/_division.py +212 -0
- llava/model/coat/activation/real_quantization/_division_transpose.py +215 -0
- llava/model/coat/activation/real_quantization/_memory_io.py +180 -0
- llava/model/coat/activation/real_quantization/_quantize.py +176 -0
- llava/model/coat/activation/real_quantization/_quantize_pertensor.py +152 -0
- llava/model/coat/activation/real_quantization/_quantize_pertensor_transpose.py +155 -0
- llava/model/coat/activation/real_quantization/_transpose.py +121 -0
- llava/model/coat/activation/real_quantization/add_bwd.py +205 -0
    	
        .gitattributes
    ADDED
    
    | @@ -0,0 +1,57 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            +
            *.tar filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            llava/model/coat/optimizer/kernels/build/lib.linux-x86_64-cpython-310/qoptim_cuda.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            llava/model/coat/optimizer/kernels/build/temp.linux-x86_64-cpython-310/bindings.o filter=lfs diff=lfs merge=lfs -text
         | 
| 38 | 
            +
            llava/model/coat/optimizer/kernels/build/temp.linux-x86_64-cpython-310/fp8_adamw_cuda.o filter=lfs diff=lfs merge=lfs -text
         | 
| 39 | 
            +
            llava/model/coat/optimizer/kernels/build/temp.linux-x86_64-cpython-310/fp8_adamw_expand_cuda.o filter=lfs diff=lfs merge=lfs -text
         | 
| 40 | 
            +
            static/af3_main_diagram-1.png filter=lfs diff=lfs merge=lfs -text
         | 
| 41 | 
            +
            static/af3_radial-1.png filter=lfs diff=lfs merge=lfs -text
         | 
| 42 | 
            +
            static/af3_sota.png filter=lfs diff=lfs merge=lfs -text
         | 
| 43 | 
            +
            static/audio/audio2.wav filter=lfs diff=lfs merge=lfs -text
         | 
| 44 | 
            +
            static/chat/audio1.mp3 filter=lfs diff=lfs merge=lfs -text
         | 
| 45 | 
            +
            static/chat/audio2.mp3 filter=lfs diff=lfs merge=lfs -text
         | 
| 46 | 
            +
            static/emergent/audio1.wav filter=lfs diff=lfs merge=lfs -text
         | 
| 47 | 
            +
            static/logo-no-bg.png filter=lfs diff=lfs merge=lfs -text
         | 
| 48 | 
            +
            static/speech/339a1acd-afcb-466b-a7b1-8661e59b1e56.wav filter=lfs diff=lfs merge=lfs -text
         | 
| 49 | 
            +
            static/speech/audio3.wav filter=lfs diff=lfs merge=lfs -text
         | 
| 50 | 
            +
            static/speech/bcc6057d-0dda-435d-b956-a96ab27bc9e4.wav filter=lfs diff=lfs merge=lfs -text
         | 
| 51 | 
            +
            static/speech/be84d293-5e9c-4158-9a1e-b4dd1acb7d70.wav filter=lfs diff=lfs merge=lfs -text
         | 
| 52 | 
            +
            static/speech/fec3402e-7883-45c0-90d4-38647f615dc3.wav filter=lfs diff=lfs merge=lfs -text
         | 
| 53 | 
            +
            static/think/audio1.wav filter=lfs diff=lfs merge=lfs -text
         | 
| 54 | 
            +
            static/think/audio2.wav filter=lfs diff=lfs merge=lfs -text
         | 
| 55 | 
            +
            static/voice/voice_2.mp3 filter=lfs diff=lfs merge=lfs -text
         | 
| 56 | 
            +
            static/speech/speaker1.flac filter=lfs diff=lfs merge=lfs -text
         | 
| 57 | 
            +
            static/speech/videoplayback.wav filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,147 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: other
         | 
| 3 | 
            +
            title: Audio Flamingo 3 Demo
         | 
| 4 | 
            +
            sdk: gradio
         | 
| 5 | 
            +
            emoji: π
         | 
| 6 | 
            +
            colorFrom: green
         | 
| 7 | 
            +
            colorTo: green
         | 
| 8 | 
            +
            pinned: true
         | 
| 9 | 
            +
            short_description: Audio Flamingo 3 Demo
         | 
| 10 | 
            +
            ---
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            <div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
         | 
| 13 | 
            +
              <a href="https://github.com/NVIDIA/audio-flamingo" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
         | 
| 14 | 
            +
                <img src="static/logo-no-bg.png" alt="Audio Flamingo 3 π₯ππ₯" width="120">
         | 
| 15 | 
            +
              </a>
         | 
| 16 | 
            +
            </div>
         | 
| 17 | 
            +
            <div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
         | 
| 18 | 
            +
                <h2>
         | 
| 19 | 
            +
                Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio-Language Models
         | 
| 20 | 
            +
                </h2>
         | 
| 21 | 
            +
            </div>
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            <div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
         | 
| 24 | 
            +
              <a href=""><img src="https://img.shields.io/badge/arXiv-2503.03983-AD1C18" style="margin-right: 5px;"></a>
         | 
| 25 | 
            +
              <a href="https://research.nvidia.com/labs/adlr/AF3/"><img src="https://img.shields.io/badge/Demo page-228B22" style="margin-right: 5px;"></a>
         | 
| 26 | 
            +
              <a href="https://github.com/NVIDIA/audio-flamingo"><img src='https://img.shields.io/badge/Github-Audio Flamingo 3-9C276A' style="margin-right: 5px;"></a>
         | 
| 27 | 
            +
              <a href="https://github.com/NVIDIA/audio-flamingo/stargazers"><img src="https://img.shields.io/github/stars/NVIDIA/audio-flamingo.svg?style=social"></a>
         | 
| 28 | 
            +
            </div>
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            <div align="center" style="display: flex; justify-content: center; margin-top: 10px; flex-wrap: wrap; gap: 5px;">
         | 
| 31 | 
            +
              <a href="https://huggingface.co/nvidia/audio-flamingo-3">
         | 
| 32 | 
            +
                <img src="https://img.shields.io/badge/π€-Checkpoints-ED5A22.svg">
         | 
| 33 | 
            +
              </a>
         | 
| 34 | 
            +
              <a href="https://huggingface.co/nvidia/audio-flamingo-3-chat">
         | 
| 35 | 
            +
                <img src="https://img.shields.io/badge/π€-Checkpoints (Chat)-ED5A22.svg">
         | 
| 36 | 
            +
              </a>
         | 
| 37 | 
            +
              <a href="https://huggingface.co/datasets/nvidia/AudioSkills">
         | 
| 38 | 
            +
                <img src="https://img.shields.io/badge/π€-Dataset: AudioSkills--XL-ED5A22.svg">
         | 
| 39 | 
            +
              </a>
         | 
| 40 | 
            +
              <a href="https://huggingface.co/datasets/nvidia/LongAudio">
         | 
| 41 | 
            +
                <img src="https://img.shields.io/badge/π€-Dataset: LongAudio--XL-ED5A22.svg">
         | 
| 42 | 
            +
              </a>
         | 
| 43 | 
            +
              <a href="https://huggingface.co/datasets/nvidia/AF-Chat">
         | 
| 44 | 
            +
                <img src="https://img.shields.io/badge/π€-Dataset: AF--Chat-ED5A22.svg">
         | 
| 45 | 
            +
              </a>
         | 
| 46 | 
            +
              <a href="https://huggingface.co/datasets/nvidia/AF-Think">
         | 
| 47 | 
            +
                <img src="https://img.shields.io/badge/π€-Dataset: AF--Think-ED5A22.svg">
         | 
| 48 | 
            +
              </a>
         | 
| 49 | 
            +
            </div>
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            <div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
         | 
| 52 | 
            +
            <a href="https://huggingface.co/spaces/nvidia/audio_flamingo_3"><img src="https://img.shields.io/badge/π€-Gradio Demo (7B)-5F9EA0.svg" style="margin-right: 5px;"></a>
         | 
| 53 | 
            +
            </div>
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            ## Overview
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            This repo contains the PyTorch implementation of [Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio-Language Models](). Audio Flamingo 3 (AF3) is a fully open, state-of-the-art Large Audio-Language Model (LALM) that advances reasoning and understanding across speech, sounds, and music. AF3 builds on previous work with innovations in:
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            - Unified audio representation learning (speech, sound, music)  
         | 
| 60 | 
            +
            - Flexible, on-demand chain-of-thought reasoning (Thinking in Audio) 
         | 
| 61 | 
            +
            - Long-context audio comprehension (including speech and up to 10 minutes)
         | 
| 62 | 
            +
            - Multi-turn, multi-audio conversational dialogue (AF3-Chat)    
         | 
| 63 | 
            +
            - Voice-to-voice interaction (AF3-Chat)    
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            Extensive evaluations confirm AF3βs effectiveness, setting new benchmarks on over 20 public audio understanding and reasoning tasks.
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            ## Main Results
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            Audio Flamingo 3 outperforms prior SOTA models including GAMA, Audio Flamingo, Audio Flamingo 2, Qwen-Audio, Qwen2-Audio, Qwen2.5-Omni.LTU, LTU-AS, SALMONN, AudioGPT, Gemini Flash v2 and Gemini Pro v1.5 on a number of understanding and reasoning benchmarks.
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            <div align="center">
         | 
| 73 | 
            +
              <img class="img-full" src="static/af3_radial-1.png" width="300">
         | 
| 74 | 
            +
            </div>
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            <div align="center">
         | 
| 77 | 
            +
              <img class="img-full" src="static/af3_sota.png" width="400">
         | 
| 78 | 
            +
            </div>
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            ## Audio Flamingo 3 Architecture
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            Audio Flamingo 3 uses AF-Whisper unified audio encoder, MLP-based audio adaptor, Decoder-only LLM backbone (Qwen2.5-7B), and Streaming TTS module (AF3-Chat).
         | 
| 83 | 
            +
            Audio Flamingo 3 can take up to 10 minutes of audio inputs. 
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            <div align="center">
         | 
| 86 | 
            +
              <img class="img-full" src="static/af3_main_diagram-1.png" width="800">
         | 
| 87 | 
            +
            </div>
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            ## Installation
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            ```bash
         | 
| 92 | 
            +
            ./environment_setup.sh af3
         | 
| 93 | 
            +
            ```
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            ## Code Structure
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            - The folder ```audio_flamingo_3/``` contains the main training and inference code of Audio Flamingo 3.
         | 
| 98 | 
            +
            - The folder ```audio_flamingo_3/scripts``` contains the inference scripts of Audio Flamingo 3 in case you would like to use our pretrained checkpoints on HuggingFace.
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            Each folder is self-contained and we expect no cross dependencies between these folders. This repo does not contain the code for Streaming-TTS pipeline which will released in the near future.
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            ## Single Line Inference
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            To infer stage 3 model directly, run the command below:
         | 
| 105 | 
            +
            ```bash
         | 
| 106 | 
            +
            python llava/cli/infer_audio.py --model-base /path/to/checkpoint/af3-7b --conv-mode auto --text "Please describe the audio in detail" --media static/audio1.wav
         | 
| 107 | 
            +
            ```
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            To infer the model in stage 3.5 model, run the command below:
         | 
| 110 | 
            +
            ```bash
         | 
| 111 | 
            +
            python llava/cli/infer_audio.py --model-base /path/to/checkpoint/af3-7b --model-path /path/to/checkpoint/af3-7b/stage35 --conv-mode auto --text "Please describe the audio in detail" --media static/audio1.wav --peft-mode
         | 
| 112 | 
            +
            ```
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            ## References
         | 
| 115 | 
            +
             | 
| 116 | 
            +
            The main training and inferencing code within each folder are modified from [NVILA](https://github.com/NVlabs/VILA/tree/main) [Apache license](incl_licenses/License_1.md).
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            ## License
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            - The code in this repo is under [MIT license](incl_licenses/MIT_license.md).
         | 
| 121 | 
            +
            - The checkpoints are for non-commercial use only [NVIDIA OneWay Noncommercial License](incl_licenses/NVIDIA_OneWay_Noncommercial_License.docx). They are also subject to the [Qwen Research license](https://huggingface.co/Qwen/Qwen2.5-7B/blob/main/LICENSE), the [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and the original licenses accompanying each training dataset.
         | 
| 122 | 
            +
            - Notice: Audio Flamingo 3 is built with Qwen-2.5. Qwen is licensed under the Qwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.
         | 
| 123 | 
            +
             | 
| 124 | 
            +
             | 
| 125 | 
            +
            ## Citation
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            - Audio Flamingo 2
         | 
| 128 | 
            +
            ```
         | 
| 129 | 
            +
            @article{ghosh2025audio,
         | 
| 130 | 
            +
              title={Audio Flamingo 2: An Audio-Language Model with Long-Audio Understanding and Expert Reasoning Abilities},
         | 
| 131 | 
            +
              author={Ghosh, Sreyan and Kong, Zhifeng and Kumar, Sonal and Sakshi, S and Kim, Jaehyeon and Ping, Wei and Valle, Rafael and Manocha, Dinesh and Catanzaro, Bryan},
         | 
| 132 | 
            +
              journal={arXiv preprint arXiv:2503.03983},
         | 
| 133 | 
            +
              year={2025}
         | 
| 134 | 
            +
            }
         | 
| 135 | 
            +
            ```
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            - Audio Flamingo
         | 
| 138 | 
            +
            ```
         | 
| 139 | 
            +
            @inproceedings{kong2024audio,
         | 
| 140 | 
            +
              title={Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities},
         | 
| 141 | 
            +
              author={Kong, Zhifeng and Goel, Arushi and Badlani, Rohan and Ping, Wei and Valle, Rafael and Catanzaro, Bryan},
         | 
| 142 | 
            +
              booktitle={International Conference on Machine Learning},
         | 
| 143 | 
            +
              pages={25125--25148},
         | 
| 144 | 
            +
              year={2024},
         | 
| 145 | 
            +
              organization={PMLR}
         | 
| 146 | 
            +
            }
         | 
| 147 | 
            +
            ```
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,306 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            import llava
         | 
| 4 | 
            +
            from peft import PeftModel
         | 
| 5 | 
            +
            import os
         | 
| 6 | 
            +
            from huggingface_hub import snapshot_download
         | 
| 7 | 
            +
            import copy
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # ---------------------------------
         | 
| 10 | 
            +
            # SINGLE-TURN MODEL SETUP
         | 
| 11 | 
            +
            # ---------------------------------
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            MODEL_BASE_SINGLE = snapshot_download(repo_id="nvidia/audio-flamingo-3")
         | 
| 14 | 
            +
            MODEL_BASE_THINK = os.path.join(MODEL_BASE_SINGLE, 'stage35')
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            model_single = llava.load(MODEL_BASE_SINGLE, model_base=None)
         | 
| 17 | 
            +
            model_single_copy = copy.deepcopy(model_single)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            # Move the model to GPU
         | 
| 20 | 
            +
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         | 
| 21 | 
            +
            model_single = model_single.to_empty(device=device)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            generation_config_single = model_single.default_generation_config
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            model_think = PeftModel.from_pretrained(
         | 
| 26 | 
            +
                model_single,
         | 
| 27 | 
            +
                MODEL_BASE_THINK,
         | 
| 28 | 
            +
                device_map="auto",
         | 
| 29 | 
            +
                torch_dtype=torch.float16,
         | 
| 30 | 
            +
            )
         | 
| 31 | 
            +
            model_think.to(device)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            # # ---------------------------------
         | 
| 34 | 
            +
            # # MULTI-TURN MODEL SETUP
         | 
| 35 | 
            +
            # # ---------------------------------
         | 
| 36 | 
            +
            # MODEL_BASE_MULTI = snapshot_download(repo_id="nvidia/audio-flamingo-3-chat")
         | 
| 37 | 
            +
            # model_multi = llava.load(MODEL_BASE_MULTI, model_base=None, devices=[0])
         | 
| 38 | 
            +
            # generation_config_multi = model_multi.default_generation_config
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            # ---------------------------------
         | 
| 42 | 
            +
            # SINGLE-TURN INFERENCE FUNCTION
         | 
| 43 | 
            +
            # ---------------------------------
         | 
| 44 | 
            +
            def single_turn_infer(audio_file, prompt_text):
         | 
| 45 | 
            +
                try:
         | 
| 46 | 
            +
                    sound = llava.Sound(audio_file)
         | 
| 47 | 
            +
                    full_prompt = f"<sound>\n{prompt_text}"
         | 
| 48 | 
            +
                    response = model_single_copy.generate_content([sound, full_prompt], generation_config=generation_config_single)
         | 
| 49 | 
            +
                    return response
         | 
| 50 | 
            +
                except Exception as e:
         | 
| 51 | 
            +
                    return f"β Error: {str(e)}"
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            # ---------------------------------
         | 
| 54 | 
            +
            # MULTI-TURN INFERENCE FUNCTION
         | 
| 55 | 
            +
            # ---------------------------------
         | 
| 56 | 
            +
            # def multi_turn_chat(user_input, audio_file, history, current_audio):
         | 
| 57 | 
            +
            #     try:
         | 
| 58 | 
            +
            #         if audio_file is not None:
         | 
| 59 | 
            +
            #             current_audio = audio_file  # Update state if a new file is uploaded
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            #         if current_audio is None:
         | 
| 62 | 
            +
            #             return history + [("System", "β Please upload an audio file before chatting.")], history, current_audio
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            #         sound = llava.Sound(current_audio)
         | 
| 65 | 
            +
            #         prompt = f"<sound>\n{user_input}"
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            #         response = model_multi.generate_content([sound, prompt], generation_config=generation_config_multi)
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            #         history.append((user_input, response))
         | 
| 70 | 
            +
            #         return history, history, current_audio
         | 
| 71 | 
            +
            #     except Exception as e:
         | 
| 72 | 
            +
            #         history.append((user_input, f"β Error: {str(e)}"))
         | 
| 73 | 
            +
            #         return history, history, current_audio
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            def think_infer(audio_file, prompt_text):
         | 
| 76 | 
            +
                try:
         | 
| 77 | 
            +
                    sound = llava.Sound(audio_file)
         | 
| 78 | 
            +
                    full_prompt = f"<sound>\n{prompt_text}"
         | 
| 79 | 
            +
                    response = model_think.generate_content([sound, full_prompt], generation_config=generation_config_single)
         | 
| 80 | 
            +
                    return response
         | 
| 81 | 
            +
                except Exception as e:
         | 
| 82 | 
            +
                    return f"β Error: {str(e)}"
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            # ---------------------------------
         | 
| 85 | 
            +
            # MULTI-TURN INFERENCE FUNCTION
         | 
| 86 | 
            +
            # ---------------------------------
         | 
| 87 | 
            +
            # def multi_turn_chat(user_input, audio_file, history, current_audio):
         | 
| 88 | 
            +
            #     try:
         | 
| 89 | 
            +
            #         if audio_file is not None:
         | 
| 90 | 
            +
            #             current_audio = audio_file  # Update state if a new file is uploaded
         | 
| 91 | 
            +
             | 
| 92 | 
            +
            #         if current_audio is None:
         | 
| 93 | 
            +
            #             return history + [("System", "β Please upload an audio file before chatting.")], history, current_audio
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            #         sound = llava.Sound(current_audio)
         | 
| 96 | 
            +
            #         prompt = f"<sound>\n{user_input}"
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            #         response = model_multi.generate_content([sound, prompt], generation_config=generation_config_multi)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            #         history.append((user_input, response))
         | 
| 101 | 
            +
            #         return history, history, current_audio
         | 
| 102 | 
            +
            #     except Exception as e:
         | 
| 103 | 
            +
            #         history.append((user_input, f"β Error: {str(e)}"))
         | 
| 104 | 
            +
            #         return history, history, current_audio
         | 
| 105 | 
            +
            # ---------------------------------
         | 
| 106 | 
            +
            # INTERFACE
         | 
| 107 | 
            +
            # ---------------------------------
         | 
| 108 | 
            +
            with gr.Blocks(css="""
         | 
| 109 | 
            +
            .gradio-container { 
         | 
| 110 | 
            +
                max-width: 100% !important; 
         | 
| 111 | 
            +
                width: 100% !important;
         | 
| 112 | 
            +
                margin: 0 !important; 
         | 
| 113 | 
            +
                padding: 0 !important;
         | 
| 114 | 
            +
            }
         | 
| 115 | 
            +
            #component-0, .gr-block.gr-box { 
         | 
| 116 | 
            +
                width: 100% !important; 
         | 
| 117 | 
            +
            }
         | 
| 118 | 
            +
            .gr-block.gr-box, .gr-column, .gr-row {
         | 
| 119 | 
            +
                padding: 0 !important;
         | 
| 120 | 
            +
                margin: 0 !important;
         | 
| 121 | 
            +
            }
         | 
| 122 | 
            +
            """) as demo:
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                with gr.Column():
         | 
| 125 | 
            +
                    gr.HTML("""
         | 
| 126 | 
            +
            <div align="center">
         | 
| 127 | 
            +
              <img src="https://raw.githubusercontent.com/NVIDIA/audio-flamingo/audio_flamingo_3/static/logo-no-bg.png" alt="Audio Flamingo 3 Logo" width="120" style="margin-bottom: 10px;">
         | 
| 128 | 
            +
              <h2><strong>Audio Flamingo 3</strong></h2>
         | 
| 129 | 
            +
              <p><em>Advancing Audio Intelligence with Fully Open Large Audio-Language Models</em></p>
         | 
| 130 | 
            +
            </div>
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            <div align="center" style="margin-top: 10px;">
         | 
| 133 | 
            +
              <a href="https://arxiv.org/abs/2507.08128">
         | 
| 134 | 
            +
                <img src="https://img.shields.io/badge/arXiv-2503.03983-AD1C18" alt="arXiv" style="display:inline;">
         | 
| 135 | 
            +
              </a>
         | 
| 136 | 
            +
              <a href="https://research.nvidia.com/labs/adlr/AF3/">
         | 
| 137 | 
            +
                <img src="https://img.shields.io/badge/Demo%20page-228B22" alt="Demo Page" style="display:inline;">
         | 
| 138 | 
            +
              </a>
         | 
| 139 | 
            +
              <a href="https://github.com/NVIDIA/audio-flamingo">
         | 
| 140 | 
            +
                <img src="https://img.shields.io/badge/Github-Audio_Flamingo_3-9C276A" alt="GitHub" style="display:inline;">
         | 
| 141 | 
            +
              </a>
         | 
| 142 | 
            +
              <a href="https://github.com/NVIDIA/audio-flamingo/stargazers">
         | 
| 143 | 
            +
                <img src="https://img.shields.io/github/stars/NVIDIA/audio-flamingo.svg?style=social" alt="GitHub Stars" style="display:inline;">
         | 
| 144 | 
            +
              </a>
         | 
| 145 | 
            +
            </div>
         | 
| 146 | 
            +
            <div align="center" style="display: flex; justify-content: center; margin-top: 10px; flex-wrap: wrap; gap: 5px;">
         | 
| 147 | 
            +
              <a href="https://huggingface.co/nvidia/audio-flamingo-3">
         | 
| 148 | 
            +
                <img src="https://img.shields.io/badge/π€-Checkpoints-ED5A22.svg">
         | 
| 149 | 
            +
              </a>
         | 
| 150 | 
            +
              <a href="https://huggingface.co/nvidia/audio-flamingo-3-chat">
         | 
| 151 | 
            +
                <img src="https://img.shields.io/badge/π€-Checkpoints_(Chat)-ED5A22.svg">
         | 
| 152 | 
            +
              </a>
         | 
| 153 | 
            +
            </div>
         | 
| 154 | 
            +
            <div align="center" style="display: flex; justify-content: center; margin-top: 10px; flex-wrap: wrap; gap: 5px;">
         | 
| 155 | 
            +
              <a href="https://huggingface.co/datasets/nvidia/AudioSkills">
         | 
| 156 | 
            +
                <img src="https://img.shields.io/badge/π€-Dataset:_AudioSkills--XL-ED5A22.svg">
         | 
| 157 | 
            +
              </a>
         | 
| 158 | 
            +
              <a href="https://huggingface.co/datasets/nvidia/LongAudio">
         | 
| 159 | 
            +
                <img src="https://img.shields.io/badge/π€-Dataset:_LongAudio--XL-ED5A22.svg">
         | 
| 160 | 
            +
              </a>
         | 
| 161 | 
            +
              <a href="https://huggingface.co/datasets/nvidia/AF-Chat">
         | 
| 162 | 
            +
                <img src="https://img.shields.io/badge/π€-Dataset:_AF--Chat-ED5A22.svg">
         | 
| 163 | 
            +
              </a>
         | 
| 164 | 
            +
              <a href="https://huggingface.co/datasets/nvidia/AF-Think">
         | 
| 165 | 
            +
                <img src="https://img.shields.io/badge/π€-Dataset:_AF--Think-ED5A22.svg">
         | 
| 166 | 
            +
              </a>
         | 
| 167 | 
            +
            </div>
         | 
| 168 | 
            +
            """)
         | 
| 169 | 
            +
                # gr.Markdown("#### NVIDIA (2025)")
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                with gr.Tabs():
         | 
| 172 | 
            +
                    # ---------------- SINGLE-TURN ----------------
         | 
| 173 | 
            +
                    with gr.Tab("π― Single-Turn Inference"):
         | 
| 174 | 
            +
                        with gr.Row():
         | 
| 175 | 
            +
                            with gr.Column():
         | 
| 176 | 
            +
                                audio_input_single = gr.Audio(type="filepath", label="Upload Audio")
         | 
| 177 | 
            +
                                prompt_input_single = gr.Textbox(label="Prompt", placeholder="Ask a question about the audio...", lines=8)
         | 
| 178 | 
            +
                                btn_single = gr.Button("Generate Answer")
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                                gr.Examples(
         | 
| 181 | 
            +
                                    examples=[
         | 
| 182 | 
            +
                                        ["static/emergent/audio1.wav", "What is surprising about the relationship between the barking and the music?"],
         | 
| 183 | 
            +
                                        ["static/audio/audio2.wav", "Please describe the audio in detail."],
         | 
| 184 | 
            +
                                        ["static/speech/audio3.wav", "Transcribe any speech you hear."],
         | 
| 185 | 
            +
                                    ],
         | 
| 186 | 
            +
                                    inputs=[audio_input_single, prompt_input_single],
         | 
| 187 | 
            +
                                    label="π§ͺ Try Examples"
         | 
| 188 | 
            +
                                )
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                            with gr.Column():
         | 
| 191 | 
            +
                                output_single = gr.Textbox(label="Model Response", lines=15)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                        btn_single.click(fn=single_turn_infer, inputs=[audio_input_single, prompt_input_single], outputs=output_single)
         | 
| 194 | 
            +
                    with gr.Tab("π€ Think / Long"):
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                        with gr.Row():
         | 
| 197 | 
            +
                            with gr.Column():
         | 
| 198 | 
            +
                                audio_input_think = gr.Audio(type="filepath", label="Upload Audio")
         | 
| 199 | 
            +
                                prompt_input_think = gr.Textbox(label="Prompt", placeholder="To enable thinking, please add the text: '\nPlease think and reason about the input music before you respond.' to your prompt.", lines=8)
         | 
| 200 | 
            +
                                btn_think = gr.Button("Generate Answer")
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                                gr.Examples(
         | 
| 203 | 
            +
                                    examples=[
         | 
| 204 | 
            +
                                        ["static/think/audio1.wav", "What are the two people doing in the audio Choose the correct option from the following options:\n(A) One person is demonstrating how to use the equipment\n(B) The two people are discussing how to use the equipment\n(C) The two people are disassembling the equipment\n(D) One person is teaching another person how to use a piece of equipment\n"],
         | 
| 205 | 
            +
                                        ["static/think/audio2.wav", "Is the boat in the video moving closer or further away? Choose the correct option from the following options:\n(A) Closer\n(B) Further\n"],
         | 
| 206 | 
            +
                                        ["static/speech/videoplayback.wav", "Generate a detailed caption for the input audio, describing all notable speech, sound, and musical events comprehensively. In the caption, transcribe all spoken content by all speakers in the audio precisely."],
         | 
| 207 | 
            +
                                        ["static/speech/speaker1.flac", "Transcribe any input speech in the input audio."],
         | 
| 208 | 
            +
                                    ],
         | 
| 209 | 
            +
                                    inputs=[audio_input_think, prompt_input_think],
         | 
| 210 | 
            +
                                    label="π§ͺ Try Examples"
         | 
| 211 | 
            +
                                )
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                            with gr.Column():
         | 
| 214 | 
            +
                                output_think = gr.Textbox(label="Model Response", lines=30)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                        btn_think.click(fn=think_infer, inputs=[audio_input_think, prompt_input_think], outputs=output_think)
         | 
| 217 | 
            +
                    # ---------------- MULTI-TURN CHAT ----------------
         | 
| 218 | 
            +
                    with gr.Tab("π¬ Multi-Turn Chat"):
         | 
| 219 | 
            +
                        # chatbot = gr.Chatbot(label="Audio Chatbot")
         | 
| 220 | 
            +
                        # audio_input_multi = gr.Audio(type="filepath", label="Upload or Replace Audio Context")
         | 
| 221 | 
            +
                        # user_input_multi = gr.Textbox(label="Your message", placeholder="Ask a question about the audio...", lines=8)
         | 
| 222 | 
            +
                        # btn_multi = gr.Button("Send")
         | 
| 223 | 
            +
                        # history_state = gr.State([])           # Chat history
         | 
| 224 | 
            +
                        # current_audio_state = gr.State(None)   # Most recent audio file path
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                        # btn_multi.click(
         | 
| 227 | 
            +
                        #     fn=multi_turn_chat,
         | 
| 228 | 
            +
                        #     inputs=[user_input_multi, audio_input_multi, history_state, current_audio_state],
         | 
| 229 | 
            +
                        #     outputs=[chatbot, history_state, current_audio_state]
         | 
| 230 | 
            +
                        # )
         | 
| 231 | 
            +
                        # gr.Examples(
         | 
| 232 | 
            +
                        #     examples=[
         | 
| 233 | 
            +
                        #         ["static/chat/audio1.mp3", "This track feels really peaceful and introspective. What elements make it feel so calming and meditative?"],
         | 
| 234 | 
            +
                        #         ["static/chat/audio2.mp3", "Switching gears, this one is super energetic and synthetic. If I wanted to remix the calming folk piece into something closer to this, what would you suggest?"],
         | 
| 235 | 
            +
                        #     ],
         | 
| 236 | 
            +
                        #     inputs=[audio_input_multi, user_input_multi],
         | 
| 237 | 
            +
                        #     label="π§ͺ Try Examples"
         | 
| 238 | 
            +
                        # )
         | 
| 239 | 
            +
                        # Add the link to another Gradio demo here
         | 
| 240 | 
            +
                        gr.Markdown("π [Check out our other Gradio demo here](https://huggingface.co/spaces/nvidia/audio-flamingo-3-chat)")
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                    with gr.Tab("π£οΈ Speech Prompt"):
         | 
| 243 | 
            +
                        # gr.Markdown("Use your **voice** to talk to the model.")
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                        # with gr.Row():
         | 
| 246 | 
            +
                        #     with gr.Column():
         | 
| 247 | 
            +
                        #         speech_input = gr.Audio(type="filepath", label="Speak or Upload Audio")
         | 
| 248 | 
            +
                        #         btn_speech = gr.Button("Submit")
         | 
| 249 | 
            +
                        #     gr.Examples(
         | 
| 250 | 
            +
                        #             examples=[
         | 
| 251 | 
            +
                        #                 ["static/voice/voice_0.mp3"],
         | 
| 252 | 
            +
                        #                 ["static/voice/voice_1.mp3"],
         | 
| 253 | 
            +
                        #                 ["static/voice/voice_2.mp3"],
         | 
| 254 | 
            +
                        #             ],
         | 
| 255 | 
            +
                        #             inputs=speech_input,
         | 
| 256 | 
            +
                        #             label="π§ͺ Try Examples"
         | 
| 257 | 
            +
                        #         )
         | 
| 258 | 
            +
                        #     with gr.Column():
         | 
| 259 | 
            +
                        #         response_box = gr.Textbox(label="Model Response", lines=15)
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                        # btn_speech.click(fn=speech_prompt_infer, inputs=speech_input, outputs=response_box)
         | 
| 262 | 
            +
                        # Add the link to another Gradio demo here
         | 
| 263 | 
            +
                        gr.Markdown("π [Check out our other Gradio demo here](https://huggingface.co/spaces/nvidia/audio-flamingo-3-chat)")
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    # ---------------- ABOUT ----------------
         | 
| 266 | 
            +
                    with gr.Tab("π About"):
         | 
| 267 | 
            +
                        gr.Markdown("""
         | 
| 268 | 
            +
            ### π Overview
         | 
| 269 | 
            +
             | 
| 270 | 
            +
            **Audio Flamingo 3** is a fully open state-of-the-art (SOTA) large audio-language model that advances reasoning and understanding across speech, sound, and music. AF3 introduces:
         | 
| 271 | 
            +
             | 
| 272 | 
            +
            (i) AF-Whisper, a unified audio encoder trained using a novel strategy for joint representation learning across all 3 modalities of speech, sound, and music;
         | 
| 273 | 
            +
             | 
| 274 | 
            +
            (ii) flexible, on-demand thinking, allowing the model to do chain-of-thought reasoning before answering;
         | 
| 275 | 
            +
             | 
| 276 | 
            +
            (iii) multi-turn, multi-audio chat;
         | 
| 277 | 
            +
             | 
| 278 | 
            +
            (iv) long audio understanding and reasoning (including speech) up to 10 minutes; and
         | 
| 279 | 
            +
             | 
| 280 | 
            +
            (v) voice-to-voice interaction.
         | 
| 281 | 
            +
             | 
| 282 | 
            +
            To enable these capabilities, we propose several large-scale training datasets curated using novel strategies, including AudioSkills-XL, LongAudio-XL, AF-Think, and AF-Chat, and train AF3 with a novel five-stage curriculum-based training strategy. Trained on only open-source audio data, AF3 achieves new SOTA results on over 20+ (long) audio understanding and reasoning benchmarks, surpassing both open-weight and closed-source models trained on much larger datasets.
         | 
| 283 | 
            +
             | 
| 284 | 
            +
            **Key Features:**
         | 
| 285 | 
            +
             | 
| 286 | 
            +
            π‘ Audio Flamingo 3 has strong audio, music and speech understanding capabilities.
         | 
| 287 | 
            +
             | 
| 288 | 
            +
            π‘ Audio Flamingo 3 supports on-demand thinking for chain-of-though reasoning.
         | 
| 289 | 
            +
             | 
| 290 | 
            +
            π‘ Audio Flamingo 3 supports long audio and speech understanding for audios up to 10 minutes.
         | 
| 291 | 
            +
             | 
| 292 | 
            +
            π‘ Audio Flamingo 3 can have multi-turn, multi-audio chat with users under complex context.
         | 
| 293 | 
            +
             | 
| 294 | 
            +
            π‘ Audio Flamingo 3 has voice-to-voice conversation abilities.
         | 
| 295 | 
            +
             | 
| 296 | 
            +
             | 
| 297 | 
            +
            """)
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                gr.Markdown("Β© 2025 NVIDIA | Built with β€οΈ using Gradio + PyTorch")
         | 
| 300 | 
            +
             | 
| 301 | 
            +
             | 
| 302 | 
            +
            # -----------------------
         | 
| 303 | 
            +
            # Launch App
         | 
| 304 | 
            +
            # -----------------------
         | 
| 305 | 
            +
            if __name__ == "__main__":
         | 
| 306 | 
            +
                demo.launch(share=True)
         | 
    	
        llava/__init__.py
    ADDED
    
    | @@ -0,0 +1,8 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from .entry import *
         | 
| 8 | 
            +
            from .media import *
         | 
    	
        llava/cli/infer_audio.py
    ADDED
    
    | @@ -0,0 +1,88 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import argparse
         | 
| 8 | 
            +
            import importlib.util
         | 
| 9 | 
            +
            import json
         | 
| 10 | 
            +
            import os
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from pydantic import BaseModel
         | 
| 13 | 
            +
            from termcolor import colored
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import llava
         | 
| 16 | 
            +
            from llava import conversation as clib
         | 
| 17 | 
            +
            from llava.media import Image, Video, Sound
         | 
| 18 | 
            +
            from llava.model.configuration_llava import JsonSchemaResponseFormat, ResponseFormat
         | 
| 19 | 
            +
            from peft import PeftModel
         | 
| 20 | 
            +
            import torch
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            def get_schema_from_python_path(path: str) -> str:
         | 
| 23 | 
            +
                schema_path = os.path.abspath(path)
         | 
| 24 | 
            +
                spec = importlib.util.spec_from_file_location("schema_module", schema_path)
         | 
| 25 | 
            +
                schema_module = importlib.util.module_from_spec(spec)
         | 
| 26 | 
            +
                spec.loader.exec_module(schema_module)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                # Get the Main class from the loaded module
         | 
| 29 | 
            +
                Main = schema_module.Main
         | 
| 30 | 
            +
                assert issubclass(
         | 
| 31 | 
            +
                    Main, BaseModel
         | 
| 32 | 
            +
                ), f"The provided python file {path} does not contain a class Main that describes a JSON schema"
         | 
| 33 | 
            +
                return Main.schema_json()
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            def main() -> None:
         | 
| 37 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 38 | 
            +
                parser.add_argument("--model-base", "-mb", type=str, required=True)
         | 
| 39 | 
            +
                parser.add_argument("--model-path", "-mp", type=str, required=True)
         | 
| 40 | 
            +
                parser.add_argument("--conv-mode", "-c", type=str, default="auto")
         | 
| 41 | 
            +
                parser.add_argument("--text", type=str)
         | 
| 42 | 
            +
                parser.add_argument("--media", type=str, nargs="+")
         | 
| 43 | 
            +
                parser.add_argument("--json-mode", action="store_true")
         | 
| 44 | 
            +
                parser.add_argument("--peft-mode", action="store_true")
         | 
| 45 | 
            +
                parser.add_argument("--json-schema", type=str, default=None)
         | 
| 46 | 
            +
                args = parser.parse_args()
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                # Convert json mode to response format
         | 
| 49 | 
            +
                if not args.json_mode:
         | 
| 50 | 
            +
                    response_format = None
         | 
| 51 | 
            +
                elif args.json_schema is None:
         | 
| 52 | 
            +
                    response_format = ResponseFormat(type="json_object")
         | 
| 53 | 
            +
                else:
         | 
| 54 | 
            +
                    schema_str = get_schema_from_python_path(args.json_schema)
         | 
| 55 | 
            +
                    print(schema_str)
         | 
| 56 | 
            +
                    response_format = ResponseFormat(type="json_schema", json_schema=JsonSchemaResponseFormat(schema=schema_str))
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                # Load model
         | 
| 59 | 
            +
                model = llava.load(args.model_base)
         | 
| 60 | 
            +
                if args.peft_mode:
         | 
| 61 | 
            +
                    model = PeftModel.from_pretrained(
         | 
| 62 | 
            +
                        model,
         | 
| 63 | 
            +
                        args.model_path,
         | 
| 64 | 
            +
                        device_map="auto",
         | 
| 65 | 
            +
                        torch_dtype=torch.float16,
         | 
| 66 | 
            +
                    )
         | 
| 67 | 
            +
                # Set conversation mode
         | 
| 68 | 
            +
                clib.default_conversation = clib.conv_templates[args.conv_mode].copy()
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                # Prepare multi-modal prompt
         | 
| 71 | 
            +
                prompt = []
         | 
| 72 | 
            +
                if args.media is not None:
         | 
| 73 | 
            +
                    for media in args.media or []:
         | 
| 74 | 
            +
                        if any(media.endswith(ext) for ext in [".wav",".mp3", ".flac"]):
         | 
| 75 | 
            +
                            media = Sound(media)
         | 
| 76 | 
            +
                        else:
         | 
| 77 | 
            +
                            raise ValueError(f"Unsupported media type: {media}")
         | 
| 78 | 
            +
                        prompt.append(media)
         | 
| 79 | 
            +
                if args.text is not None:
         | 
| 80 | 
            +
                    prompt.append(args.text)
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                # Generate response
         | 
| 83 | 
            +
                response = model.generate_content(prompt, response_format=response_format)
         | 
| 84 | 
            +
                print(colored(response, "cyan", attrs=["bold"]))
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            if __name__ == "__main__":
         | 
| 88 | 
            +
                main()
         | 
    	
        llava/constants.py
    ADDED
    
    | @@ -0,0 +1,55 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #      http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            # This file is modified from https://github.com/haotian-liu/LLaVA/
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            CONTROLLER_HEART_BEAT_EXPIRATION = 30
         | 
| 26 | 
            +
            WORKER_HEART_BEAT_INTERVAL = 15
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            LOGDIR = "."
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            # Model Constants
         | 
| 31 | 
            +
            IGNORE_INDEX = -100
         | 
| 32 | 
            +
            DEFAULT_SOUND_TOKEN = "<sound>"
         | 
| 33 | 
            +
            DEFAULT_SPEECH_TOKEN = "<speech>"
         | 
| 34 | 
            +
            SENTINEL_TOKEN = "<vila/sentinel>"
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            MEDIA_TOKENS = {
         | 
| 37 | 
            +
                "speech": "<speech>",
         | 
| 38 | 
            +
                "sound": "<sound>",
         | 
| 39 | 
            +
            }
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            """
         | 
| 43 | 
            +
            151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 44 | 
            +
            151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 45 | 
            +
            151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 46 | 
            +
            151646: AddedToken("[BOS]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 47 | 
            +
            151647: AddedToken("[PAD]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 48 | 
            +
            151648: AddedToken("<vila/sentinel>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 49 | 
            +
            151649: AddedToken("<image>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 50 | 
            +
            151650: AddedToken("<vila/video>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 51 | 
            +
            151651: AddedToken("<sound>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 52 | 
            +
            151652: AddedToken("<speech>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            """
         | 
| 55 | 
            +
            NUM_EXTRA_TOKENS = 10
         | 
    	
        llava/conversation.py
    ADDED
    
    | @@ -0,0 +1,197 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #      http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
            # This file is modified from https://github.com/haotian-liu/LLaVA/
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            import dataclasses
         | 
| 25 | 
            +
            from enum import Enum, auto
         | 
| 26 | 
            +
            from typing import List
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            from llava.utils.logging import logger
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            class SeparatorStyle(Enum):
         | 
| 32 | 
            +
                """Different separator style."""
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                AUTO = auto()
         | 
| 35 | 
            +
                TWO = auto()
         | 
| 36 | 
            +
                MPT = auto()
         | 
| 37 | 
            +
                PLAIN = auto()
         | 
| 38 | 
            +
                LLAMA_3 = auto()
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            @dataclasses.dataclass
         | 
| 42 | 
            +
            class Conversation:
         | 
| 43 | 
            +
                """A class that keeps all conversation history."""
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                system: str
         | 
| 46 | 
            +
                roles: List[str]
         | 
| 47 | 
            +
                messages: List[List[str]]
         | 
| 48 | 
            +
                sep_style: SeparatorStyle = SeparatorStyle.AUTO
         | 
| 49 | 
            +
                sep: str = "###"
         | 
| 50 | 
            +
                sep2: str = None
         | 
| 51 | 
            +
                version: str = "Unknown"
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                def get_prompt(self):
         | 
| 54 | 
            +
                    messages = self.messages
         | 
| 55 | 
            +
                    if len(messages) > 0 and type(messages[0][1]) is tuple:
         | 
| 56 | 
            +
                        messages = self.messages.copy()
         | 
| 57 | 
            +
                        init_role, init_msg = messages[0].copy()
         | 
| 58 | 
            +
                        init_msg = init_msg[0].replace("<image>", "").strip()
         | 
| 59 | 
            +
                        messages[0] = (init_role, "<image>\n" + init_msg)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    if self.sep_style == SeparatorStyle.TWO:
         | 
| 62 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 63 | 
            +
                        ret = self.system + seps[0]
         | 
| 64 | 
            +
                        for i, (role, message) in enumerate(messages):
         | 
| 65 | 
            +
                            if message:
         | 
| 66 | 
            +
                                if type(message) is tuple:
         | 
| 67 | 
            +
                                    message, _, _ = message
         | 
| 68 | 
            +
                                ret += role + ": " + message + seps[i % 2]
         | 
| 69 | 
            +
                            else:
         | 
| 70 | 
            +
                                ret += role + ":"
         | 
| 71 | 
            +
                    elif self.sep_style == SeparatorStyle.LLAMA_3:
         | 
| 72 | 
            +
                        ret = self.system + self.sep
         | 
| 73 | 
            +
                        for rid, (role, message) in enumerate(messages):
         | 
| 74 | 
            +
                            if message:
         | 
| 75 | 
            +
                                if type(message) is tuple:
         | 
| 76 | 
            +
                                    message = message[0]
         | 
| 77 | 
            +
                                sep = self.sep if rid < len(messages) - 1 else self.sep2
         | 
| 78 | 
            +
                                ret += role + message + sep
         | 
| 79 | 
            +
                            else:
         | 
| 80 | 
            +
                                ret += role
         | 
| 81 | 
            +
                    elif self.sep_style == SeparatorStyle.MPT:
         | 
| 82 | 
            +
                        ret = self.system + self.sep
         | 
| 83 | 
            +
                        for role, message in messages:
         | 
| 84 | 
            +
                            if message:
         | 
| 85 | 
            +
                                if type(message) is tuple:
         | 
| 86 | 
            +
                                    message, _, _ = message
         | 
| 87 | 
            +
                                ret += role + message + self.sep
         | 
| 88 | 
            +
                            else:
         | 
| 89 | 
            +
                                ret += role
         | 
| 90 | 
            +
                    elif self.sep_style == SeparatorStyle.PLAIN:
         | 
| 91 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 92 | 
            +
                        ret = self.system
         | 
| 93 | 
            +
                        for i, (role, message) in enumerate(messages):
         | 
| 94 | 
            +
                            if message:
         | 
| 95 | 
            +
                                if type(message) is tuple:
         | 
| 96 | 
            +
                                    message, _, _ = message
         | 
| 97 | 
            +
                                ret += message + seps[i % 2]
         | 
| 98 | 
            +
                            else:
         | 
| 99 | 
            +
                                ret += ""
         | 
| 100 | 
            +
                    else:
         | 
| 101 | 
            +
                        raise ValueError(f"Invalid style: {self.sep_style}")
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    return ret
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                def append_message(self, role, message):
         | 
| 106 | 
            +
                    self.messages.append([role, message])
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                def copy(self):
         | 
| 109 | 
            +
                    return Conversation(
         | 
| 110 | 
            +
                        system=self.system,
         | 
| 111 | 
            +
                        roles=self.roles,
         | 
| 112 | 
            +
                        messages=[[x, y] for x, y in self.messages],
         | 
| 113 | 
            +
                        sep_style=self.sep_style,
         | 
| 114 | 
            +
                        sep=self.sep,
         | 
| 115 | 
            +
                        sep2=self.sep2,
         | 
| 116 | 
            +
                        version=self.version,
         | 
| 117 | 
            +
                    )
         | 
| 118 | 
            +
             | 
| 119 | 
            +
             | 
| 120 | 
            +
            conv_auto = Conversation(
         | 
| 121 | 
            +
                system="",
         | 
| 122 | 
            +
                roles=("", ""),
         | 
| 123 | 
            +
                messages=(),
         | 
| 124 | 
            +
                sep_style=SeparatorStyle.AUTO,
         | 
| 125 | 
            +
                sep="\n",
         | 
| 126 | 
            +
            )
         | 
| 127 | 
            +
             | 
| 128 | 
            +
            conv_vicuna_v1 = Conversation(
         | 
| 129 | 
            +
                system="A chat between a curious user and an artificial intelligence assistant. "
         | 
| 130 | 
            +
                "The assistant gives helpful, detailed, and polite answers to the user's questions.",
         | 
| 131 | 
            +
                roles=("USER", "ASSISTANT"),
         | 
| 132 | 
            +
                version="v1",
         | 
| 133 | 
            +
                messages=(),
         | 
| 134 | 
            +
                sep_style=SeparatorStyle.TWO,
         | 
| 135 | 
            +
                sep=" ",
         | 
| 136 | 
            +
                sep2="</s>",
         | 
| 137 | 
            +
            )
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            conv_llava_plain = Conversation(
         | 
| 140 | 
            +
                system="",
         | 
| 141 | 
            +
                roles=("", ""),
         | 
| 142 | 
            +
                messages=(),
         | 
| 143 | 
            +
                sep_style=SeparatorStyle.PLAIN,
         | 
| 144 | 
            +
                sep="\n",
         | 
| 145 | 
            +
            )
         | 
| 146 | 
            +
             | 
| 147 | 
            +
            hermes_2 = Conversation(
         | 
| 148 | 
            +
                system="<|im_start|>system\nAnswer the questions.",
         | 
| 149 | 
            +
                roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
         | 
| 150 | 
            +
                sep_style=SeparatorStyle.MPT,
         | 
| 151 | 
            +
                sep="<|im_end|>",
         | 
| 152 | 
            +
                messages=(),
         | 
| 153 | 
            +
                version="hermes-2",
         | 
| 154 | 
            +
            )
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            # Template added by Yukang. Note (kentang-mit@): sep is <|eot_id|> for official template.
         | 
| 157 | 
            +
            llama_3_chat = Conversation(
         | 
| 158 | 
            +
                system="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. "
         | 
| 159 | 
            +
                "You are able to understand the visual content that the user provides, "
         | 
| 160 | 
            +
                "and assist the user with a variety of tasks using natural language.",
         | 
| 161 | 
            +
                roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
         | 
| 162 | 
            +
                version="llama_v3",
         | 
| 163 | 
            +
                messages=(),
         | 
| 164 | 
            +
                sep_style=SeparatorStyle.LLAMA_3,
         | 
| 165 | 
            +
                sep="<|eot_id|>",
         | 
| 166 | 
            +
                sep2="<|end_of_text|>",
         | 
| 167 | 
            +
            )
         | 
| 168 | 
            +
             | 
| 169 | 
            +
             | 
| 170 | 
            +
            default_conversation = conv_auto
         | 
| 171 | 
            +
            conv_templates = {
         | 
| 172 | 
            +
                "auto": conv_auto,
         | 
| 173 | 
            +
                "hermes-2": hermes_2,
         | 
| 174 | 
            +
                "llama_3": llama_3_chat,
         | 
| 175 | 
            +
                "v1": conv_vicuna_v1,
         | 
| 176 | 
            +
                "vicuna_v1": conv_vicuna_v1,
         | 
| 177 | 
            +
                "plain": conv_llava_plain,
         | 
| 178 | 
            +
            }
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
            CONVERSATION_MODE_MAPPING = {
         | 
| 182 | 
            +
                "vila1.5-3b": "vicuna_v1",
         | 
| 183 | 
            +
                "vila1.5-8b": "llama_3",
         | 
| 184 | 
            +
                "vila1.5-13b": "vicuna_v1",
         | 
| 185 | 
            +
                "vila1.5-40b": "hermes-2",
         | 
| 186 | 
            +
                "llama-3": "llama_3",
         | 
| 187 | 
            +
                "llama3": "llama_3",
         | 
| 188 | 
            +
            }
         | 
| 189 | 
            +
             | 
| 190 | 
            +
             | 
| 191 | 
            +
            def auto_set_conversation_mode(model_name_or_path: str) -> str:
         | 
| 192 | 
            +
                global default_conversation
         | 
| 193 | 
            +
                for k, v in CONVERSATION_MODE_MAPPING.items():
         | 
| 194 | 
            +
                    if k in model_name_or_path.lower():
         | 
| 195 | 
            +
                        logger.info(f"Setting conversation mode to `{v}` based on model name/path `{model_name_or_path}`.")
         | 
| 196 | 
            +
                        default_conversation = conv_templates[v]
         | 
| 197 | 
            +
                        return
         | 
    	
        llava/data/__init__.py
    ADDED
    
    | @@ -0,0 +1,9 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from .builder import *
         | 
| 8 | 
            +
            from .dataset import *
         | 
| 9 | 
            +
            from .datasets_mixture import *
         | 
    	
        llava/data/base.py
    ADDED
    
    | @@ -0,0 +1,95 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import random
         | 
| 8 | 
            +
            from typing import Any, Dict, List
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import torch
         | 
| 11 | 
            +
            from torch.utils.data import Dataset
         | 
| 12 | 
            +
            from transformers import PreTrainedTokenizer
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from llava.mm_utils import dynamic_process_images_and_prompt, dynamic_s2_process_images_and_prompt, process_images
         | 
| 15 | 
            +
            from llava.train.args import DataArguments
         | 
| 16 | 
            +
            from llava.utils.logging import logger
         | 
| 17 | 
            +
            from llava.utils.media import extract_media
         | 
| 18 | 
            +
            from llava.utils.tokenizer import preprocess_conversation
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            __all__ = ["BaseDataset"]
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            def _process_speech(speech: List[Any], data_args: DataArguments) -> torch.Tensor:
         | 
| 23 | 
            +
                return torch.tensor(speech)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            def _process_sound(sound: List[Any], data_args: DataArguments) -> torch.Tensor:
         | 
| 26 | 
            +
                return torch.tensor(sound)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            def _process_sound_masks(sound_masks: List[Any], data_args: DataArguments) -> torch.Tensor:
         | 
| 29 | 
            +
                return torch.tensor(sound_masks)
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            class BaseDataset(Dataset):
         | 
| 33 | 
            +
                def __init__(
         | 
| 34 | 
            +
                    self,
         | 
| 35 | 
            +
                    tokenizer: PreTrainedTokenizer,
         | 
| 36 | 
            +
                    data_args: DataArguments,
         | 
| 37 | 
            +
                    no_system_prompt: bool = False,
         | 
| 38 | 
            +
                    **kwargs: Any,
         | 
| 39 | 
            +
                ) -> None:
         | 
| 40 | 
            +
                    super().__init__()
         | 
| 41 | 
            +
                    self.tokenizer = tokenizer
         | 
| 42 | 
            +
                    self.data_args = data_args
         | 
| 43 | 
            +
                    self.no_system_prompt = no_system_prompt
         | 
| 44 | 
            +
                    self.instances = []
         | 
| 45 | 
            +
                    self.enable_dynamic_res = False
         | 
| 46 | 
            +
                    self.enable_dynamic_res_s2 = False
         | 
| 47 | 
            +
                    # global_batch_size: int,
         | 
| 48 | 
            +
                    self.global_batch_size = kwargs.get("global_batch_size", 1)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                    # by default, dataset cls will resample on failure
         | 
| 51 | 
            +
                    self.resample_on_failure = kwargs.get("resample_on_failure", True)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    # by default, dataset cls will resample on failure
         | 
| 54 | 
            +
                    self.resample_on_failure = kwargs.get("resample_on_failure", True)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                def process(self, instance: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 57 | 
            +
                    raise NotImplementedError
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                def __getitem__(self, index: int) -> Dict[str, Any]:
         | 
| 60 | 
            +
                    instance = self.instances[index]
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    try:
         | 
| 63 | 
            +
                        # Process instance to conversation
         | 
| 64 | 
            +
                        conversation = self.process(instance)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                        # Extract media from conversation
         | 
| 67 | 
            +
                        media, media_meta = extract_media(conversation, self.data_args)
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                        if "speech" in media:
         | 
| 70 | 
            +
                            processed_speech = _process_speech(media["speech"], self.data_args)
         | 
| 71 | 
            +
                        if "sound" in media:
         | 
| 72 | 
            +
                            processed_sound = _process_sound(media["sound"], self.data_args)
         | 
| 73 | 
            +
                            processed_sound_feature_masks = _process_sound_masks(media_meta["sound_feature_masks"], self.data_args)
         | 
| 74 | 
            +
                            processed_sound_embed_masks = _process_sound_masks(media_meta["sound_embed_masks"], self.data_args)
         | 
| 75 | 
            +
                        # Prepare "input_ids" and "labels" for training
         | 
| 76 | 
            +
                        data = preprocess_conversation(conversation, self.tokenizer, no_system_prompt=self.no_system_prompt)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                        if "speech" in media:
         | 
| 79 | 
            +
                            data["speech"] = processed_speech
         | 
| 80 | 
            +
                        if "sound" in media:
         | 
| 81 | 
            +
                            data["sound"] = processed_sound
         | 
| 82 | 
            +
                            data["sound_feature_masks"] = processed_sound_feature_masks
         | 
| 83 | 
            +
                            data["sound_embed_masks"] = processed_sound_embed_masks
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    except Exception as e:
         | 
| 86 | 
            +
                        if not self.resample_on_failure:
         | 
| 87 | 
            +
                            raise e
         | 
| 88 | 
            +
                        else:
         | 
| 89 | 
            +
                            logger.exception(f"Error processing instance '{instance}': '{e}'. Resampling.")
         | 
| 90 | 
            +
                            return self.__getitem__(random.randint(0, len(self.instances) - 1))
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    return data
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                def __len__(self) -> int:
         | 
| 95 | 
            +
                    return len(self.instances)
         | 
    	
        llava/data/builder.py
    ADDED
    
    | @@ -0,0 +1,193 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import os
         | 
| 8 | 
            +
            import os.path as osp
         | 
| 9 | 
            +
            from itertools import chain
         | 
| 10 | 
            +
            from typing import Any, List, Optional
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import torch
         | 
| 13 | 
            +
            import torch.distributed as dist
         | 
| 14 | 
            +
            from hydra.utils import instantiate
         | 
| 15 | 
            +
            from torch.utils.data import ConcatDataset, Dataset
         | 
| 16 | 
            +
            from transformers import PreTrainedTokenizer
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from llava.data.datasets_mixture import DATASETS_LEGACY
         | 
| 19 | 
            +
            from llava.train.args import DataArguments, TrainingArguments
         | 
| 20 | 
            +
            from llava.utils import io
         | 
| 21 | 
            +
            from llava.utils.logging import logger
         | 
| 22 | 
            +
            import time
         | 
| 23 | 
            +
            import numpy as np
         | 
| 24 | 
            +
            __all__ = ["DATASETS", "MIXTURES", "register_datasets", "register_mixtures", "parse_mixture", "build_dataset"]
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            def load_dataset_yaml(name):
         | 
| 28 | 
            +
                fname = f"{name}.yaml" if not name.endswith(".yaml") else name
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                # yaml under llava/data/registry/datasets
         | 
| 31 | 
            +
                repo_path = osp.join(osp.dirname(__file__), "registry", "datasets", fname)
         | 
| 32 | 
            +
                if osp.exists(repo_path):
         | 
| 33 | 
            +
                    return repo_path
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                # # yaml under <fs yaml path>
         | 
| 36 | 
            +
                abs_path = osp.expanduser(fname)
         | 
| 37 | 
            +
                if osp.exists(abs_path):
         | 
| 38 | 
            +
                    return abs_path
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                raise FileNotFoundError(f"Dataset '{name}' is not found in the {repo_path} or {abs_path}.")
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            def register_datasets(name: Optional[str] = None):
         | 
| 44 | 
            +
                if name is None:
         | 
| 45 | 
            +
                    name = os.environ.get("VILA_DATASETS", "default")
         | 
| 46 | 
            +
                    logger.info(f"Registering datasets from environment: '{name}'.")
         | 
| 47 | 
            +
                # return io.load(osp.join(osp.dirname(__file__), "registry", "datasets", f"{name}.yaml"))
         | 
| 48 | 
            +
                dataset_meta = {}
         | 
| 49 | 
            +
                for _name in name.split(","):
         | 
| 50 | 
            +
                    yamlpath = load_dataset_yaml(_name)
         | 
| 51 | 
            +
                    logger.info(f"Registering datasets from: '{yamlpath}'.")
         | 
| 52 | 
            +
                    meta = io.load(yamlpath)
         | 
| 53 | 
            +
                    dataset_meta.update(meta)
         | 
| 54 | 
            +
                return dataset_meta
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            def register_mixtures():
         | 
| 58 | 
            +
                return io.load(os.path.join(os.path.dirname(__file__), "registry", "mixtures.yaml"))
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            DATASETS = register_datasets()
         | 
| 62 | 
            +
            MIXTURES = register_mixtures()
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            def parse_mixture(mixture: str) -> List[str]:
         | 
| 66 | 
            +
                names = mixture.split("+") if "+" in mixture else [mixture]
         | 
| 67 | 
            +
                while any(name in MIXTURES for name in names):
         | 
| 68 | 
            +
                    names = list(chain(*[MIXTURES.get(name, [name]) for name in names]))
         | 
| 69 | 
            +
                return sorted(names)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
             | 
| 72 | 
            +
            class SubsetDataset(Dataset):
         | 
| 73 | 
            +
                def __init__(self, dataset: Dataset, limit: int) -> None:
         | 
| 74 | 
            +
                    super().__init__()
         | 
| 75 | 
            +
                    self.dataset = dataset
         | 
| 76 | 
            +
                    self.limit = limit
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                def __len__(self) -> int:
         | 
| 79 | 
            +
                    return int(len(self.dataset) * self.limit)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                def __getitem__(self, index: int) -> Any:
         | 
| 82 | 
            +
                    return self.dataset[index % len(self.dataset)]
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            class RepeatedDataset(Dataset):
         | 
| 85 | 
            +
                def __init__(self, dataset: Dataset, times: int) -> None:
         | 
| 86 | 
            +
                    super().__init__()
         | 
| 87 | 
            +
                    self.dataset = dataset
         | 
| 88 | 
            +
                    self.times = times
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                def __len__(self) -> int:
         | 
| 91 | 
            +
                    return len(self.dataset) * self.times
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                def __getitem__(self, index: int) -> Any:
         | 
| 94 | 
            +
                    return self.dataset[index % len(self.dataset)]
         | 
| 95 | 
            +
             | 
| 96 | 
            +
             | 
| 97 | 
            +
            def get_world_size():
         | 
| 98 | 
            +
                if torch.distributed.is_initialized():
         | 
| 99 | 
            +
                    return torch.distributed.get_world_size()
         | 
| 100 | 
            +
                else:
         | 
| 101 | 
            +
                    return 1
         | 
| 102 | 
            +
             | 
| 103 | 
            +
             | 
| 104 | 
            +
            def build_dataset(
         | 
| 105 | 
            +
                mixture: str,
         | 
| 106 | 
            +
                data_args: DataArguments,
         | 
| 107 | 
            +
                training_args: TrainingArguments,
         | 
| 108 | 
            +
                tokenizer: PreTrainedTokenizer,
         | 
| 109 | 
            +
            ) -> Dataset:
         | 
| 110 | 
            +
                logger.warning(f"Training VILA with mixture '{mixture}'.")
         | 
| 111 | 
            +
                datasets = []
         | 
| 112 | 
            +
                dataset_rng = np.random.default_rng(1234)
         | 
| 113 | 
            +
                for name in parse_mixture(mixture):        
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    if "*" in name:
         | 
| 116 | 
            +
                        name, times = name.split("*")
         | 
| 117 | 
            +
                        times = int(times)
         | 
| 118 | 
            +
                    else:
         | 
| 119 | 
            +
                        times = 1
         | 
| 120 | 
            +
                    limit_dataset = False
         | 
| 121 | 
            +
                    if "#" in name:
         | 
| 122 | 
            +
                        # we limit the max length of this dataset
         | 
| 123 | 
            +
                        name, max_length_percent = name.split("#")
         | 
| 124 | 
            +
                        limit_dataset = True
         | 
| 125 | 
            +
                    if DATASETS is not None and name in DATASETS:
         | 
| 126 | 
            +
                        if name in DATASETS_LEGACY:
         | 
| 127 | 
            +
                            logger.warning(f"Dataset '{name}' exists in both new and legacy registries. Using the new one.")
         | 
| 128 | 
            +
                        dataset = instantiate(DATASETS[name], _partial_=True)(
         | 
| 129 | 
            +
                            tokenizer=tokenizer,
         | 
| 130 | 
            +
                            data_args=data_args,
         | 
| 131 | 
            +
                            global_batch_size=(
         | 
| 132 | 
            +
                                training_args.per_device_train_batch_size
         | 
| 133 | 
            +
                                # * torch.distributed.get_world_size()
         | 
| 134 | 
            +
                                * get_world_size()
         | 
| 135 | 
            +
                                * training_args.gradient_accumulation_steps
         | 
| 136 | 
            +
                            ),
         | 
| 137 | 
            +
                        )
         | 
| 138 | 
            +
                    elif name in DATASETS_LEGACY:
         | 
| 139 | 
            +
                        logger.warning(f"Dataset '{name}' is from the legacy registry. Please consider migrating it.")
         | 
| 140 | 
            +
                        dataset = build_dataset_legacy(
         | 
| 141 | 
            +
                            name,
         | 
| 142 | 
            +
                            data_args=data_args,
         | 
| 143 | 
            +
                            training_args=training_args,
         | 
| 144 | 
            +
                            tokenizer=tokenizer,
         | 
| 145 | 
            +
                        )
         | 
| 146 | 
            +
                    else:
         | 
| 147 | 
            +
                        raise ValueError(f"Dataset '{name}' is not found in the registries.")
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    
         | 
| 150 | 
            +
                    if limit_dataset:
         | 
| 151 | 
            +
                        # we limit the max length of this dataset
         | 
| 152 | 
            +
                        max_length = int(float(int(max_length_percent) / 100.) * len(dataset))
         | 
| 153 | 
            +
                        dataset = SubsetDataset(dataset, float(int(max_length_percent) / 100.))
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                    if times > 1:
         | 
| 156 | 
            +
                        dataset = RepeatedDataset(dataset, times)
         | 
| 157 | 
            +
                    datasets.append(dataset)
         | 
| 158 | 
            +
                return ConcatDataset(datasets)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
             | 
| 161 | 
            +
            def build_dataset_legacy(
         | 
| 162 | 
            +
                name: str,
         | 
| 163 | 
            +
                data_args: DataArguments,
         | 
| 164 | 
            +
                training_args: TrainingArguments,
         | 
| 165 | 
            +
                tokenizer: PreTrainedTokenizer,
         | 
| 166 | 
            +
            ) -> Dataset:
         | 
| 167 | 
            +
                from llava.data.dataset import (
         | 
| 168 | 
            +
                    LazySupervisedDataset,
         | 
| 169 | 
            +
                    LazyWDSDataset,
         | 
| 170 | 
            +
                )
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                dataset = DATASETS_LEGACY[name]
         | 
| 173 | 
            +
                dataset_type = dataset.dataset_type
         | 
| 174 | 
            +
                if dataset_type == "torch":
         | 
| 175 | 
            +
                    dataset_cls = LazySupervisedDataset
         | 
| 176 | 
            +
                elif dataset_type == "wds":
         | 
| 177 | 
            +
                    dataset_cls = LazyWDSDataset
         | 
| 178 | 
            +
                else:
         | 
| 179 | 
            +
                    raise NotImplementedError(f"{dataset_type} is not supported.")
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                data_args.meta_path = getattr(dataset, "meta_path", None)
         | 
| 182 | 
            +
                data_args.caption_choice = getattr(dataset, "caption_choice", None)
         | 
| 183 | 
            +
                data_args.caption_choice_2 = getattr(dataset, "caption_choice_2", None)
         | 
| 184 | 
            +
                data_args.start_idx = getattr(dataset, "start_idx", None)
         | 
| 185 | 
            +
                data_args.end_idx = getattr(dataset, "end_idx", None)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                return dataset_cls(
         | 
| 188 | 
            +
                    tokenizer=tokenizer,
         | 
| 189 | 
            +
                    data_path=dataset.data_path,
         | 
| 190 | 
            +
                    image_folder=getattr(dataset, "image_path"),
         | 
| 191 | 
            +
                    data_args=data_args,
         | 
| 192 | 
            +
                    training_args=training_args,
         | 
| 193 | 
            +
                )
         | 
    	
        llava/data/collate.py
    ADDED
    
    | @@ -0,0 +1,166 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from dataclasses import dataclass
         | 
| 8 | 
            +
            from typing import Any, Dict, Sequence
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import torch
         | 
| 11 | 
            +
            from transformers import PreTrainedTokenizer
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from llava.constants import IGNORE_INDEX
         | 
| 14 | 
            +
            from llava.utils.logging import logger
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            __all__ = ["DataCollator"]
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            @dataclass
         | 
| 20 | 
            +
            class DataCollator:
         | 
| 21 | 
            +
                tokenizer: PreTrainedTokenizer
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                def __init__(self, tokenizer: PreTrainedTokenizer):
         | 
| 24 | 
            +
                    super().__init__()
         | 
| 25 | 
            +
                    self.tokenizer = tokenizer
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                def __call__(self, instances: Sequence[Dict[str, Any]]) -> Dict[str, Any]:
         | 
| 28 | 
            +
                    # Gather everything from the batch
         | 
| 29 | 
            +
                    input_ids, labels, media, block_sizes = [], [], {name: [] for name in self.tokenizer.media_tokens}, []
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                    media_meta = {}
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                    media_meta["sound_feature_masks"] = []
         | 
| 34 | 
            +
                    media_meta["sound_embed_masks"] = []
         | 
| 35 | 
            +
                    media_meta["frame_times"] = []
         | 
| 36 | 
            +
                    for instance in instances:
         | 
| 37 | 
            +
                        if isinstance(instance["input_ids"], torch.Tensor):
         | 
| 38 | 
            +
                            input_ids.append(instance["input_ids"])
         | 
| 39 | 
            +
                            labels.append(instance["labels"])
         | 
| 40 | 
            +
                            for name in media:
         | 
| 41 | 
            +
                                objs = instance.get(name)
         | 
| 42 | 
            +
                                objs = objs if objs is not None else []
         | 
| 43 | 
            +
                                media[name].append([obj for obj in objs])
         | 
| 44 | 
            +
                            if instance.get("sound") is not None:
         | 
| 45 | 
            +
                                for name_k in media_meta:
         | 
| 46 | 
            +
                                    if "sound" in name_k:
         | 
| 47 | 
            +
                                        objs = instance.get(name_k)
         | 
| 48 | 
            +
                                        media_meta[name_k].append([obj for obj in objs])
         | 
| 49 | 
            +
                            if instance.get("video") is not None or instance.get("image") is not None:
         | 
| 50 | 
            +
                                for name_k in media_meta:
         | 
| 51 | 
            +
                                    if "frame" in name_k:
         | 
| 52 | 
            +
                                        objs = instance.get(name_k)
         | 
| 53 | 
            +
                                        media_meta[name_k].append([obj for obj in objs])
         | 
| 54 | 
            +
                            if "block_sizes" in instance:
         | 
| 55 | 
            +
                                block_sizes.append(instance["block_sizes"])
         | 
| 56 | 
            +
                            else:
         | 
| 57 | 
            +
                                block_sizes.append(
         | 
| 58 | 
            +
                                    [None for _ in range(len(instance.get("image")))] if instance.get("image") is not None else []
         | 
| 59 | 
            +
                                )
         | 
| 60 | 
            +
                        else:
         | 
| 61 | 
            +
                            input_ids.extend(instance["input_ids"])
         | 
| 62 | 
            +
                            labels.extend(instance["labels"])
         | 
| 63 | 
            +
                            for name in media:
         | 
| 64 | 
            +
                                objs = instance.get(name)
         | 
| 65 | 
            +
                                objs = objs if objs is not None else [[] for _ in range(len(instance["input_ids"]))]
         | 
| 66 | 
            +
                                media[name].extend(objs)
         | 
| 67 | 
            +
                            if instance.get("sound") is not None:
         | 
| 68 | 
            +
                                for name_k in media_meta:
         | 
| 69 | 
            +
                                    if "sound" in name_k:
         | 
| 70 | 
            +
                                        objs = instance.get(name_k)
         | 
| 71 | 
            +
                                        media_meta[name_k].extend(objs)
         | 
| 72 | 
            +
                            if instance.get("video") is not None or instance.get("image") is not None:
         | 
| 73 | 
            +
                                for name_k in media_meta:
         | 
| 74 | 
            +
                                    if "frame" in name_k:
         | 
| 75 | 
            +
                                        objs = instance.get(name_k)
         | 
| 76 | 
            +
                                        media_meta[name_k].append([obj for obj in objs])
         | 
| 77 | 
            +
                            if "block_sizes" in instance:
         | 
| 78 | 
            +
                                block_sizes.extend(instance["block_sizes"])
         | 
| 79 | 
            +
                            else:
         | 
| 80 | 
            +
                                block_sizes.extend(
         | 
| 81 | 
            +
                                    [[None for _ in range(len(objs))] for objs in instance.get("image")]
         | 
| 82 | 
            +
                                    if instance.get("image") is not None
         | 
| 83 | 
            +
                                    else [[] for _ in range(len(instance["input_ids"]))]
         | 
| 84 | 
            +
                                )
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    batch_size = len(input_ids)
         | 
| 87 | 
            +
                    
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    # Check if the number of media objects (or the number of block sizes) matches the number of media tokens
         | 
| 90 | 
            +
                    for name in media:
         | 
| 91 | 
            +
                        for k in range(batch_size):
         | 
| 92 | 
            +
                            if name == "image" and not all([_ is None for _ in block_sizes[k]]):
         | 
| 93 | 
            +
                                actual = len(block_sizes[k])
         | 
| 94 | 
            +
                            else:
         | 
| 95 | 
            +
                                actual = len(media[name][k])
         | 
| 96 | 
            +
                            expected = (input_ids[k] == self.tokenizer.media_token_ids[name]).sum().item()
         | 
| 97 | 
            +
                            if actual != expected:
         | 
| 98 | 
            +
                                raise ValueError(
         | 
| 99 | 
            +
                                    f"Number mismatch between {name} objects and {name} tokens. "
         | 
| 100 | 
            +
                                    f"There are {expected} {name} tokens but {actual} {name} objects."
         | 
| 101 | 
            +
                                )
         | 
| 102 | 
            +
                    
         | 
| 103 | 
            +
                    # Batchify the inputs
         | 
| 104 | 
            +
                    input_ids = torch.nn.utils.rnn.pad_sequence(
         | 
| 105 | 
            +
                        input_ids,
         | 
| 106 | 
            +
                        batch_first=True,
         | 
| 107 | 
            +
                        padding_value=self.tokenizer.pad_token_id,
         | 
| 108 | 
            +
                    )
         | 
| 109 | 
            +
                    labels = torch.nn.utils.rnn.pad_sequence(
         | 
| 110 | 
            +
                        labels,
         | 
| 111 | 
            +
                        batch_first=True,
         | 
| 112 | 
            +
                        padding_value=IGNORE_INDEX,
         | 
| 113 | 
            +
                    )
         | 
| 114 | 
            +
                    input_ids = input_ids[:, : self.tokenizer.model_max_length]
         | 
| 115 | 
            +
                    labels = labels[:, : self.tokenizer.model_max_length]
         | 
| 116 | 
            +
                    attention_mask = input_ids.ne(self.tokenizer.pad_token_id)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    # Truncate media objects if necessary
         | 
| 119 | 
            +
                    for name in media:
         | 
| 120 | 
            +
                        objects = []
         | 
| 121 | 
            +
                        for k in range(batch_size):
         | 
| 122 | 
            +
                            if name == "image" and not all([_ is None for _ in block_sizes[k]]):
         | 
| 123 | 
            +
                                actual = len(media[name][k])
         | 
| 124 | 
            +
                                num_large_scale_blocks = sum([x * y for x, y in block_sizes[k]])
         | 
| 125 | 
            +
                                num_small_scale_blocks = actual - num_large_scale_blocks
         | 
| 126 | 
            +
                                num_small_scale_blocks_each_img = num_small_scale_blocks // len(block_sizes[k])
         | 
| 127 | 
            +
                                expected_full_image = (input_ids[k] == self.tokenizer.media_token_ids[name]).sum().item()
         | 
| 128 | 
            +
                                expected = (
         | 
| 129 | 
            +
                                    sum([x * y for x, y in block_sizes[k][:expected_full_image]])
         | 
| 130 | 
            +
                                    + num_small_scale_blocks_each_img * expected_full_image
         | 
| 131 | 
            +
                                )
         | 
| 132 | 
            +
                                if actual > expected:
         | 
| 133 | 
            +
                                    logger.warning(f"Truncating the number of {name} objects from {actual} to {expected}")
         | 
| 134 | 
            +
                                    media[name][k] = media[name][k][:expected]
         | 
| 135 | 
            +
                                objects.extend(media[name][k])
         | 
| 136 | 
            +
                                block_sizes[k] = block_sizes[k][:expected_full_image]
         | 
| 137 | 
            +
                            else:
         | 
| 138 | 
            +
                                actual = len(media[name][k])
         | 
| 139 | 
            +
                                expected = (input_ids[k] == self.tokenizer.media_token_ids[name]).sum().item()
         | 
| 140 | 
            +
                                if actual > expected:
         | 
| 141 | 
            +
                                    logger.warning(f"Truncating the number of {name} objects from {actual} to {expected}")
         | 
| 142 | 
            +
                                    media[name][k] = media[name][k][:expected]
         | 
| 143 | 
            +
                                objects.extend(media[name][k])
         | 
| 144 | 
            +
                                if name == "image":
         | 
| 145 | 
            +
                                    block_sizes[k] = block_sizes[k][:expected]
         | 
| 146 | 
            +
                        media[name] = objects
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    for name in media_meta:
         | 
| 149 | 
            +
                        objects = []
         | 
| 150 | 
            +
                        for k in range(batch_size):
         | 
| 151 | 
            +
                            try:
         | 
| 152 | 
            +
                                objects.extend(media_meta[name][k])
         | 
| 153 | 
            +
                            except:
         | 
| 154 | 
            +
                                continue
         | 
| 155 | 
            +
                        media_meta[name] = objects
         | 
| 156 | 
            +
                 
         | 
| 157 | 
            +
                    # Flatten block sizes from [[bls_im1_instance1, bls_im2_instance1], [bls_im1_instance2, bls_im2_instance2], ...] to [bls_im1_instance1, bls_im2_instance1, bls_im1_instance2, bls_im2_instance2, ...]
         | 
| 158 | 
            +
                    block_sizes = sum(block_sizes, [])
         | 
| 159 | 
            +
                    return {
         | 
| 160 | 
            +
                        "input_ids": input_ids,
         | 
| 161 | 
            +
                        "media": media,
         | 
| 162 | 
            +
                        "media_config": {"image": {"block_sizes": block_sizes}, "video": {}, "speech": {}, "sound": {}},
         | 
| 163 | 
            +
                        "labels": labels,
         | 
| 164 | 
            +
                        "attention_mask": attention_mask,
         | 
| 165 | 
            +
                        "media_meta": media_meta,
         | 
| 166 | 
            +
                    }
         | 
    	
        llava/data/dataset.py
    ADDED
    
    | @@ -0,0 +1,1635 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
         | 
| 8 | 
            +
            #    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 11 | 
            +
            #    you may not use this file except in compliance with the License.
         | 
| 12 | 
            +
            #    You may obtain a copy of the License at
         | 
| 13 | 
            +
            #
         | 
| 14 | 
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         | 
| 15 | 
            +
            #
         | 
| 16 | 
            +
            #    Unless required by applicable law or agreed to in writing, software
         | 
| 17 | 
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 18 | 
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 19 | 
            +
            #    See the License for the specific language governing permissions and
         | 
| 20 | 
            +
            #    limitations under the License.
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import base64
         | 
| 23 | 
            +
            import copy
         | 
| 24 | 
            +
            import io
         | 
| 25 | 
            +
            import json
         | 
| 26 | 
            +
            import os
         | 
| 27 | 
            +
            import os.path as osp
         | 
| 28 | 
            +
            import random
         | 
| 29 | 
            +
            import time
         | 
| 30 | 
            +
            import warnings
         | 
| 31 | 
            +
            from dataclasses import dataclass
         | 
| 32 | 
            +
            from typing import Dict, Sequence
         | 
| 33 | 
            +
            import math
         | 
| 34 | 
            +
            import numpy as np
         | 
| 35 | 
            +
            import PIL
         | 
| 36 | 
            +
            import torch
         | 
| 37 | 
            +
            import transformers
         | 
| 38 | 
            +
            from PIL import Image, ImageFile
         | 
| 39 | 
            +
            from torch.utils.data import Dataset, default_collate
         | 
| 40 | 
            +
            from transformers import PreTrainedTokenizer
         | 
| 41 | 
            +
            from transformers import AutoFeatureExtractor
         | 
| 42 | 
            +
            import kaldiio
         | 
| 43 | 
            +
            import llava.data.datasets_mixture as datasets_mixture
         | 
| 44 | 
            +
            from llava import conversation as conversation_lib
         | 
| 45 | 
            +
            from llava.constants import DEFAULT_SOUND_TOKEN,DEFAULT_SPEECH_TOKEN, IGNORE_INDEX
         | 
| 46 | 
            +
            from llava.data.collate import DataCollator
         | 
| 47 | 
            +
            from llava.mm_utils import (
         | 
| 48 | 
            +
                load_audio,
         | 
| 49 | 
            +
                get_num_windows,
         | 
| 50 | 
            +
                tokenizer_image_token,
         | 
| 51 | 
            +
            )
         | 
| 52 | 
            +
            from torchvision import transforms
         | 
| 53 | 
            +
            from llava.train.args import DataArguments, TrainingArguments
         | 
| 54 | 
            +
            from llava.train.sequence_parallel import (
         | 
| 55 | 
            +
                extract_local_from_list,
         | 
| 56 | 
            +
                extract_local_input_ids,
         | 
| 57 | 
            +
                extract_local_position_ids,
         | 
| 58 | 
            +
                get_pg_manager,
         | 
| 59 | 
            +
            )
         | 
| 60 | 
            +
            from llava.utils.tokenizer import preprocess_conversation
         | 
| 61 | 
            +
            # import torchaudio
         | 
| 62 | 
            +
            from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler, UniformClipSampler
         | 
| 63 | 
            +
            import soundfile as sf
         | 
| 64 | 
            +
            from librosa import resample as librosa_resample
         | 
| 65 | 
            +
            import whisper
         | 
| 66 | 
            +
            ImageFile.LOAD_TRUNCATED_IMAGES = True
         | 
| 67 | 
            +
            PIL.Image.MAX_IMAGE_PIXELS = 1000000000
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            def int16_to_float32(x):
         | 
| 70 | 
            +
                return (x / 32767.0).astype(np.float32)
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            def float32_to_int16(x):
         | 
| 74 | 
            +
                x = np.clip(x, a_min=-1., a_max=1.)
         | 
| 75 | 
            +
                return (x * 32767.).astype(np.int16)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict:
         | 
| 80 | 
            +
                is_multimodal = data_args.is_multimodal
         | 
| 81 | 
            +
                if not is_multimodal:
         | 
| 82 | 
            +
                    return sources
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                for source in sources:
         | 
| 85 | 
            +
                    concat_values = "".join([sentence["value"] for sentence in source])
         | 
| 86 | 
            +
                    for sid, sentence in enumerate(source):
         | 
| 87 | 
            +
                        # In multimodal conversations, we automatically prepend '<image>' at the start of the first sentence if it doesn't already contain one.
         | 
| 88 | 
            +
                        
         | 
| 89 | 
            +
                        if DEFAULT_SOUND_TOKEN in sentence["value"]:
         | 
| 90 | 
            +
                            sentence["value"] = sentence["value"].replace(DEFAULT_SOUND_TOKEN, f"{DEFAULT_SOUND_TOKEN}\n")
         | 
| 91 | 
            +
                            sentence["value"] = sentence["value"].replace(f"{DEFAULT_SOUND_TOKEN}\n\n", f"{DEFAULT_SOUND_TOKEN}\n")
         | 
| 92 | 
            +
                        if DEFAULT_SPEECH_TOKEN in sentence["value"]:
         | 
| 93 | 
            +
                            sentence["value"] = sentence["value"].replace(DEFAULT_SPEECH_TOKEN, f"{DEFAULT_SPEECH_TOKEN}\n")
         | 
| 94 | 
            +
                            sentence["value"] = sentence["value"].replace(f"{DEFAULT_SPEECH_TOKEN}\n\n", f"{DEFAULT_SPEECH_TOKEN}\n")
         | 
| 95 | 
            +
                return sources
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
            def preprocess_plain(
         | 
| 99 | 
            +
                sources: Sequence[str],
         | 
| 100 | 
            +
                tokenizer: transformers.PreTrainedTokenizer,
         | 
| 101 | 
            +
            ) -> Dict:
         | 
| 102 | 
            +
                # add end signal and concatenate together
         | 
| 103 | 
            +
                conversations = []
         | 
| 104 | 
            +
                for source in sources:
         | 
| 105 | 
            +
                    assert len(source) == 2
         | 
| 106 | 
            +
                    assert DEFAULT_IMAGE_TOKEN in source[0]["value"]
         | 
| 107 | 
            +
                    source[0]["value"] = DEFAULT_IMAGE_TOKEN
         | 
| 108 | 
            +
                    conversation = source[0]["value"] + source[1]["value"] + conversation_lib.default_conversation.sep
         | 
| 109 | 
            +
                    conversations.append(conversation)
         | 
| 110 | 
            +
                # tokenize conversations
         | 
| 111 | 
            +
                input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations]
         | 
| 112 | 
            +
                targets = copy.deepcopy(input_ids)
         | 
| 113 | 
            +
                for target, source in zip(targets, sources):
         | 
| 114 | 
            +
                    tokenized_len = len(tokenizer_image_token(source[0]["value"], tokenizer))
         | 
| 115 | 
            +
                    target[:tokenized_len] = IGNORE_INDEX
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                return dict(input_ids=input_ids, labels=targets)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
             | 
| 120 | 
            +
            def preprocess(
         | 
| 121 | 
            +
                sources: Sequence[str],
         | 
| 122 | 
            +
                tokenizer: transformers.PreTrainedTokenizer,
         | 
| 123 | 
            +
                has_image: bool = False,
         | 
| 124 | 
            +
                no_system_prompt: bool = False,
         | 
| 125 | 
            +
            ) -> Dict:
         | 
| 126 | 
            +
                if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
         | 
| 127 | 
            +
                    return preprocess_plain(sources, tokenizer)
         | 
| 128 | 
            +
                return default_collate(
         | 
| 129 | 
            +
                    [
         | 
| 130 | 
            +
                        preprocess_conversation(conversation, tokenizer, no_system_prompt=no_system_prompt)
         | 
| 131 | 
            +
                        for conversation in sources
         | 
| 132 | 
            +
                    ]
         | 
| 133 | 
            +
                )
         | 
| 134 | 
            +
             | 
| 135 | 
            +
             | 
| 136 | 
            +
            class LazySupervisedDataset(Dataset):
         | 
| 137 | 
            +
                """Dataset for supervised fine-tuning.
         | 
| 138 | 
            +
                This class is originally implemented by the LLaVA team and modified by
         | 
| 139 | 
            +
                Ji Lin and Haotian Tang.
         | 
| 140 | 
            +
                """
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                def __init__(
         | 
| 143 | 
            +
                    self,
         | 
| 144 | 
            +
                    data_path: str,
         | 
| 145 | 
            +
                    image_folder: str,
         | 
| 146 | 
            +
                    tokenizer: transformers.PreTrainedTokenizer,
         | 
| 147 | 
            +
                    data_args: DataArguments,
         | 
| 148 | 
            +
                    training_args: TrainingArguments,
         | 
| 149 | 
            +
                ):
         | 
| 150 | 
            +
                    super().__init__()
         | 
| 151 | 
            +
                    try:
         | 
| 152 | 
            +
                        with open(data_path) as fp:
         | 
| 153 | 
            +
                            list_data_dict = json.load(fp)
         | 
| 154 | 
            +
                    except:
         | 
| 155 | 
            +
                        with open(data_path) as fp:
         | 
| 156 | 
            +
                            list_data_dict = [json.loads(q) for q in fp]
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    # rank0_print("Formatting inputs...Skip in lazy mode")
         | 
| 159 | 
            +
                    print("Formatting inputs...Skip in lazy mode")
         | 
| 160 | 
            +
                    self.tokenizer = tokenizer
         | 
| 161 | 
            +
                    self.list_data_dict = list_data_dict
         | 
| 162 | 
            +
                    self.data_args = data_args
         | 
| 163 | 
            +
                    self.image_folder = image_folder
         | 
| 164 | 
            +
                    self.wav_processor = AutoFeatureExtractor.from_pretrained('Qwen/Qwen2-Audio-7B')
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def __len__(self):
         | 
| 167 | 
            +
                    return len(self.list_data_dict)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                @property
         | 
| 170 | 
            +
                def lengths(self):
         | 
| 171 | 
            +
                    length_list = []
         | 
| 172 | 
            +
                    for sample in self.list_data_dict:
         | 
| 173 | 
            +
                        img_tokens = 128 if "image" in sample else 0
         | 
| 174 | 
            +
                        length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens)
         | 
| 175 | 
            +
                    return length_list
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                @property
         | 
| 178 | 
            +
                def modality_lengths(self):
         | 
| 179 | 
            +
                    length_list = []
         | 
| 180 | 
            +
                    for sample in self.list_data_dict:
         | 
| 181 | 
            +
                        if 'duration' in sample.keys():
         | 
| 182 | 
            +
                            duration = sample["duration"]
         | 
| 183 | 
            +
                        else:
         | 
| 184 | 
            +
                            duration = 10.
         | 
| 185 | 
            +
                        try:
         | 
| 186 | 
            +
                            cur_len = sum(len(conv["value"].split()) for conv in sample["conversations"]) + int(math.ceil(duration * 25))
         | 
| 187 | 
            +
                            cur_len = cur_len if "sound" in sample else -cur_len
         | 
| 188 | 
            +
                            length_list.append(cur_len)
         | 
| 189 | 
            +
                        except:
         | 
| 190 | 
            +
                            try:
         | 
| 191 | 
            +
                                cur_len = 0 + int(math.ceil(duration * 25))
         | 
| 192 | 
            +
                                cur_len = cur_len if "sound" in sample else -cur_len
         | 
| 193 | 
            +
                                length_list.append(cur_len)  
         | 
| 194 | 
            +
                            except:
         | 
| 195 | 
            +
                                cur_len = 0 + int(math.ceil(10. * 25))
         | 
| 196 | 
            +
                                cur_len = cur_len if "sound" in sample else -cur_len
         | 
| 197 | 
            +
                                length_list.append(cur_len) 
         | 
| 198 | 
            +
                    return length_list
         | 
| 199 | 
            +
                
         | 
| 200 | 
            +
                @staticmethod
         | 
| 201 | 
            +
                def _load_sound(sound_file, wav_processor, sample_rate=16000, window_length=30.0, window_overlap=0.0, max_num_window=3, audio_start = 0.0):
         | 
| 202 | 
            +
                    if sound_file is None:
         | 
| 203 | 
            +
                        return None
         | 
| 204 | 
            +
                    window_length  = int(window_length * sample_rate)
         | 
| 205 | 
            +
                    window_overlap = int(window_overlap * sample_rate)
         | 
| 206 | 
            +
                    max_num_window = int(max_num_window)
         | 
| 207 | 
            +
                    duration = max_num_window * (window_length - window_overlap) + window_overlap
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                    sound_outputs = []
         | 
| 210 | 
            +
                    audio_feature_masks = []
         | 
| 211 | 
            +
                    audio_embed_masks = []
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    try:
         | 
| 214 | 
            +
                        sound_filename = str.split(sound_file, '/')[-1]
         | 
| 215 | 
            +
                        if '.ark' in sound_filename:
         | 
| 216 | 
            +
                            sound = kaldiio.load_mat(sound_file)
         | 
| 217 | 
            +
                            audio_data = sound[1]
         | 
| 218 | 
            +
                            audio_data=audio_data.astype(np.float16)
         | 
| 219 | 
            +
                        else:
         | 
| 220 | 
            +
                            audio_data = load_audio(sound_file, sample_rate, duration, audio_start) # already cuts to max duration
         | 
| 221 | 
            +
                        T = len(audio_data)
         | 
| 222 | 
            +
                        audio_data = audio_data.reshape(1, -1)
         | 
| 223 | 
            +
                        num_windows, full_length = get_num_windows(T, sample_rate, max_num_window)
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                        audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float()
         | 
| 226 | 
            +
                        
         | 
| 227 | 
            +
                        for i in range(num_windows):
         | 
| 228 | 
            +
                            audio_embed_mask = torch.zeros(750)
         | 
| 229 | 
            +
                            start = i * (window_length - window_overlap)
         | 
| 230 | 
            +
                            audio_data_tensor_this = audio_data_tensor[:, start:start+window_length]
         | 
| 231 | 
            +
                            orig_length = audio_data_tensor_this.shape[1]
         | 
| 232 | 
            +
                            audio_data_tensor_this = wav_processor(audio_data_tensor_this.cpu().numpy(), sampling_rate=sample_rate, return_tensors="pt") #.squeeze(0) text="dummy", audios=audio_data_tensor_this, return_tensors="pt") #
         | 
| 233 | 
            +
                            sound_outputs.append(audio_data_tensor_this["input_features"])
         | 
| 234 | 
            +
                            # calculate the mask for the input melspec to Whisper
         | 
| 235 | 
            +
                            melspec_frames_this_window = int(math.ceil(orig_length / 160))
         | 
| 236 | 
            +
                            feature_attention_mask = torch.zeros(3000, dtype=torch.int32)
         | 
| 237 | 
            +
                            feature_attention_mask[:melspec_frames_this_window] = 1
         | 
| 238 | 
            +
                            audio_feature_masks.append(feature_attention_mask.unsqueeze(0))
         | 
| 239 | 
            +
                            # calculate the mask for the output embedding for use in AF2
         | 
| 240 | 
            +
                            conv_lengths = (melspec_frames_this_window - 1) // 2 + 1
         | 
| 241 | 
            +
                            output_embedding_lengths = (conv_lengths - 2) // 2 + 1
         | 
| 242 | 
            +
                            audio_embed_mask[:output_embedding_lengths] = 1
         | 
| 243 | 
            +
                            audio_embed_masks.append(audio_embed_mask)
         | 
| 244 | 
            +
                    except:
         | 
| 245 | 
            +
                        print('error loading file', sound_file)
         | 
| 246 | 
            +
                        sound_outputs.append(torch.zeros(1,128,3000))
         | 
| 247 | 
            +
                        audio_feature_masks.append(torch.zeros(1,3000, dtype=torch.int32))
         | 
| 248 | 
            +
                        audio_embed_masks.append(torch.zeros(750))
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    return torch.stack(sound_outputs, dim=0), torch.stack(audio_feature_masks, dim=0), torch.stack(audio_embed_masks, dim=0)
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                @staticmethod
         | 
| 253 | 
            +
                def _load_speech(speech_path,sample_rate=16000):
         | 
| 254 | 
            +
                    if speech_path is None:
         | 
| 255 | 
            +
                        return None
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    speech_outputs = []
         | 
| 258 | 
            +
                    try:
         | 
| 259 | 
            +
                        speech = whisper.load_audio(speech_path)
         | 
| 260 | 
            +
                        speech = whisper.pad_or_trim(speech)
         | 
| 261 | 
            +
                        mel = whisper.log_mel_spectrogram(speech)
         | 
| 262 | 
            +
                        speech_outputs.append(mel.unsqueeze(0))
         | 
| 263 | 
            +
                    except:
         | 
| 264 | 
            +
                        speech_outputs.append(torch.zeros(1,80,3000))
         | 
| 265 | 
            +
                    return torch.stack(speech_outputs, dim=0)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                def __getitem__(self, i) -> Dict[str, torch.Tensor]:
         | 
| 268 | 
            +
                    sources = self.list_data_dict[i]
         | 
| 269 | 
            +
                    if isinstance(i, int):
         | 
| 270 | 
            +
                        sources = [sources]
         | 
| 271 | 
            +
                    assert len(sources) == 1, "Don't know why it is wrapped to a list"  # FIXME
         | 
| 272 | 
            +
                    
         | 
| 273 | 
            +
                    import re
         | 
| 274 | 
            +
                    if "sound" in self.list_data_dict[i]:
         | 
| 275 | 
            +
                        # chat data loading 
         | 
| 276 | 
            +
                        if isinstance(self.list_data_dict[i]["sound"],list):
         | 
| 277 | 
            +
                            sound_files = self.list_data_dict[i]["sound"]
         | 
| 278 | 
            +
                            conversations_raw = self.list_data_dict[i]["conversations"]
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                            # Step 1: Extract <sound-X> tags in order of appearance
         | 
| 281 | 
            +
                            sound_tag_pattern = re.compile(r"<sound-(\d+)>")
         | 
| 282 | 
            +
                            ordered_sound_tags = []
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                            for turn in conversations_raw:
         | 
| 285 | 
            +
                                tags = sound_tag_pattern.findall(turn["value"])
         | 
| 286 | 
            +
                                ordered_sound_tags.extend([f"<sound-{tag}>" for tag in tags])
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                            # Step 2: Load sound tensors in the order of tags
         | 
| 289 | 
            +
                            sound_tensor = []
         | 
| 290 | 
            +
                            audio_feature_masks = []
         | 
| 291 | 
            +
                            audio_embed_masks = []
         | 
| 292 | 
            +
                            sound_token_map = {}
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                            for tag in ordered_sound_tags:
         | 
| 295 | 
            +
                                idx = int(tag.split('-')[1][:-1])
         | 
| 296 | 
            +
                                if tag not in sound_token_map:
         | 
| 297 | 
            +
                                    this_sound_tensor, af_mask, ae_mask = self._load_sound(sound_file, self.wav_processor, max_num_window=self.data_args.audio_frames)
         | 
| 298 | 
            +
                                    this_sound_tensor = this_sound_tensor.squeeze(1)  # (windows x 750 x 2048)
         | 
| 299 | 
            +
                                    sound_token_map[tag] = ("<sound>\n" * this_sound_tensor.shape[0]).rstrip()
         | 
| 300 | 
            +
                                    sound_tensor.append(this_sound_tensor)
         | 
| 301 | 
            +
                                    audio_feature_masks.append(af_mask)
         | 
| 302 | 
            +
                                    audio_embed_masks.append(ae_mask)
         | 
| 303 | 
            +
                                else:
         | 
| 304 | 
            +
                                    # If already loaded, still append to match sequence
         | 
| 305 | 
            +
                                    this_sound_tensor, af_mask, ae_mask = self._load_sound(sound_file, self.wav_processor, max_num_window=self.data_args.audio_frames)
         | 
| 306 | 
            +
                                    this_sound_tensor = this_sound_tensor.squeeze(1)
         | 
| 307 | 
            +
                                    sound_tensor.append(this_sound_tensor)
         | 
| 308 | 
            +
                                    audio_feature_masks.append(af_mask)
         | 
| 309 | 
            +
                                    audio_embed_masks.append(ae_mask)
         | 
| 310 | 
            +
                               
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                            # Process conversations and inject sound markers
         | 
| 313 | 
            +
                            conversation = []
         | 
| 314 | 
            +
                            for turn in conversations_raw:
         | 
| 315 | 
            +
                                role = turn["from"]
         | 
| 316 | 
            +
                                value = turn["value"]
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                                # Replace any <sound-X> tag with corresponding repeated <sound>\n
         | 
| 319 | 
            +
                                for tag, sound_token in sound_token_map.items():
         | 
| 320 | 
            +
                                    value = value.replace(tag, sound_token)
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                                conversation.append({
         | 
| 323 | 
            +
                                    "from": role,
         | 
| 324 | 
            +
                                    "value": value.rstrip()
         | 
| 325 | 
            +
                                })
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                            sources = [conversation]
         | 
| 328 | 
            +
                            sound_tensor = torch.cat(sound_tensor, dim=0)
         | 
| 329 | 
            +
                            audio_feature_masks = torch.cat(audio_feature_masks, dim=0)
         | 
| 330 | 
            +
                            audio_embed_masks = torch.cat(audio_embed_masks, dim=0)
         | 
| 331 | 
            +
                        else:
         | 
| 332 | 
            +
                            sound_file = self.list_data_dict[i]["sound"]
         | 
| 333 | 
            +
                            question = str(self.list_data_dict[i]["conversations"][0]["value"].rstrip())
         | 
| 334 | 
            +
                            answer = str(self.list_data_dict[i]["conversations"][1]["value"]).rstrip()
         | 
| 335 | 
            +
                            question = question.replace("<speech>\n", "").replace("\n<speech>", "").replace("<speech>", "")
         | 
| 336 | 
            +
                            question = question.replace("<sound>\n", "").replace("\n<sound>", "").replace("<sound>", "")
         | 
| 337 | 
            +
                            question = question.replace("<en><asr>\n", "").replace("\n<en><asr>", "").replace("<en><asr>", "")
         | 
| 338 | 
            +
                            question = question.replace("<eng><asr>\n", "").replace("\n<eng><asr>", "").replace("<eng><asr>", "")
         | 
| 339 | 
            +
                            sound_tensor, audio_feature_masks, audio_embed_masks = self._load_sound(sound_file, self.wav_processor, max_num_window=self.data_args.audio_frames)
         | 
| 340 | 
            +
                            sound_tensor=sound_tensor.squeeze(1) # squeeze the irrelevant dimension which was caused due to processor getting 1 batch for processing --> (windows x 750 x 2048)
         | 
| 341 | 
            +
                            question = "<sound>\n" * sound_tensor.shape[0] + question
         | 
| 342 | 
            +
                            conversation = [
         | 
| 343 | 
            +
                                {"from": "human", "value": question},
         | 
| 344 | 
            +
                                {"from": "gpt", "value": answer},
         | 
| 345 | 
            +
                            ]
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                            sources = [conversation]    
         | 
| 348 | 
            +
                    data_dict = preprocess(
         | 
| 349 | 
            +
                        sources,
         | 
| 350 | 
            +
                        self.tokenizer,
         | 
| 351 | 
            +
                        has_image=(
         | 
| 352 | 
            +
                            "sound" in self.list_data_dict[i]
         | 
| 353 | 
            +
                        ),
         | 
| 354 | 
            +
                    )
         | 
| 355 | 
            +
                    if isinstance(i, int):
         | 
| 356 | 
            +
                        data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0])
         | 
| 357 | 
            +
                    
         | 
| 358 | 
            +
                    if "sound" in self.list_data_dict[i]:
         | 
| 359 | 
            +
                        data_dict["sound"] = sound_tensor
         | 
| 360 | 
            +
                        data_dict["sound_feature_masks"] = audio_feature_masks
         | 
| 361 | 
            +
                        data_dict["sound_embed_masks"] = audio_embed_masks
         | 
| 362 | 
            +
                    if "speech" in self.list_data_dict[i]:
         | 
| 363 | 
            +
                        data_dict["speech"] = speech_tensor
         | 
| 364 | 
            +
                  
         | 
| 365 | 
            +
                    return data_dict
         | 
| 366 | 
            +
             | 
| 367 | 
            +
             | 
| 368 | 
            +
            class LazyMMC4Dataset(Dataset):
         | 
| 369 | 
            +
                """Dataset for supervised fine-tuning.
         | 
| 370 | 
            +
                This class is implemented by Ji Lin and Haotian Tang."""
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                def __init__(
         | 
| 373 | 
            +
                    self,
         | 
| 374 | 
            +
                    data_path: str,
         | 
| 375 | 
            +
                    image_folder: str,
         | 
| 376 | 
            +
                    tokenizer: transformers.PreTrainedTokenizer,
         | 
| 377 | 
            +
                    data_args: DataArguments,
         | 
| 378 | 
            +
                    training_args: TrainingArguments,
         | 
| 379 | 
            +
                    image_following_text_only=False,
         | 
| 380 | 
            +
                    text_only=False,
         | 
| 381 | 
            +
                ):
         | 
| 382 | 
            +
                    super().__init__()
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                    import pickle
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    n_samples = []
         | 
| 387 | 
            +
                    # actually shards and stats info
         | 
| 388 | 
            +
                    n_shards = len(os.listdir(data_path)) // 2
         | 
| 389 | 
            +
                    # n_shards = 100
         | 
| 390 | 
            +
                    count_info_list = sorted([f for f in os.listdir(data_path) if f.endswith(".count")])[:n_shards]
         | 
| 391 | 
            +
                    n_samples = [int(open(os.path.join(data_path, f)).read().strip()) for f in count_info_list]
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                    print("total MMC4 samples", sum(n_samples))  # 10,881,869
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                    PROCESS_GROUP_MANAGER = get_pg_manager()
         | 
| 396 | 
            +
                    if PROCESS_GROUP_MANAGER is not None:
         | 
| 397 | 
            +
                        import torch.distributed as dist
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                        sequence_parallel_size = training_args.seq_parallel_size
         | 
| 400 | 
            +
                    else:
         | 
| 401 | 
            +
                        sequence_parallel_size = 1
         | 
| 402 | 
            +
                    print("sequence_parallel_size", sequence_parallel_size)
         | 
| 403 | 
            +
                    rank = training_args.process_index // sequence_parallel_size  # int(os.environ["RANK"])
         | 
| 404 | 
            +
                    world_size = training_args.world_size // sequence_parallel_size  # int(os.environ["WORLD_SIZE"])
         | 
| 405 | 
            +
                    shared_size = n_shards // world_size
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    gpu_samples = [sum(n_samples[i * shared_size : (i + 1) * shared_size]) for i in range(world_size)]
         | 
| 408 | 
            +
                    self.n_samples = min(gpu_samples) * world_size  # total size
         | 
| 409 | 
            +
                    self.idx_offset = rank * min(gpu_samples)
         | 
| 410 | 
            +
                    shard_start, shard_end = rank * shared_size, (rank + 1) * shared_size
         | 
| 411 | 
            +
                    print(f" * loading data from shard {shard_start}-{shard_end}")
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    shard_names = [d.replace(".count", ".pkl") for d in count_info_list]
         | 
| 414 | 
            +
                    shard_names = shard_names[shard_start:shard_end]
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                    full_data_list = []
         | 
| 417 | 
            +
                    # now load data
         | 
| 418 | 
            +
                    for shard_name in shard_names:
         | 
| 419 | 
            +
                        # load shard
         | 
| 420 | 
            +
                        with open(os.path.join(data_path, shard_name), "rb") as f:
         | 
| 421 | 
            +
                            data_list = pickle.load(f)
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                        full_data_list.extend(data_list)
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    print(f"* loaded totally {len(full_data_list)} samples")
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                    self.data_list = full_data_list
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                    self.tokenizer = tokenizer
         | 
| 430 | 
            +
                    self.data_args = data_args
         | 
| 431 | 
            +
                    self.image_folder = image_folder
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    self.image_following_text_only = image_following_text_only
         | 
| 434 | 
            +
                    self.text_only = text_only
         | 
| 435 | 
            +
             | 
| 436 | 
            +
                def __len__(self):
         | 
| 437 | 
            +
                    # return len(self.data_list)
         | 
| 438 | 
            +
                    return self.n_samples
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                @property
         | 
| 441 | 
            +
                def modality_lengths(self):
         | 
| 442 | 
            +
                    # Estimate the number of tokens after tokenization, used for length-grouped sampling
         | 
| 443 | 
            +
                    length_list = []
         | 
| 444 | 
            +
                    for info in self.data_list:
         | 
| 445 | 
            +
                        num_images = min(6, len(info["image_info"]))
         | 
| 446 | 
            +
                        sentences = [info["text_list"][x["matched_text_index"]] for x in info["image_info"][:num_images]]
         | 
| 447 | 
            +
                        # The unit of cur_len is "words". We assume 1 word = 2 tokens.
         | 
| 448 | 
            +
                        cur_len = num_images * self.num_image_tokens // 2 + sum([len(x) for x in sentences])
         | 
| 449 | 
            +
                        length_list.append(cur_len)
         | 
| 450 | 
            +
                    return length_list
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                def __getitem__(self, i) -> Dict[str, torch.Tensor]:
         | 
| 453 | 
            +
                    info = self.data_list[i - self.idx_offset]
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                    sentences = info["text_list"]
         | 
| 456 | 
            +
                    # kentang-mit@: remove existing <image> tokens in the sentences
         | 
| 457 | 
            +
                    for ix in range(len(sentences)):
         | 
| 458 | 
            +
                        # if this is an html tag, we still preserve its semantic meaning
         | 
| 459 | 
            +
                        sentences[ix] = sentences[ix].replace("<image>", "<IMAGE>")
         | 
| 460 | 
            +
                    sim_matrix = info["similarity_matrix"]  # we do not use this...
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                    # convert images from base64 to PIL and filter based on image-text similarity
         | 
| 463 | 
            +
                    images, sentence_ixs = [], []
         | 
| 464 | 
            +
                    if not self.text_only:
         | 
| 465 | 
            +
                        for sample_image, sim_vec in zip(info["image_info"], sim_matrix):
         | 
| 466 | 
            +
                            image_base64 = sample_image["image_base64"]
         | 
| 467 | 
            +
                            rawbytes = base64.b64decode(image_base64)
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                            sim_ix = sample_image["matched_text_index"]
         | 
| 470 | 
            +
                            # sim_ix = np.argmax(sim_vec)
         | 
| 471 | 
            +
                            # sim_score = sim_vec[sim_ix]
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                            # filter to images >= 5KB
         | 
| 474 | 
            +
                            # if len(rawbytes) // 1000 <= 5:
         | 
| 475 | 
            +
                            #     continue
         | 
| 476 | 
            +
                            # if sim_score < 0.24:
         | 
| 477 | 
            +
                            #     continue
         | 
| 478 | 
            +
                            image = Image.open(io.BytesIO(rawbytes)).convert("RGB")
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                            images.append(image)
         | 
| 481 | 
            +
                            sentence_ixs.append(sim_ix)
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                    # constrain max num 6 images
         | 
| 484 | 
            +
                    max_num_images = 6
         | 
| 485 | 
            +
                    if len(images) > max_num_images:
         | 
| 486 | 
            +
                        images = images[:max_num_images]
         | 
| 487 | 
            +
                        sentence_ixs = sentence_ixs[:max_num_images]
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                    # reorder images according to text insertion
         | 
| 490 | 
            +
                    images = [images[iii] for iii in np.argsort(sentence_ixs)]
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                    # preprocess and tokenize text
         | 
| 493 | 
            +
                    for ix in sentence_ixs:
         | 
| 494 | 
            +
                        sentences[ix] = f"<image>\n{sentences[ix]}"
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                    if self.image_following_text_only:
         | 
| 497 | 
            +
                        # use pad tokens to divide sentence pieces
         | 
| 498 | 
            +
                        text = self.tokenizer.pad_token.join(sentences)
         | 
| 499 | 
            +
                    else:
         | 
| 500 | 
            +
                        text = " ".join(sentences)
         | 
| 501 | 
            +
                    # whitespace cleanup
         | 
| 502 | 
            +
                    text = text.replace("<image> ", "<image>").replace(" <image>", "<image>")
         | 
| 503 | 
            +
                    text = f"{text}{self.tokenizer.eos_token}"  # add eos token
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                    if len(images) > 0:
         | 
| 506 | 
            +
                        if self.data_args.image_aspect_ratio == "dynamic_s2":
         | 
| 507 | 
            +
                            images, block_sizes = dynamic_s2_process_images_and_prompt(
         | 
| 508 | 
            +
                                images, text, self.data_args, self.image_folder
         | 
| 509 | 
            +
                            )
         | 
| 510 | 
            +
                        elif self.data_args.image_aspect_ratio == "dynamic":
         | 
| 511 | 
            +
                            images, text = dynamic_process_images_and_prompt(
         | 
| 512 | 
            +
                                images, text, self.data_args, self.image_folder, max_tiles=6
         | 
| 513 | 
            +
                            )
         | 
| 514 | 
            +
                        else:
         | 
| 515 | 
            +
                            images = torch.stack([process_image(image, self.data_args, self.image_folder) for image in images])
         | 
| 516 | 
            +
             | 
| 517 | 
            +
                        # the same size for all images, so we concat
         | 
| 518 | 
            +
                        # cur_token_len = (
         | 
| 519 | 
            +
                        #     images[0].shape[-2] // self.multimodal_cfg["patch_size"]
         | 
| 520 | 
            +
                        # ) * (images[0].shape[-1] // self.multimodal_cfg["patch_size"])
         | 
| 521 | 
            +
                        # cur_token_len += self.multimodal_cfg["n_extra_patch"]
         | 
| 522 | 
            +
                    else:
         | 
| 523 | 
            +
                        images = None
         | 
| 524 | 
            +
                        # cur_token_len = 0
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                    input_ids = tokenizer_image_token(
         | 
| 527 | 
            +
                        text,
         | 
| 528 | 
            +
                        self.tokenizer,
         | 
| 529 | 
            +
                        return_tensors="pt",
         | 
| 530 | 
            +
                    )
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                    image_token_id = self.tokenizer.media_token_ids["image"]
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                    # now check the case where the last token is image patch token
         | 
| 535 | 
            +
                    if input_ids[-1] == image_token_id:  # need to remove one last image
         | 
| 536 | 
            +
                        last_non_im_patch_indices = torch.where(input_ids != image_token_id)[0][-1] + 1
         | 
| 537 | 
            +
                        input_ids = input_ids[:last_non_im_patch_indices]
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                    n_im_patch = (input_ids == image_token_id).sum().item()
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                    if self.data_args.image_aspect_ratio != "dynamic_s2":
         | 
| 542 | 
            +
                        images = images[:n_im_patch]
         | 
| 543 | 
            +
                        assert len(images) == n_im_patch, print(text, input_ids)
         | 
| 544 | 
            +
                    assert len(input_ids.shape) == 1, "Unexpected shape of 'input_ids' from MMC4."
         | 
| 545 | 
            +
                    input_ids = (
         | 
| 546 | 
            +
                        torch.concat([torch.tensor([self.tokenizer.bos_token_id]), input_ids])
         | 
| 547 | 
            +
                        if self.tokenizer.bos_token_id is not None and input_ids[0] != self.tokenizer.bos_token_id
         | 
| 548 | 
            +
                        else input_ids
         | 
| 549 | 
            +
                    )
         | 
| 550 | 
            +
                    targets = input_ids.clone()
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                    if self.image_following_text_only:  # keep only text after leading image token
         | 
| 553 | 
            +
                        # remove loss for any token before the first <image> token
         | 
| 554 | 
            +
                        label_idx = 0
         | 
| 555 | 
            +
                        while label_idx < targets.shape[-1] and targets[label_idx] != image_token_id:
         | 
| 556 | 
            +
                            targets[label_idx] = IGNORE_INDEX
         | 
| 557 | 
            +
                            label_idx += 1
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                        pad_token = self.tokenizer.convert_tokens_to_ids([self.tokenizer.pad_token])[0]
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                        pad_token_idxs = torch.where(targets == pad_token)[0]
         | 
| 562 | 
            +
                        for pad_token_idx in pad_token_idxs:
         | 
| 563 | 
            +
                            token_idx = pad_token_idx + 1
         | 
| 564 | 
            +
                            while token_idx < targets.shape[-1] and targets[token_idx] != image_token_id:
         | 
| 565 | 
            +
                                targets[token_idx] = IGNORE_INDEX
         | 
| 566 | 
            +
                                token_idx += 1
         | 
| 567 | 
            +
                        # do not train on padding tokens
         | 
| 568 | 
            +
                        targets[targets == pad_token] = IGNORE_INDEX
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                    # mask image tokens is unnecessary for llava-1.5
         | 
| 571 | 
            +
                    # targets[targets == IMAGE_TOKEN_INDEX] = IGNORE_INDEX
         | 
| 572 | 
            +
                    # print(input_ids.shape)
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                    data_dict = dict(input_ids=input_ids, labels=targets, image=images)
         | 
| 575 | 
            +
                    if self.data_args.image_aspect_ratio == "dynamic_s2":
         | 
| 576 | 
            +
                        data_dict["block_sizes"] = block_sizes
         | 
| 577 | 
            +
             | 
| 578 | 
            +
                    return data_dict
         | 
| 579 | 
            +
             | 
| 580 | 
            +
             | 
| 581 | 
            +
            class LazyCoyoDataset(Dataset):
         | 
| 582 | 
            +
                """Dataset for supervised fine-tuning.
         | 
| 583 | 
            +
                This class is implemented by Ji Lin and Haotian Tang."""
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                num_image_tokens = 576
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                def __init__(
         | 
| 588 | 
            +
                    self,
         | 
| 589 | 
            +
                    data_path: str,
         | 
| 590 | 
            +
                    image_folder: str,
         | 
| 591 | 
            +
                    tokenizer: transformers.PreTrainedTokenizer,
         | 
| 592 | 
            +
                    data_args: DataArguments,
         | 
| 593 | 
            +
                    training_args: TrainingArguments,
         | 
| 594 | 
            +
                    # kentang-mit@: balance the total number of tokens for Coyo and MMC4.
         | 
| 595 | 
            +
                    n_samples_per_idx=4,
         | 
| 596 | 
            +
                ):
         | 
| 597 | 
            +
                    super().__init__()
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    import pickle
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                    n_samples = []
         | 
| 602 | 
            +
                    # actually shards and stats info
         | 
| 603 | 
            +
                    n_shards = len(os.listdir(data_path)) // 2
         | 
| 604 | 
            +
                    # n_shards = 100
         | 
| 605 | 
            +
                    count_info_list = sorted([f for f in os.listdir(data_path) if f.endswith(".count")])[:n_shards]
         | 
| 606 | 
            +
                    n_samples = [int(open(os.path.join(data_path, f)).read().strip()) for f in count_info_list]
         | 
| 607 | 
            +
             | 
| 608 | 
            +
                    print("total COYO samples", sum(n_samples))
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    PROCESS_GROUP_MANAGER = get_pg_manager()
         | 
| 611 | 
            +
                    if PROCESS_GROUP_MANAGER is not None:
         | 
| 612 | 
            +
                        import torch.distributed as dist
         | 
| 613 | 
            +
             | 
| 614 | 
            +
                        sequence_parallel_size = training_args.seq_parallel_size
         | 
| 615 | 
            +
                    else:
         | 
| 616 | 
            +
                        sequence_parallel_size = 1
         | 
| 617 | 
            +
                    print("sequence_parallel_size", sequence_parallel_size)
         | 
| 618 | 
            +
                    rank = training_args.process_index // sequence_parallel_size  # int(os.environ["RANK"])
         | 
| 619 | 
            +
                    world_size = training_args.world_size // sequence_parallel_size  # int(os.environ["WORLD_SIZE"])
         | 
| 620 | 
            +
                    shared_size = n_shards // world_size
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                    gpu_samples = [
         | 
| 623 | 
            +
                        sum(n_samples[i * shared_size : (i + 1) * shared_size]) // n_samples_per_idx for i in range(world_size)
         | 
| 624 | 
            +
                    ]
         | 
| 625 | 
            +
                    self.n_samples = min(gpu_samples) * world_size  # total size
         | 
| 626 | 
            +
                    self.idx_offset = rank * min(gpu_samples)
         | 
| 627 | 
            +
             | 
| 628 | 
            +
                    shard_start, shard_end = rank * shared_size, (rank + 1) * shared_size
         | 
| 629 | 
            +
                    print(f" * loading data from shard {shard_start}-{shard_end}")
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                    shard_names = [d.replace(".count", ".pkl") for d in count_info_list]
         | 
| 632 | 
            +
                    shard_names = shard_names[shard_start:shard_end]
         | 
| 633 | 
            +
             | 
| 634 | 
            +
                    full_data_list = []
         | 
| 635 | 
            +
                    # now load data
         | 
| 636 | 
            +
                    for shard_name in shard_names:
         | 
| 637 | 
            +
                        # load shard
         | 
| 638 | 
            +
                        with open(os.path.join(data_path, shard_name), "rb") as f:
         | 
| 639 | 
            +
                            shard_data = pickle.load(f)
         | 
| 640 | 
            +
                            random.seed(42)
         | 
| 641 | 
            +
                            if "mmc4" in data_path:
         | 
| 642 | 
            +
                                random.shuffle(shard_data)  # shuffle for MMC4cap only
         | 
| 643 | 
            +
                            full_data_list.extend(shard_data)
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                    print(f"* loaded totally {len(full_data_list)} samples")
         | 
| 646 | 
            +
             | 
| 647 | 
            +
                    # now pack the samples into groups
         | 
| 648 | 
            +
                    n_groups = len(full_data_list) // n_samples_per_idx
         | 
| 649 | 
            +
                    full_data_list = [
         | 
| 650 | 
            +
                        full_data_list[i : i + n_samples_per_idx] for i in range(0, len(full_data_list), n_samples_per_idx)
         | 
| 651 | 
            +
                    ]
         | 
| 652 | 
            +
                    if len(full_data_list[-1]) < n_samples_per_idx:
         | 
| 653 | 
            +
                        full_data_list = full_data_list[:-1]
         | 
| 654 | 
            +
                    assert len(full_data_list) == n_groups
         | 
| 655 | 
            +
                    print(f"split into {n_groups} groups")
         | 
| 656 | 
            +
             | 
| 657 | 
            +
                    self.data_list = full_data_list
         | 
| 658 | 
            +
             | 
| 659 | 
            +
                    self.tokenizer = tokenizer
         | 
| 660 | 
            +
                    self.data_args = data_args
         | 
| 661 | 
            +
                    self.image_folder = image_folder
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                def __len__(self):
         | 
| 664 | 
            +
                    # return len(self.data_list)
         | 
| 665 | 
            +
                    return self.n_samples
         | 
| 666 | 
            +
             | 
| 667 | 
            +
                @property
         | 
| 668 | 
            +
                def modality_lengths(self):
         | 
| 669 | 
            +
                    # Estimate the number of tokens after tokenization, used for length-grouped sampling
         | 
| 670 | 
            +
                    length_list = []
         | 
| 671 | 
            +
                    for samples in self.data_list:
         | 
| 672 | 
            +
                        cur_len = sum([len(conv["text" if "text" in conv else "caption"].split()) for conv in samples])
         | 
| 673 | 
            +
                        # The unit of cur_len is "words". We assume 1 word = 2 tokens.
         | 
| 674 | 
            +
                        cur_len = cur_len + len(samples) * self.num_image_tokens // 2
         | 
| 675 | 
            +
                        length_list.append(cur_len)
         | 
| 676 | 
            +
                    return length_list
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                def __getitem__(self, i) -> Dict[str, torch.Tensor]:
         | 
| 679 | 
            +
                    CONCAT_SAMPLES = False
         | 
| 680 | 
            +
                    info_list = self.data_list[i - self.idx_offset]
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    text_list = []
         | 
| 683 | 
            +
                    image_list = []
         | 
| 684 | 
            +
             | 
| 685 | 
            +
                    for sample in info_list:
         | 
| 686 | 
            +
                        caption_key = (
         | 
| 687 | 
            +
                            "text" if "text" in sample else "caption"
         | 
| 688 | 
            +
                        )  # kentang-mit@: remove existing <image> tokens in the sentences
         | 
| 689 | 
            +
                        # kentang-mit@: remove existing <image> token.
         | 
| 690 | 
            +
                        # if this is an html tag, we still preserve its semantic meaning
         | 
| 691 | 
            +
                        sample[caption_key] = sample[caption_key].replace("<image>", "<IMAGE>")
         | 
| 692 | 
            +
                        text_list.append(DEFAULT_IMAGE_TOKEN + "\n" + sample[caption_key] + self.tokenizer.eos_token)
         | 
| 693 | 
            +
                        if "image" in sample:
         | 
| 694 | 
            +
                            image_base64 = sample["image"]
         | 
| 695 | 
            +
                            rawbytes = base64.b64decode(image_base64)
         | 
| 696 | 
            +
                        else:
         | 
| 697 | 
            +
                            rawbytes = sample["rawbytes"]
         | 
| 698 | 
            +
                        image = Image.open(io.BytesIO(rawbytes)).convert("RGB")
         | 
| 699 | 
            +
                        image_list.append(image)
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                    image_list = torch.stack([process_image(image, self.data_args, self.image_folder) for image in image_list])
         | 
| 702 | 
            +
             | 
| 703 | 
            +
                    if CONCAT_SAMPLES:
         | 
| 704 | 
            +
                        # into <image>cap<eos><image>cap<eos>...
         | 
| 705 | 
            +
                        text_list = "".join(text_list)
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                        input_ids = self.tokenizer(
         | 
| 708 | 
            +
                            text_list,
         | 
| 709 | 
            +
                            return_tensors="pt",
         | 
| 710 | 
            +
                            padding="longest",
         | 
| 711 | 
            +
                            max_length=self.tokenizer.model_max_length,
         | 
| 712 | 
            +
                            truncation=True,
         | 
| 713 | 
            +
                        ).input_ids  # 4, seq_len
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                        input_ids = input_ids[0]
         | 
| 716 | 
            +
             | 
| 717 | 
            +
                    else:
         | 
| 718 | 
            +
                        input_ids = [
         | 
| 719 | 
            +
                            tokenizer_image_token(
         | 
| 720 | 
            +
                                prompt,
         | 
| 721 | 
            +
                                self.tokenizer,
         | 
| 722 | 
            +
                                return_tensors="pt",
         | 
| 723 | 
            +
                            )
         | 
| 724 | 
            +
                            for prompt in text_list
         | 
| 725 | 
            +
                        ]
         | 
| 726 | 
            +
                        # print([x.shape[0] for x in input_ids], [len(x.split()) for x in text_list], [len(re.findall(r"<image[^>]*>", x)) for x in text_list])
         | 
| 727 | 
            +
             | 
| 728 | 
            +
                        # input_ids = torch.nn.utils.rnn.pad_sequence(
         | 
| 729 | 
            +
                        #     input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
         | 
| 730 | 
            +
                        # )
         | 
| 731 | 
            +
             | 
| 732 | 
            +
                    targets = copy.deepcopy(input_ids)
         | 
| 733 | 
            +
                    for i in range(len(targets)):
         | 
| 734 | 
            +
                        targets[i][targets[i] == self.tokenizer.pad_token_id] = IGNORE_INDEX
         | 
| 735 | 
            +
             | 
| 736 | 
            +
                    return dict(input_ids=input_ids, labels=targets, image=image_list)
         | 
| 737 | 
            +
             | 
| 738 | 
            +
             | 
| 739 | 
            +
            class LazyWDSDataset(Dataset):
         | 
| 740 | 
            +
                """Dataset for supervised fine-tuning.
         | 
| 741 | 
            +
                This class is implemented by Ji Lin and Ligeng Zhu."""
         | 
| 742 | 
            +
             | 
| 743 | 
            +
                def __init__(
         | 
| 744 | 
            +
                    self,
         | 
| 745 | 
            +
                    data_path: str,
         | 
| 746 | 
            +
                    tokenizer: transformers.PreTrainedTokenizer,
         | 
| 747 | 
            +
                    data_args: DataArguments,
         | 
| 748 | 
            +
                    image_folder: str,
         | 
| 749 | 
            +
                    training_args: TrainingArguments,
         | 
| 750 | 
            +
                ):
         | 
| 751 | 
            +
                    super().__init__()
         | 
| 752 | 
            +
                    n_samples = []
         | 
| 753 | 
            +
                    n_shards = len(os.listdir(data_path)) // 3
         | 
| 754 | 
            +
                    for shard in range(n_shards):
         | 
| 755 | 
            +
                        with open(os.path.join(data_path, f"{shard:05d}_stats.json")) as f:
         | 
| 756 | 
            +
                            info = json.load(f)
         | 
| 757 | 
            +
                            n_samples.append(info["successes"])
         | 
| 758 | 
            +
             | 
| 759 | 
            +
                    # print(f"[DEBUG] {data_path} total samples", sum(n_samples))  # 10,881,869
         | 
| 760 | 
            +
             | 
| 761 | 
            +
                    PROCESS_GROUP_MANAGER = get_pg_manager()
         | 
| 762 | 
            +
                    if PROCESS_GROUP_MANAGER is not None:
         | 
| 763 | 
            +
                        import torch.distributed as dist
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                        sequence_parallel_size = training_args.seq_parallel_size
         | 
| 766 | 
            +
                    else:
         | 
| 767 | 
            +
                        sequence_parallel_size = 1
         | 
| 768 | 
            +
                    print("sequence_parallel_size", sequence_parallel_size)
         | 
| 769 | 
            +
                    rank = training_args.process_index // sequence_parallel_size  # int(os.environ["RANK"])
         | 
| 770 | 
            +
                    world_size = training_args.world_size // sequence_parallel_size  # int(os.environ["WORLD_SIZE"])
         | 
| 771 | 
            +
                    shared_size = n_shards // world_size
         | 
| 772 | 
            +
                    print("rank", rank, "world_size", world_size, "shared_size", shared_size)
         | 
| 773 | 
            +
                    gpu_samples = [sum(n_samples[i * shared_size : (i + 1) * shared_size]) for i in range(world_size)]
         | 
| 774 | 
            +
                    self.n_samples = min(gpu_samples) * world_size  # total size
         | 
| 775 | 
            +
                    self.idx_offset = rank * min(gpu_samples)
         | 
| 776 | 
            +
                    shard_start, shard_end = rank * shared_size, (rank + 1) * shared_size
         | 
| 777 | 
            +
                    print(f" * loading data from shard {shard_start}-{shard_end}")
         | 
| 778 | 
            +
             | 
| 779 | 
            +
                    tar_list = [f"{shard_idx:05d}.tar" for shard_idx in range(shard_start, shard_end)]
         | 
| 780 | 
            +
             | 
| 781 | 
            +
                    self.data_list = []
         | 
| 782 | 
            +
                    t1 = time.time()
         | 
| 783 | 
            +
                    for tar in tar_list:
         | 
| 784 | 
            +
                        tmp_path = f"/tmp/ccs{tar}"
         | 
| 785 | 
            +
                        tar_path = os.path.join(data_path, tar)
         | 
| 786 | 
            +
             | 
| 787 | 
            +
                        if PROCESS_GROUP_MANAGER is not None:
         | 
| 788 | 
            +
                            dist.barrier()
         | 
| 789 | 
            +
                            if PROCESS_GROUP_MANAGER.sp_rank == 0:
         | 
| 790 | 
            +
                                os.makedirs(tmp_path, exist_ok=True)
         | 
| 791 | 
            +
                                os.system(f"tar -xkf {tar_path} -C {tmp_path}")
         | 
| 792 | 
            +
                            dist.barrier()
         | 
| 793 | 
            +
                        else:
         | 
| 794 | 
            +
                            os.makedirs(tmp_path, exist_ok=True)
         | 
| 795 | 
            +
                            os.system(f"tar -xkf {tar_path} -C {tmp_path}")
         | 
| 796 | 
            +
             | 
| 797 | 
            +
                        txt_list = [f for f in os.listdir(tmp_path) if f.endswith(".txt")]
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                        for txt in txt_list:
         | 
| 800 | 
            +
                            caption = open(os.path.join(tmp_path, txt)).read().strip()
         | 
| 801 | 
            +
                            image_path = os.path.join(tmp_path, txt.split(".")[0] + ".jpg")
         | 
| 802 | 
            +
                            self.data_list.append({"caption": caption, "image": image_path})
         | 
| 803 | 
            +
                    t2 = time.time()
         | 
| 804 | 
            +
                    print(f"Loading done. Total time: {t2 - t1:.2f} seconds")
         | 
| 805 | 
            +
             | 
| 806 | 
            +
                    self.tokenizer = tokenizer
         | 
| 807 | 
            +
                    self.data_args = data_args
         | 
| 808 | 
            +
                    self.image_folder = image_folder
         | 
| 809 | 
            +
             | 
| 810 | 
            +
                def __len__(self):
         | 
| 811 | 
            +
                    return self.n_samples
         | 
| 812 | 
            +
             | 
| 813 | 
            +
                def __getitem__(self, i) -> Dict[str, torch.Tensor]:
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                    # print("i", i, "idx_offset", self.idx_offset, "len", len(self.data_list))
         | 
| 816 | 
            +
                    info = self.data_list[i - self.idx_offset]
         | 
| 817 | 
            +
                    caption, image_path = info["caption"], info["image"]
         | 
| 818 | 
            +
             | 
| 819 | 
            +
                    rand_prompt = "<image>\n"
         | 
| 820 | 
            +
                    sources = [
         | 
| 821 | 
            +
                        {
         | 
| 822 | 
            +
                            "image": image_path,
         | 
| 823 | 
            +
                            "conversations": [
         | 
| 824 | 
            +
                                {"from": "human", "value": rand_prompt},
         | 
| 825 | 
            +
                                {"from": "gpt", "value": caption},
         | 
| 826 | 
            +
                            ],
         | 
| 827 | 
            +
                        }
         | 
| 828 | 
            +
                    ]
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                    # one example of sources
         | 
| 831 | 
            +
                    # [{'id': 'GCC_train_001738742', 'image': 'GCC_train_001738742.jpg', 'conversations': [{'from': 'human', 'value': 'Provide a brief description of the given image.\n<image>'}, {'from': 'gpt', 'value': 'a sketch of an ostrich'}]}]
         | 
| 832 | 
            +
                    if "image" in sources[0]:
         | 
| 833 | 
            +
                        image = process_image(sources[0]["image"], self.data_args, self.image_folder)
         | 
| 834 | 
            +
                        image = torch.unsqueeze(image, dim=0)
         | 
| 835 | 
            +
                        # now random pick some context samples for training
         | 
| 836 | 
            +
                        if hasattr(self.data_args, "num_shots"):
         | 
| 837 | 
            +
                            if self.data_args.num_shots > 0:
         | 
| 838 | 
            +
                                raise NotImplementedError
         | 
| 839 | 
            +
                    else:
         | 
| 840 | 
            +
                        raise NotImplementedError
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                    data_dict = preprocess([sources[0]["conversations"]], self.tokenizer, has_image=True)
         | 
| 843 | 
            +
             | 
| 844 | 
            +
                    if isinstance(i, int):
         | 
| 845 | 
            +
                        data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0])
         | 
| 846 | 
            +
             | 
| 847 | 
            +
                    # image exist in the data
         | 
| 848 | 
            +
                    if image is not None:
         | 
| 849 | 
            +
                        data_dict["image"] = image
         | 
| 850 | 
            +
                    else:
         | 
| 851 | 
            +
                        raise NotImplementedError
         | 
| 852 | 
            +
             | 
| 853 | 
            +
                    return data_dict
         | 
| 854 | 
            +
             | 
| 855 | 
            +
             | 
| 856 | 
            +
            class LazyCCSWebDataset(Dataset):
         | 
| 857 | 
            +
                """Dataset for supervised fine-tuning.
         | 
| 858 | 
            +
                This class is implemented by Ligeng Zhu."""
         | 
| 859 | 
            +
             | 
| 860 | 
            +
                def __init__(
         | 
| 861 | 
            +
                    self,
         | 
| 862 | 
            +
                    data_path: str,
         | 
| 863 | 
            +
                    image_folder: str,
         | 
| 864 | 
            +
                    tokenizer: transformers.PreTrainedTokenizer,
         | 
| 865 | 
            +
                    data_args: DataArguments,
         | 
| 866 | 
            +
                    training_args: TrainingArguments,
         | 
| 867 | 
            +
                ):
         | 
| 868 | 
            +
                    super().__init__()
         | 
| 869 | 
            +
                    t1 = time.time()
         | 
| 870 | 
            +
             | 
| 871 | 
            +
                    from llava.data.simple_vila_webdataset import VILAWebDataset
         | 
| 872 | 
            +
             | 
| 873 | 
            +
                    print("[DEBUG] ", osp.abspath(data_path))
         | 
| 874 | 
            +
                    self.dataset = VILAWebDataset(data_path=osp.abspath(data_path))
         | 
| 875 | 
            +
             | 
| 876 | 
            +
                    t2 = time.time()
         | 
| 877 | 
            +
                    print(f"Loading done. Total time: {t2 - t1:.2f} seconds")
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                    self.tokenizer = tokenizer
         | 
| 880 | 
            +
                    self.data_args = data_args
         | 
| 881 | 
            +
             | 
| 882 | 
            +
                def __len__(self):
         | 
| 883 | 
            +
                    return len(self.dataset)
         | 
| 884 | 
            +
             | 
| 885 | 
            +
                def __getitem__(self, i) -> Dict[str, torch.Tensor]:
         | 
| 886 | 
            +
                    # info = self.data_list[i - self.idx_offset]
         | 
| 887 | 
            +
                    # caption, image_path = info["caption"], info["image"]
         | 
| 888 | 
            +
                    info = self.dataset[i]
         | 
| 889 | 
            +
                    if ".jpg" in info:
         | 
| 890 | 
            +
                        caption, image_path = info[".txt"], info[".jpg"]
         | 
| 891 | 
            +
                    elif ".png" in info:
         | 
| 892 | 
            +
                        caption, image_path = info[".txt"], info[".png"]
         | 
| 893 | 
            +
                    elif ".webp" in info:
         | 
| 894 | 
            +
                        caption, image_path = info[".txt"], info[".webp"]
         | 
| 895 | 
            +
                    elif ".bmp" in info:
         | 
| 896 | 
            +
                        caption, image_path = info[".txt"], info[".bmp"]
         | 
| 897 | 
            +
                    elif ".tiff" in info:
         | 
| 898 | 
            +
                        caption, image_path = info[".txt"], info[".tiff"]
         | 
| 899 | 
            +
                    else:
         | 
| 900 | 
            +
                        print(info.keys())
         | 
| 901 | 
            +
                        print(info)
         | 
| 902 | 
            +
                        raise KeyError
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                    caption = caption.replace("<image>", "<IMAGE>")
         | 
| 905 | 
            +
                    if isinstance(image_path, io.BytesIO):
         | 
| 906 | 
            +
                        image_path = Image.open(image_path).convert("RGB")
         | 
| 907 | 
            +
             | 
| 908 | 
            +
                    if not isinstance(image_path, PIL.Image.Image):
         | 
| 909 | 
            +
                        print(image_path)
         | 
| 910 | 
            +
                        print(info.keys())
         | 
| 911 | 
            +
                        print(type(image_path))
         | 
| 912 | 
            +
                        raise NotImplementedError
         | 
| 913 | 
            +
             | 
| 914 | 
            +
                    rand_prompt = "<image>\n"
         | 
| 915 | 
            +
                    sources = [
         | 
| 916 | 
            +
                        {
         | 
| 917 | 
            +
                            "image": image_path,
         | 
| 918 | 
            +
                            "conversations": [
         | 
| 919 | 
            +
                                {"from": "human", "value": rand_prompt},
         | 
| 920 | 
            +
                                {"from": "gpt", "value": caption},
         | 
| 921 | 
            +
                            ],
         | 
| 922 | 
            +
                        }
         | 
| 923 | 
            +
                    ]
         | 
| 924 | 
            +
             | 
| 925 | 
            +
                    # one example of sources
         | 
| 926 | 
            +
                    # [{'id': 'GCC_train_001738742', 'image': 'GCC_train_001738742.jpg', 'conversations': [{'from': 'human', 'value': 'Provide a brief description of the given image.\n<image>'}, {'from': 'gpt', 'value': 'a sketch of an ostrich'}]}]
         | 
| 927 | 
            +
                    if "image" in sources[0]:
         | 
| 928 | 
            +
                        image = process_image(sources[0]["image"], self.data_args, image_folder=None)
         | 
| 929 | 
            +
                        image = torch.unsqueeze(image, dim=0)
         | 
| 930 | 
            +
                        # now random pick some context samples for training
         | 
| 931 | 
            +
                        if hasattr(self.data_args, "num_shots"):
         | 
| 932 | 
            +
                            if self.data_args.num_shots > 0:
         | 
| 933 | 
            +
                                raise NotImplementedError
         | 
| 934 | 
            +
                    else:
         | 
| 935 | 
            +
                        raise NotImplementedError
         | 
| 936 | 
            +
             | 
| 937 | 
            +
                    data_dict = preprocess([sources[0]["conversations"]], self.tokenizer, has_image=True)
         | 
| 938 | 
            +
             | 
| 939 | 
            +
                    if isinstance(i, int):
         | 
| 940 | 
            +
                        data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0])
         | 
| 941 | 
            +
             | 
| 942 | 
            +
                    # image exist in the data
         | 
| 943 | 
            +
                    if image is not None:
         | 
| 944 | 
            +
                        data_dict["image"] = image
         | 
| 945 | 
            +
                    else:
         | 
| 946 | 
            +
                        raise NotImplementedError
         | 
| 947 | 
            +
             | 
| 948 | 
            +
                    return data_dict
         | 
| 949 | 
            +
             | 
| 950 | 
            +
             | 
| 951 | 
            +
            from functools import lru_cache
         | 
| 952 | 
            +
             | 
| 953 | 
            +
             | 
| 954 | 
            +
            @lru_cache(maxsize=16)
         | 
| 955 | 
            +
            def lru_json_load(fpath):
         | 
| 956 | 
            +
                with open(fpath) as fp:
         | 
| 957 | 
            +
                    return json.load(fp)
         | 
| 958 | 
            +
             | 
| 959 | 
            +
             | 
| 960 | 
            +
            class LazyCoyoWebDataset(Dataset):
         | 
| 961 | 
            +
                """Dataset for supervised fine-tuning.
         | 
| 962 | 
            +
                This class is implemented by Ligeng Zhu."""
         | 
| 963 | 
            +
             | 
| 964 | 
            +
                num_image_tokens = 576
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                def __init__(
         | 
| 967 | 
            +
                    self,
         | 
| 968 | 
            +
                    data_path: str,
         | 
| 969 | 
            +
                    image_folder: str,
         | 
| 970 | 
            +
                    tokenizer: transformers.PreTrainedTokenizer,
         | 
| 971 | 
            +
                    data_args: DataArguments,
         | 
| 972 | 
            +
                    training_args: TrainingArguments,
         | 
| 973 | 
            +
                    # kentang-mit@: balance the total number of tokens for Coyo and MMC4.
         | 
| 974 | 
            +
                    n_samples_per_idx=4,
         | 
| 975 | 
            +
                ):
         | 
| 976 | 
            +
                    super().__init__()
         | 
| 977 | 
            +
             | 
| 978 | 
            +
                    from llava.data.simple_vila_webdataset import VILAWebDataset
         | 
| 979 | 
            +
             | 
| 980 | 
            +
                    print("[DEBUG] ", osp.abspath(data_path))
         | 
| 981 | 
            +
                    self.dataset = VILAWebDataset(data_path=osp.abspath(data_path), meta_path=data_args.meta_path)
         | 
| 982 | 
            +
             | 
| 983 | 
            +
                    if data_args.start_idx >= 0 and data_args.end_idx >= 0:
         | 
| 984 | 
            +
                        # Ligeng: support slicing for ablate different subsets.
         | 
| 985 | 
            +
                        total = len(self.dataset)
         | 
| 986 | 
            +
                        start_idx = int(total * data_args.start_idx)
         | 
| 987 | 
            +
                        end_idx = int(total * data_args.end_idx)
         | 
| 988 | 
            +
                        print(f"loading subset from {start_idx} to {end_idx}, total {total}")
         | 
| 989 | 
            +
                        self.dataset = torch.utils.data.Subset(self.dataset, range(start_idx, end_idx))
         | 
| 990 | 
            +
             | 
| 991 | 
            +
                    # For caption choice,
         | 
| 992 | 
            +
                    #   if None: use original caption
         | 
| 993 | 
            +
                    #   if a folder path: use specified caption to override original one (choice1)
         | 
| 994 | 
            +
                    #   if a folder path: use specified caption and concat with original one (choice2)
         | 
| 995 | 
            +
                    self.caption_choice = None
         | 
| 996 | 
            +
                    self.caption_choice_2 = None
         | 
| 997 | 
            +
                    self.data_path = data_path
         | 
| 998 | 
            +
             | 
| 999 | 
            +
                    if data_args.caption_choice is not None:
         | 
| 1000 | 
            +
                        self.caption_choice = data_args.caption_choice
         | 
| 1001 | 
            +
                        print("[recap] Override coyo caption using ", self.caption_choice)
         | 
| 1002 | 
            +
             | 
| 1003 | 
            +
                    if data_args.caption_choice_2 is not None:
         | 
| 1004 | 
            +
                        self.caption_choice_2 = data_args.caption_choice_2
         | 
| 1005 | 
            +
                        print("[recapv2] Override coyo caption using ", self.caption_choice_2)
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                    print("total samples", len(self.dataset))
         | 
| 1008 | 
            +
                    PROCESS_GROUP_MANAGER = get_pg_manager()
         | 
| 1009 | 
            +
                    if PROCESS_GROUP_MANAGER is not None:
         | 
| 1010 | 
            +
                        import torch.distributed as dist
         | 
| 1011 | 
            +
             | 
| 1012 | 
            +
                        sequence_parallel_size = training_args.seq_parallel_size
         | 
| 1013 | 
            +
                        sequence_parallel_rank = PROCESS_GROUP_MANAGER.sp_rank
         | 
| 1014 | 
            +
                    else:
         | 
| 1015 | 
            +
                        sequence_parallel_size = 1
         | 
| 1016 | 
            +
                    print("sequence_parallel_size", sequence_parallel_size)
         | 
| 1017 | 
            +
                    rank = (
         | 
| 1018 | 
            +
                        training_args.process_index // sequence_parallel_size if "RANK" in os.environ else 2
         | 
| 1019 | 
            +
                    )  # int(os.environ["RANK"])
         | 
| 1020 | 
            +
                    world_size = (
         | 
| 1021 | 
            +
                        training_args.world_size // sequence_parallel_size if "WORLD_SIZE" in os.environ else 32
         | 
| 1022 | 
            +
                    )  # int(os.environ["WORLD_SIZE"])
         | 
| 1023 | 
            +
                    print(
         | 
| 1024 | 
            +
                        "rank",
         | 
| 1025 | 
            +
                        rank,
         | 
| 1026 | 
            +
                        "world_size",
         | 
| 1027 | 
            +
                        world_size,
         | 
| 1028 | 
            +
                    )
         | 
| 1029 | 
            +
             | 
| 1030 | 
            +
                    self.n_samples_per_idx = n_samples_per_idx
         | 
| 1031 | 
            +
                    # self.n_samples = len(self.dataset) // n_samples_per_idx
         | 
| 1032 | 
            +
                    self.tokenizer = tokenizer
         | 
| 1033 | 
            +
                    self.data_args = data_args
         | 
| 1034 | 
            +
             | 
| 1035 | 
            +
                def __len__(self):
         | 
| 1036 | 
            +
                    return len(self.dataset) // self.n_samples_per_idx
         | 
| 1037 | 
            +
             | 
| 1038 | 
            +
                @property
         | 
| 1039 | 
            +
                def modality_lengths(self):
         | 
| 1040 | 
            +
                    # Estimate the number of tokens after tokenization, used for length-grouped sampling
         | 
| 1041 | 
            +
                    length_list = []
         | 
| 1042 | 
            +
                    for samples in self.data_list:
         | 
| 1043 | 
            +
                        cur_len = sum([len(conv["text" if "text" in conv else "caption"].split()) for conv in samples])
         | 
| 1044 | 
            +
                        # The unit of cur_len is "words". We assume 1 word = 2 tokens.
         | 
| 1045 | 
            +
                        cur_len = cur_len + len(samples) * self.num_image_tokens // 2
         | 
| 1046 | 
            +
                        length_list.append(cur_len)
         | 
| 1047 | 
            +
                    return length_list
         | 
| 1048 | 
            +
             | 
| 1049 | 
            +
                def __getitem__(self, i) -> Dict[str, torch.Tensor]:
         | 
| 1050 | 
            +
                    CONCAT_SAMPLES = False
         | 
| 1051 | 
            +
                    # info_list = self.dataset[i - self.idx_offset]
         | 
| 1052 | 
            +
             | 
| 1053 | 
            +
                    begin_idx, end_idx = (
         | 
| 1054 | 
            +
                        i * self.n_samples_per_idx,
         | 
| 1055 | 
            +
                        (i + 1) * self.n_samples_per_idx,
         | 
| 1056 | 
            +
                    )
         | 
| 1057 | 
            +
                    end_idx = min(end_idx, len(self.dataset))
         | 
| 1058 | 
            +
             | 
| 1059 | 
            +
                    text_list = []
         | 
| 1060 | 
            +
                    image_list = []
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
                    for idx in range(begin_idx, end_idx):
         | 
| 1063 | 
            +
                        info = self.dataset[idx]
         | 
| 1064 | 
            +
                        if ".jpg" in info:
         | 
| 1065 | 
            +
                            caption, image_path = info[".txt"], info[".jpg"]
         | 
| 1066 | 
            +
                        elif ".png" in info:
         | 
| 1067 | 
            +
                            caption, image_path = info[".txt"], info[".png"]
         | 
| 1068 | 
            +
                        elif ".webp" in info:
         | 
| 1069 | 
            +
                            caption, image_path = info[".txt"], info[".webp"]
         | 
| 1070 | 
            +
                        elif ".bmp" in info:
         | 
| 1071 | 
            +
                            caption, image_path = info[".txt"], info[".bmp"]
         | 
| 1072 | 
            +
                        elif ".tiff" in info:
         | 
| 1073 | 
            +
                            caption, image_path = info[".txt"], info[".tiff"]
         | 
| 1074 | 
            +
                        else:
         | 
| 1075 | 
            +
                            print(info.keys())
         | 
| 1076 | 
            +
                            print(info)
         | 
| 1077 | 
            +
                            raise KeyError
         | 
| 1078 | 
            +
             | 
| 1079 | 
            +
                        if self.caption_choice is not None:
         | 
| 1080 | 
            +
                            # load new captions
         | 
| 1081 | 
            +
                            shard = info["__shard__"]
         | 
| 1082 | 
            +
                            url = info[".json"]["url"]
         | 
| 1083 | 
            +
                            tar_name = osp.relpath(osp.realpath(shard), osp.realpath(self.data_path))
         | 
| 1084 | 
            +
                            # tar_name = osp.dirname(shard)
         | 
| 1085 | 
            +
                            shard_json_path = osp.join(self.caption_choice, tar_name + ".json")
         | 
| 1086 | 
            +
                            try:
         | 
| 1087 | 
            +
                                shard_json = lru_json_load(shard_json_path)
         | 
| 1088 | 
            +
                                try:
         | 
| 1089 | 
            +
                                    caption = shard_json[url]["output"]
         | 
| 1090 | 
            +
                                except KeyError:
         | 
| 1091 | 
            +
                                    print(f"{url} not in caption. fallback to original caption temporarially")
         | 
| 1092 | 
            +
                            except:
         | 
| 1093 | 
            +
                                print(f"shard_json_path {shard_json_path} not found. fallback to original caption temporarially")
         | 
| 1094 | 
            +
                        caption = caption.replace("<image>", "<IMAGE>")
         | 
| 1095 | 
            +
                        text_list.append(DEFAULT_IMAGE_TOKEN + caption + self.tokenizer.eos_token)
         | 
| 1096 | 
            +
             | 
| 1097 | 
            +
                        if isinstance(image_path, io.BytesIO):
         | 
| 1098 | 
            +
                            image_path = Image.open(image_path).convert("RGB")
         | 
| 1099 | 
            +
             | 
| 1100 | 
            +
                        if not isinstance(image_path, PIL.Image.Image):
         | 
| 1101 | 
            +
                            print(image_path)
         | 
| 1102 | 
            +
                            print(info.keys())
         | 
| 1103 | 
            +
                            print(type(image_path))
         | 
| 1104 | 
            +
                            raise NotImplementedError
         | 
| 1105 | 
            +
             | 
| 1106 | 
            +
                        image_list.append(image_path)
         | 
| 1107 | 
            +
             | 
| 1108 | 
            +
                    # image_list = torch.stack([process_image(image, self.data_args, image_folder=None) for image in image_list])
         | 
| 1109 | 
            +
                    # NOTE(fix by ligeng)
         | 
| 1110 | 
            +
                    #  now image_list should return a list of image tensor where each has a dimension of (1, c, h, w)
         | 
| 1111 | 
            +
                    image_list = [process_image(image, self.data_args, image_folder=None).unsqueeze(0) for image in image_list]
         | 
| 1112 | 
            +
             | 
| 1113 | 
            +
                    if CONCAT_SAMPLES:
         | 
| 1114 | 
            +
                        # into <image>cap<eos><image>cap<eos>...
         | 
| 1115 | 
            +
                        text_list = "".join(text_list)
         | 
| 1116 | 
            +
             | 
| 1117 | 
            +
                        input_ids = self.tokenizer(
         | 
| 1118 | 
            +
                            text_list,
         | 
| 1119 | 
            +
                            return_tensors="pt",
         | 
| 1120 | 
            +
                            padding="longest",
         | 
| 1121 | 
            +
                            max_length=self.tokenizer.model_max_length,
         | 
| 1122 | 
            +
                            truncation=True,
         | 
| 1123 | 
            +
                        ).input_ids  # 4, seq_len
         | 
| 1124 | 
            +
             | 
| 1125 | 
            +
                        input_ids = input_ids[0]
         | 
| 1126 | 
            +
                    else:
         | 
| 1127 | 
            +
                        input_ids = [
         | 
| 1128 | 
            +
                            tokenizer_image_token(
         | 
| 1129 | 
            +
                                prompt,
         | 
| 1130 | 
            +
                                self.tokenizer,
         | 
| 1131 | 
            +
                                return_tensors="pt",
         | 
| 1132 | 
            +
                            )
         | 
| 1133 | 
            +
                            for prompt in text_list
         | 
| 1134 | 
            +
                        ]
         | 
| 1135 | 
            +
                        input_ids = [
         | 
| 1136 | 
            +
                            (
         | 
| 1137 | 
            +
                                torch.concat([torch.tensor([self.tokenizer.bos_token_id]), input_ids_i])
         | 
| 1138 | 
            +
                                if input_ids_i[0] != self.tokenizer.bos_token_id
         | 
| 1139 | 
            +
                                else input_ids_i
         | 
| 1140 | 
            +
                            )
         | 
| 1141 | 
            +
                            for input_ids_i in input_ids
         | 
| 1142 | 
            +
                        ]
         | 
| 1143 | 
            +
             | 
| 1144 | 
            +
                    targets = copy.deepcopy(input_ids)
         | 
| 1145 | 
            +
                    for i in range(len(targets)):
         | 
| 1146 | 
            +
                        targets[i][targets[i] == self.tokenizer.pad_token_id] = IGNORE_INDEX
         | 
| 1147 | 
            +
             | 
| 1148 | 
            +
                    return dict(input_ids=input_ids, labels=targets, image=image_list)
         | 
| 1149 | 
            +
             | 
| 1150 | 
            +
             | 
| 1151 | 
            +
            class LazyVideoWebDataset(Dataset):
         | 
| 1152 | 
            +
                """Dataset for supervised fine-tuning."""
         | 
| 1153 | 
            +
             | 
| 1154 | 
            +
                def __init__(
         | 
| 1155 | 
            +
                    self,
         | 
| 1156 | 
            +
                    data_path: str,
         | 
| 1157 | 
            +
                    image_folder: str,
         | 
| 1158 | 
            +
                    tokenizer: transformers.PreTrainedTokenizer,
         | 
| 1159 | 
            +
                    data_args: DataArguments,
         | 
| 1160 | 
            +
                    training_args: TrainingArguments,
         | 
| 1161 | 
            +
                    # cache_path: str,
         | 
| 1162 | 
            +
                    # n_samples_per_idx=4,
         | 
| 1163 | 
            +
                ):
         | 
| 1164 | 
            +
                    super().__init__()
         | 
| 1165 | 
            +
             | 
| 1166 | 
            +
                    # from llava.data.simple_video_dataset import SimpleVideoDataset
         | 
| 1167 | 
            +
             | 
| 1168 | 
            +
                    from llava.data.simple_vila_webdataset import VILAWebDataset
         | 
| 1169 | 
            +
             | 
| 1170 | 
            +
                    print("[DEBUG] ", osp.abspath(data_path))
         | 
| 1171 | 
            +
                    self.dataset = VILAWebDataset(
         | 
| 1172 | 
            +
                        data_path=osp.abspath(data_path),
         | 
| 1173 | 
            +
                        meta_path=f"{osp.abspath(data_path)}/wids-meta.json",
         | 
| 1174 | 
            +
                        # cache_dir=cache_path,
         | 
| 1175 | 
            +
                    )
         | 
| 1176 | 
            +
             | 
| 1177 | 
            +
                    # None: use original caption
         | 
| 1178 | 
            +
                    # Folder path: use original caption
         | 
| 1179 | 
            +
                    self.caption_choice = None
         | 
| 1180 | 
            +
                    self.data_path = data_path
         | 
| 1181 | 
            +
             | 
| 1182 | 
            +
                    if data_args.caption_choice is not None:
         | 
| 1183 | 
            +
                        self.caption_choice = data_args.caption_choice
         | 
| 1184 | 
            +
                        print("[recap] Override LazyVideo caption using ", self.caption_choice)
         | 
| 1185 | 
            +
             | 
| 1186 | 
            +
                    print("total samples", len(self.dataset))
         | 
| 1187 | 
            +
                    # InternVid: TODO
         | 
| 1188 | 
            +
                    PROCESS_GROUP_MANAGER = get_pg_manager()
         | 
| 1189 | 
            +
                    if PROCESS_GROUP_MANAGER is not None:
         | 
| 1190 | 
            +
                        import torch.distributed as dist
         | 
| 1191 | 
            +
             | 
| 1192 | 
            +
                        sequence_parallel_size = training_args.seq_parallel_size
         | 
| 1193 | 
            +
                        sequence_parallel_rank = PROCESS_GROUP_MANAGER.sp_rank
         | 
| 1194 | 
            +
                    else:
         | 
| 1195 | 
            +
                        sequence_parallel_size = 1
         | 
| 1196 | 
            +
                    print("sequence_parallel_size", sequence_parallel_size)
         | 
| 1197 | 
            +
                    rank = (
         | 
| 1198 | 
            +
                        training_args.process_index // sequence_parallel_size if "RANK" in os.environ else 2
         | 
| 1199 | 
            +
                    )  # int(os.environ["RANK"])
         | 
| 1200 | 
            +
                    world_size = (
         | 
| 1201 | 
            +
                        training_args.world_size // sequence_parallel_size if "WORLD_SIZE" in os.environ else 32
         | 
| 1202 | 
            +
                    )  # int(os.environ["WORLD_SIZE"])
         | 
| 1203 | 
            +
                    print(
         | 
| 1204 | 
            +
                        "rank",
         | 
| 1205 | 
            +
                        rank,
         | 
| 1206 | 
            +
                        "world_size",
         | 
| 1207 | 
            +
                        world_size,
         | 
| 1208 | 
            +
                    )
         | 
| 1209 | 
            +
                    self.rank = rank
         | 
| 1210 | 
            +
                    # rank = int(os.environ["RANK"]) if "RANK" in os.environ else 2
         | 
| 1211 | 
            +
                    # world_size = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 32
         | 
| 1212 | 
            +
             | 
| 1213 | 
            +
                    self.tokenizer = tokenizer
         | 
| 1214 | 
            +
                    self.data_args = data_args
         | 
| 1215 | 
            +
             | 
| 1216 | 
            +
                    self.missing_uids = set()
         | 
| 1217 | 
            +
             | 
| 1218 | 
            +
                def __len__(self):
         | 
| 1219 | 
            +
                    return len(self.dataset)
         | 
| 1220 | 
            +
             | 
| 1221 | 
            +
                @property
         | 
| 1222 | 
            +
                def modality_lengths(self):
         | 
| 1223 | 
            +
                    # Estimate the number of tokens after tokenization, used for length-grouped sampling
         | 
| 1224 | 
            +
                    length_list = []
         | 
| 1225 | 
            +
                    for samples in self.data_list:
         | 
| 1226 | 
            +
                        cur_len = sum([len(conv["text" if "text" in conv else "caption"].split()) for conv in samples])
         | 
| 1227 | 
            +
                        # The unit of cur_len is "words". We assume 1 word = 2 tokens.
         | 
| 1228 | 
            +
                        cur_len = cur_len + len(samples) * self.num_image_tokens // 2
         | 
| 1229 | 
            +
                        length_list.append(cur_len)
         | 
| 1230 | 
            +
                    return length_list
         | 
| 1231 | 
            +
             | 
| 1232 | 
            +
                def __getitem__(self, i) -> Dict[str, torch.Tensor]:
         | 
| 1233 | 
            +
                    ADD_TEXT_PROMPT = False
         | 
| 1234 | 
            +
                    num_video_frames = self.data_args.num_video_frames if hasattr(self.data_args, "num_video_frames") else 8
         | 
| 1235 | 
            +
                    loader_fps = self.data_args.fps if hasattr(self.data_args, "fps") else 0.0
         | 
| 1236 | 
            +
             | 
| 1237 | 
            +
                    info = self.dataset[i]
         | 
| 1238 | 
            +
             | 
| 1239 | 
            +
                    caption = ""
         | 
| 1240 | 
            +
                    # print(info)
         | 
| 1241 | 
            +
                    if ".mp4" in info:
         | 
| 1242 | 
            +
                        caption, video_path = info[".txt"], info[".mp4"]
         | 
| 1243 | 
            +
                    else:
         | 
| 1244 | 
            +
                        video_path = None
         | 
| 1245 | 
            +
                        caption = "Empty video."
         | 
| 1246 | 
            +
             | 
| 1247 | 
            +
                    images, frames_loaded, _ = LazySupervisedDataset._load_video(
         | 
| 1248 | 
            +
                        video_path, num_video_frames, loader_fps, self.data_args
         | 
| 1249 | 
            +
                    )
         | 
| 1250 | 
            +
             | 
| 1251 | 
            +
                    if frames_loaded == 0:
         | 
| 1252 | 
            +
                        caption = "Empty video."
         | 
| 1253 | 
            +
             | 
| 1254 | 
            +
                    if self.caption_choice is not None:
         | 
| 1255 | 
            +
                        shard = info["__shard__"]
         | 
| 1256 | 
            +
                        uuid = osp.join(info["__shard__"], info["__key__"])
         | 
| 1257 | 
            +
                        url = info["__key__"]
         | 
| 1258 | 
            +
                        tar_name = osp.basename(info["__shard__"])
         | 
| 1259 | 
            +
             | 
| 1260 | 
            +
                        try:
         | 
| 1261 | 
            +
                            shard_json_path = osp.join(self.caption_choice, tar_name.replace(".tar", ".json"))
         | 
| 1262 | 
            +
                            shard_json = lru_json_load(shard_json_path)
         | 
| 1263 | 
            +
                            caption = shard_json[url]["summary"]["output"]
         | 
| 1264 | 
            +
                        except (KeyError, FileNotFoundError, json.decoder.JSONDecodeError):
         | 
| 1265 | 
            +
                            if uuid not in self.missing_uids:
         | 
| 1266 | 
            +
                                print("override caption not found for ", uuid)
         | 
| 1267 | 
            +
                                self.missing_uids.add(uuid)
         | 
| 1268 | 
            +
             | 
| 1269 | 
            +
                        # print(f"[DEBUG {uuid}]", caption)
         | 
| 1270 | 
            +
             | 
| 1271 | 
            +
                    frames_loaded_successfully = len(images)
         | 
| 1272 | 
            +
                    if caption is None:
         | 
| 1273 | 
            +
                        caption = ""
         | 
| 1274 | 
            +
                    prompt = "<image>\n" * frames_loaded_successfully + caption
         | 
| 1275 | 
            +
                    image_tensor = torch.stack([process_image(image, self.data_args, None) for image in images])
         | 
| 1276 | 
            +
             | 
| 1277 | 
            +
                    input_ids = tokenizer_image_token(
         | 
| 1278 | 
            +
                        prompt,
         | 
| 1279 | 
            +
                        self.tokenizer,
         | 
| 1280 | 
            +
                        return_tensors="pt",
         | 
| 1281 | 
            +
                    )
         | 
| 1282 | 
            +
                    targets = copy.deepcopy(input_ids)
         | 
| 1283 | 
            +
                    data_dict = dict(input_ids=input_ids, labels=targets, image=image_tensor)
         | 
| 1284 | 
            +
             | 
| 1285 | 
            +
                    return data_dict
         | 
| 1286 | 
            +
             | 
| 1287 | 
            +
             | 
| 1288 | 
            +
            class DataCollatorForSupervisedDatasetSeqParallel:
         | 
| 1289 | 
            +
                """Collate examples for supervised fine-tuning.
         | 
| 1290 | 
            +
                This class is originally implemented by the LLaVA team and
         | 
| 1291 | 
            +
                modified by Haotian Tang."""
         | 
| 1292 | 
            +
             | 
| 1293 | 
            +
                def __init__(
         | 
| 1294 | 
            +
                    self,
         | 
| 1295 | 
            +
                    tokenizer: transformers.PreTrainedTokenizer,
         | 
| 1296 | 
            +
                    data_args: DataArguments,
         | 
| 1297 | 
            +
                    training_args: TrainingArguments,
         | 
| 1298 | 
            +
                    sp_degree: int,
         | 
| 1299 | 
            +
                    sp_rank: int,
         | 
| 1300 | 
            +
                    ring_degree: int,
         | 
| 1301 | 
            +
                    ring_type: str,
         | 
| 1302 | 
            +
                ):
         | 
| 1303 | 
            +
                    self.tokenizer = tokenizer
         | 
| 1304 | 
            +
                    self.data_args = data_args
         | 
| 1305 | 
            +
                    self.training_args = training_args
         | 
| 1306 | 
            +
                    self.sp_degree = sp_degree
         | 
| 1307 | 
            +
                    self.sp_rank = sp_rank
         | 
| 1308 | 
            +
                    self.ring_degree = ring_degree
         | 
| 1309 | 
            +
                    self.ring_type = ring_type
         | 
| 1310 | 
            +
             | 
| 1311 | 
            +
                def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
         | 
| 1312 | 
            +
                    input_ids, labels, images = [], [], []
         | 
| 1313 | 
            +
                    image_token_id = self.tokenizer.media_token_ids["image"]
         | 
| 1314 | 
            +
                    video_token_id = self.tokenizer.media_token_ids["video"]
         | 
| 1315 | 
            +
             | 
| 1316 | 
            +
                    for instance in instances:
         | 
| 1317 | 
            +
                        if not isinstance(instance["input_ids"], list):
         | 
| 1318 | 
            +
                            input_ids.append(instance["input_ids"])
         | 
| 1319 | 
            +
                        else:
         | 
| 1320 | 
            +
                            input_ids += instance["input_ids"]
         | 
| 1321 | 
            +
                        if not isinstance(instance["labels"], list):
         | 
| 1322 | 
            +
                            labels.append(instance["labels"])
         | 
| 1323 | 
            +
                        else:
         | 
| 1324 | 
            +
                            labels += instance["labels"]
         | 
| 1325 | 
            +
                        # Note (kentang-mit@: we do not directly push tensors to
         | 
| 1326 | 
            +
                        # images, but list of tensors.
         | 
| 1327 | 
            +
                        if "video" in instance:
         | 
| 1328 | 
            +
                            instance["image"] = torch.cat(instance["video"])
         | 
| 1329 | 
            +
                            video_id_pos = torch.where(input_ids[-1] == video_token_id)[0][0]
         | 
| 1330 | 
            +
                            replace_ids = torch.Tensor(
         | 
| 1331 | 
            +
                                ([image_token_id] + self.tokenizer.encode("\n")) * instance["image"].shape[0],
         | 
| 1332 | 
            +
                                device=input_ids[-1].device,
         | 
| 1333 | 
            +
                            )
         | 
| 1334 | 
            +
                            input_ids[-1] = torch.cat(
         | 
| 1335 | 
            +
                                [input_ids[-1][:video_id_pos], replace_ids, input_ids[-1][video_id_pos + 1 :]]
         | 
| 1336 | 
            +
                            ).to(input_ids[-1].dtype)
         | 
| 1337 | 
            +
                            labels[-1] = torch.cat(
         | 
| 1338 | 
            +
                                [
         | 
| 1339 | 
            +
                                    labels[-1][:video_id_pos],
         | 
| 1340 | 
            +
                                    torch.Tensor([IGNORE_INDEX] * instance["image"].shape[0] * 2),
         | 
| 1341 | 
            +
                                    labels[-1][video_id_pos + 1 :],
         | 
| 1342 | 
            +
                                ]
         | 
| 1343 | 
            +
                            ).to(labels[-1].dtype)
         | 
| 1344 | 
            +
                            instance.pop("video")
         | 
| 1345 | 
            +
             | 
| 1346 | 
            +
                        if "image" in instance:
         | 
| 1347 | 
            +
                            cur_image = instance["image"]
         | 
| 1348 | 
            +
                            assert len(cur_image.shape) == 4
         | 
| 1349 | 
            +
                            # n_images, 3, size, size
         | 
| 1350 | 
            +
                            if cur_image.shape[0] == 0:
         | 
| 1351 | 
            +
                                warnings.warn("loaded one sample without images.")
         | 
| 1352 | 
            +
                            if not isinstance(instance["input_ids"], list):
         | 
| 1353 | 
            +
                                # datasets other than coyo, not packing >1 samples together
         | 
| 1354 | 
            +
                                images.append(cur_image)
         | 
| 1355 | 
            +
                            else:
         | 
| 1356 | 
            +
                                # coyo-like datasets
         | 
| 1357 | 
            +
                                images.extend(cur_image.chunk(cur_image.size(0), 0))
         | 
| 1358 | 
            +
                        else:
         | 
| 1359 | 
            +
                            warnings.warn("loaded one sample without images.")
         | 
| 1360 | 
            +
                            images.append([])
         | 
| 1361 | 
            +
                    # kentang-mit@: we need to make sure these two lists have
         | 
| 1362 | 
            +
                    # the same length. We will use input_ids to filter out images corresponding
         | 
| 1363 | 
            +
                    # to truncated <image> tokens later.
         | 
| 1364 | 
            +
             | 
| 1365 | 
            +
                    max_num_images = max([len(_images) for _images in images])
         | 
| 1366 | 
            +
                    for _images, _input_ids in zip(images, input_ids):
         | 
| 1367 | 
            +
                        assert (
         | 
| 1368 | 
            +
                            len(_images) == (_input_ids == image_token_id).sum().item()
         | 
| 1369 | 
            +
                        ), f"Number mismatch between images and placeholder image tokens in 'len(_images) == (_input_ids == image_token_id).sum().item()'.\
         | 
| 1370 | 
            +
                            Expect to have {len(_images)} images but only found {(_input_ids == image_token_id).sum().item()} images in tokens. \
         | 
| 1371 | 
            +
                            Error input_ids: {_input_ids} {self.tokenizer.decode([x if x != -200 else 200 for x in _input_ids])}"
         | 
| 1372 | 
            +
             | 
| 1373 | 
            +
                    NUM_TOKENS_PER_IMAGE = self.data_args.num_image_tokens
         | 
| 1374 | 
            +
                    if hasattr(self.data_args.image_processor, "crop_size"):
         | 
| 1375 | 
            +
                        crop_size = self.data_args.image_processor.crop_size
         | 
| 1376 | 
            +
                    else:
         | 
| 1377 | 
            +
                        crop_size = self.data_args.image_processor.size
         | 
| 1378 | 
            +
             | 
| 1379 | 
            +
                    # Init the padding sample
         | 
| 1380 | 
            +
                    seq_id = 0
         | 
| 1381 | 
            +
                    while seq_id < len(input_ids):
         | 
| 1382 | 
            +
                        # Skip the samples without images
         | 
| 1383 | 
            +
                        dummy_image = torch.ones((1, 3, crop_size["height"], crop_size["width"]), device=input_ids[seq_id].device)
         | 
| 1384 | 
            +
                        # dummy input_ids include one bos, one image token, and one eos
         | 
| 1385 | 
            +
                        dummy_input_ids = torch.zeros_like(input_ids[seq_id][:3])
         | 
| 1386 | 
            +
                        dummy_input_ids[0] = self.tokenizer.bos_token_id
         | 
| 1387 | 
            +
                        dummy_input_ids[1] = image_token_id
         | 
| 1388 | 
            +
                        dummy_input_ids[2] = self.tokenizer.eos_token_id
         | 
| 1389 | 
            +
                        dummy_labels = copy.deepcopy(dummy_input_ids)
         | 
| 1390 | 
            +
                        dummy_labels[:2] = IGNORE_INDEX
         | 
| 1391 | 
            +
                        dummy_seqlen = NUM_TOKENS_PER_IMAGE + 2  # TODO: Check the hard coding of 2
         | 
| 1392 | 
            +
                        dummy_position_ids = torch.arange(start=0, end=dummy_seqlen, dtype=torch.int32)
         | 
| 1393 | 
            +
                        break
         | 
| 1394 | 
            +
             | 
| 1395 | 
            +
                    # Sort with the real length of the sequence
         | 
| 1396 | 
            +
                    combined = sorted(
         | 
| 1397 | 
            +
                        zip(input_ids, labels, images),
         | 
| 1398 | 
            +
                        key=lambda x: len(x[2]) * (NUM_TOKENS_PER_IMAGE - 1) + x[0].size(-1),
         | 
| 1399 | 
            +
                        reverse=True,  # Start Packing from the sequence with most images.
         | 
| 1400 | 
            +
                    )
         | 
| 1401 | 
            +
                    sorted_ids, sorted_labels, sorted_images = zip(*combined)
         | 
| 1402 | 
            +
                    sorted_ids, sorted_labels, sorted_images = list(sorted_ids), list(sorted_labels), list(sorted_images)
         | 
| 1403 | 
            +
                    max_seq_length = self.tokenizer.model_max_length  # len(sorted_ids[0])
         | 
| 1404 | 
            +
                    max_sample_len = 0
         | 
| 1405 | 
            +
             | 
| 1406 | 
            +
                    batches = []
         | 
| 1407 | 
            +
                    label_batches = []
         | 
| 1408 | 
            +
                    position_ids = []
         | 
| 1409 | 
            +
                    batch_images = []
         | 
| 1410 | 
            +
                    seqlens_in_batch = []
         | 
| 1411 | 
            +
             | 
| 1412 | 
            +
                    i = 0
         | 
| 1413 | 
            +
                    while i < len(sorted_ids):
         | 
| 1414 | 
            +
                        current_batch = torch.tensor([], dtype=torch.int32)
         | 
| 1415 | 
            +
                        current_label_batch = torch.tensor([], dtype=torch.int32)
         | 
| 1416 | 
            +
                        current_position_ids = torch.tensor([], dtype=torch.int32)
         | 
| 1417 | 
            +
                        current_batch_images = []
         | 
| 1418 | 
            +
                        current_num_images = 0
         | 
| 1419 | 
            +
                        current_len = 0
         | 
| 1420 | 
            +
                        current_num_samples = 0
         | 
| 1421 | 
            +
             | 
| 1422 | 
            +
                        # Pack a few samples into one sample
         | 
| 1423 | 
            +
                        while i < len(sorted_ids):
         | 
| 1424 | 
            +
                            num_images = (sorted_ids[i] == image_token_id).sum().item()
         | 
| 1425 | 
            +
                            num_image_tokens_added = num_images * (NUM_TOKENS_PER_IMAGE - 1)
         | 
| 1426 | 
            +
                            num_incoming_tokens = sorted_ids[i].size(-1) + num_image_tokens_added
         | 
| 1427 | 
            +
             | 
| 1428 | 
            +
                            # Handle RingAttn_Varlen which requires `seqlens_in_batch` should be divisible by `ring_degree`
         | 
| 1429 | 
            +
                            if self.ring_degree > 1:
         | 
| 1430 | 
            +
                                RING_PAD_TOKEN_INDEX = 2
         | 
| 1431 | 
            +
                                if self.ring_type == "ring_varlen":
         | 
| 1432 | 
            +
                                    if num_incoming_tokens % self.sp_degree != 0:
         | 
| 1433 | 
            +
                                        pad_len = self.sp_degree - num_incoming_tokens % self.sp_degree
         | 
| 1434 | 
            +
                                        num_incoming_tokens += pad_len
         | 
| 1435 | 
            +
                                        # pad `input_ids`
         | 
| 1436 | 
            +
                                        pad_tensor = torch.full(
         | 
| 1437 | 
            +
                                            (pad_len,), RING_PAD_TOKEN_INDEX, dtype=sorted_ids[i].dtype, device=sorted_ids[i].device
         | 
| 1438 | 
            +
                                        )
         | 
| 1439 | 
            +
                                        sorted_ids[i] = torch.cat([sorted_ids[i], pad_tensor])
         | 
| 1440 | 
            +
             | 
| 1441 | 
            +
                                        # pad `label`
         | 
| 1442 | 
            +
                                        pad_label_tensor = torch.full(
         | 
| 1443 | 
            +
                                            (pad_len,), IGNORE_INDEX, dtype=sorted_labels[i].dtype, device=sorted_labels[i].device
         | 
| 1444 | 
            +
                                        )
         | 
| 1445 | 
            +
                                        sorted_labels[i] = torch.cat([sorted_labels[i], pad_label_tensor])
         | 
| 1446 | 
            +
                                elif self.ring_type == "zigzag_ring_varlen":
         | 
| 1447 | 
            +
                                    self.zigzag_sp_degree = self.sp_degree * 2
         | 
| 1448 | 
            +
                                    if num_incoming_tokens % self.zigzag_sp_degree != 0:
         | 
| 1449 | 
            +
                                        pad_len = self.zigzag_sp_degree - num_incoming_tokens % self.zigzag_sp_degree
         | 
| 1450 | 
            +
                                        num_incoming_tokens += pad_len
         | 
| 1451 | 
            +
                                        # pad `input_ids`
         | 
| 1452 | 
            +
                                        pad_tensor = torch.full(
         | 
| 1453 | 
            +
                                            (pad_len,), RING_PAD_TOKEN_INDEX, dtype=sorted_ids[i].dtype, device=sorted_ids[i].device
         | 
| 1454 | 
            +
                                        )
         | 
| 1455 | 
            +
                                        sorted_ids[i] = torch.cat([sorted_ids[i], pad_tensor])
         | 
| 1456 | 
            +
             | 
| 1457 | 
            +
                                        # pad `label`
         | 
| 1458 | 
            +
                                        pad_label_tensor = torch.full(
         | 
| 1459 | 
            +
                                            (pad_len,), IGNORE_INDEX, dtype=sorted_labels[i].dtype, device=sorted_labels[i].device
         | 
| 1460 | 
            +
                                        )
         | 
| 1461 | 
            +
                                        sorted_labels[i] = torch.cat([sorted_labels[i], pad_label_tensor])
         | 
| 1462 | 
            +
                                else:
         | 
| 1463 | 
            +
                                    raise ValueError(f"Invalid ring_type: {self.ring_type}")
         | 
| 1464 | 
            +
             | 
| 1465 | 
            +
                            if num_incoming_tokens > max_seq_length:
         | 
| 1466 | 
            +
                                print(
         | 
| 1467 | 
            +
                                    f"Warning: Skipping one packed sample with {num_incoming_tokens} tokens,\
         | 
| 1468 | 
            +
                                    please consider increase max seq len {max_seq_length}."
         | 
| 1469 | 
            +
                                )
         | 
| 1470 | 
            +
                                i += 1
         | 
| 1471 | 
            +
                                continue
         | 
| 1472 | 
            +
             | 
| 1473 | 
            +
                            if (
         | 
| 1474 | 
            +
                                (current_num_images == 0)
         | 
| 1475 | 
            +
                                or (current_num_images < self.sp_degree)
         | 
| 1476 | 
            +
                                or (
         | 
| 1477 | 
            +
                                    (current_num_images + num_images <= max_num_images)
         | 
| 1478 | 
            +
                                    and (current_len + num_incoming_tokens <= max_sample_len)
         | 
| 1479 | 
            +
                                )
         | 
| 1480 | 
            +
                            ) and (current_len + num_incoming_tokens <= max_seq_length):
         | 
| 1481 | 
            +
                                current_num_images += num_images
         | 
| 1482 | 
            +
                                current_len += num_incoming_tokens
         | 
| 1483 | 
            +
                                current_num_samples += 1
         | 
| 1484 | 
            +
                                current_position_ids = torch.cat(
         | 
| 1485 | 
            +
                                    (current_position_ids, torch.arange(start=0, end=num_incoming_tokens)), dim=0
         | 
| 1486 | 
            +
                                )
         | 
| 1487 | 
            +
                                current_batch = torch.cat((current_batch, sorted_ids[i]), dim=0)
         | 
| 1488 | 
            +
                                sorted_labels[i][0] = IGNORE_INDEX
         | 
| 1489 | 
            +
                                current_label_batch = torch.cat((current_label_batch, sorted_labels[i]), dim=0)
         | 
| 1490 | 
            +
                                seqlens_in_batch.append(num_incoming_tokens)
         | 
| 1491 | 
            +
                                current_batch_images.extend(sorted_images[i])
         | 
| 1492 | 
            +
                                i += 1
         | 
| 1493 | 
            +
                                assert current_num_images == len(current_batch_images)
         | 
| 1494 | 
            +
                            else:
         | 
| 1495 | 
            +
                                break
         | 
| 1496 | 
            +
             | 
| 1497 | 
            +
                        # Padding the sample with the dummy image sample, if there are no enough images
         | 
| 1498 | 
            +
                        MAX_RETRY = self.sp_degree
         | 
| 1499 | 
            +
                        num_retry = 0
         | 
| 1500 | 
            +
                        while current_num_images < self.sp_degree and current_len < max_seq_length and num_retry <= MAX_RETRY:
         | 
| 1501 | 
            +
                            current_num_images += dummy_image.size(0)
         | 
| 1502 | 
            +
                            current_len += dummy_seqlen
         | 
| 1503 | 
            +
                            current_num_samples += 1
         | 
| 1504 | 
            +
                            current_position_ids = torch.cat((current_position_ids, dummy_position_ids), dim=0)
         | 
| 1505 | 
            +
                            current_batch = torch.cat((current_batch, dummy_input_ids), dim=0)
         | 
| 1506 | 
            +
                            current_label_batch = torch.cat((current_label_batch, dummy_labels), dim=0)
         | 
| 1507 | 
            +
                            seqlens_in_batch.append(dummy_seqlen)
         | 
| 1508 | 
            +
                            current_batch_images.extend(dummy_image)
         | 
| 1509 | 
            +
                            # We pad from left side to ensure correct grad flow
         | 
| 1510 | 
            +
                            # current_batch = torch.cat((dummy_input_ids, current_batch), dim=0)
         | 
| 1511 | 
            +
                            # current_label_batch = torch.cat((dummy_labels, current_label_batch), dim=0)
         | 
| 1512 | 
            +
                            # seqlens_in_batch.insert(0, dummy_seqlen)
         | 
| 1513 | 
            +
                            # current_batch_images = torch.cat((dummy_image, current_batch_images), dim=0)
         | 
| 1514 | 
            +
                            num_retry += 1
         | 
| 1515 | 
            +
             | 
| 1516 | 
            +
                        # Drop the samples that do not have enough images
         | 
| 1517 | 
            +
                        if current_num_images < self.sp_degree:
         | 
| 1518 | 
            +
                            print(f"Warning: Skipping one packed sample with {current_num_images} images")
         | 
| 1519 | 
            +
                            seqlens_in_batch = seqlens_in_batch[:-current_num_samples]
         | 
| 1520 | 
            +
                            continue
         | 
| 1521 | 
            +
             | 
| 1522 | 
            +
                        max_sample_len = max(max_sample_len, current_len)
         | 
| 1523 | 
            +
                        batches.append(current_batch)
         | 
| 1524 | 
            +
                        label_batches.append(current_label_batch)
         | 
| 1525 | 
            +
                        position_ids.append(current_position_ids)
         | 
| 1526 | 
            +
                        batch_images.append(current_batch_images)
         | 
| 1527 | 
            +
             | 
| 1528 | 
            +
                        try:
         | 
| 1529 | 
            +
                            assert current_num_images == len(torch.where(current_batch == image_token_id)[0].tolist())
         | 
| 1530 | 
            +
                        except AssertionError:
         | 
| 1531 | 
            +
                            print(f"Error num_images on {self.sp_rank}", current_num_images)
         | 
| 1532 | 
            +
                            print("current_batch", current_batch)
         | 
| 1533 | 
            +
                            print(
         | 
| 1534 | 
            +
                                f"Error len(torch.where(batches[i] == image_token_id)[0].tolist() on {self.sp_rank}:",
         | 
| 1535 | 
            +
                                len(torch.where(current_batch == image_token_id)[0].tolist()),
         | 
| 1536 | 
            +
                            )
         | 
| 1537 | 
            +
                            print(f"Error len(current_batch_images) on {self.sp_rank}:", len(current_batch_images))
         | 
| 1538 | 
            +
                            raise AssertionError
         | 
| 1539 | 
            +
             | 
| 1540 | 
            +
                    # Split for sequence parallelism
         | 
| 1541 | 
            +
                    for i in range(len(batches)):
         | 
| 1542 | 
            +
                        image_token_indices = torch.where(batches[i] == image_token_id)[0].tolist()
         | 
| 1543 | 
            +
                        image_ids = torch.arange(0, len(image_token_indices), dtype=torch.int32)
         | 
| 1544 | 
            +
                        batches[i] = extract_local_input_ids(
         | 
| 1545 | 
            +
                            batches[i], image_token_indices, self.sp_rank, self.sp_degree, self.tokenizer.bos_token_id
         | 
| 1546 | 
            +
                        )
         | 
| 1547 | 
            +
                        label_batches[i] = extract_local_input_ids(
         | 
| 1548 | 
            +
                            label_batches[i], image_token_indices, self.sp_rank, self.sp_degree, self.tokenizer.bos_token_id
         | 
| 1549 | 
            +
                        )
         | 
| 1550 | 
            +
                        batch_images[i] = torch.concat(
         | 
| 1551 | 
            +
                            extract_local_from_list(batch_images[i], self.sp_rank, self.sp_degree), dim=0
         | 
| 1552 | 
            +
                        )
         | 
| 1553 | 
            +
                        H, W = batch_images[i].size(-2), batch_images[i].size(-1)
         | 
| 1554 | 
            +
                        batch_images[i] = batch_images[i].reshape(-1, 3, W, H)
         | 
| 1555 | 
            +
                        num_images = len(batch_images[i])
         | 
| 1556 | 
            +
             | 
| 1557 | 
            +
                        try:
         | 
| 1558 | 
            +
                            assert num_images == len(torch.where(batches[i] == image_token_id)[0].tolist())
         | 
| 1559 | 
            +
                        except AssertionError:
         | 
| 1560 | 
            +
                            print(f"Error num_images on {self.sp_rank}", num_images)
         | 
| 1561 | 
            +
                            print("batches[i]", batches[i])
         | 
| 1562 | 
            +
                            print(
         | 
| 1563 | 
            +
                                f"Error len(torch.where(batches[i] == image_token_id)[0].tolist() on {self.sp_rank}:",
         | 
| 1564 | 
            +
                                len(torch.where(batches[i] == image_token_id)[0].tolist()),
         | 
| 1565 | 
            +
                            )
         | 
| 1566 | 
            +
                            print(f"Error batch_images[i] on {self.sp_rank}:", batch_images[i].shape)
         | 
| 1567 | 
            +
                            raise AssertionError
         | 
| 1568 | 
            +
                        position_ids[i] = extract_local_position_ids(
         | 
| 1569 | 
            +
                            position_ids[i], image_token_indices, image_ids, self.sp_rank, self.sp_degree, NUM_TOKENS_PER_IMAGE - 1
         | 
| 1570 | 
            +
                        )
         | 
| 1571 | 
            +
             | 
| 1572 | 
            +
                    input_ids = torch.nn.utils.rnn.pad_sequence(
         | 
| 1573 | 
            +
                        batches, batch_first=True, padding_value=self.tokenizer.pad_token_id
         | 
| 1574 | 
            +
                    )
         | 
| 1575 | 
            +
                    labels = torch.nn.utils.rnn.pad_sequence(label_batches, batch_first=True, padding_value=IGNORE_INDEX)
         | 
| 1576 | 
            +
                    seqlens_in_batch = [torch.tensor(x) for x in seqlens_in_batch]
         | 
| 1577 | 
            +
                    seqlens_in_batch = torch.stack(seqlens_in_batch, axis=0)
         | 
| 1578 | 
            +
                    seqlens_in_batch = seqlens_in_batch.flatten()
         | 
| 1579 | 
            +
                    position_ids = torch.nn.utils.rnn.pad_sequence(position_ids, batch_first=True, padding_value=-1)
         | 
| 1580 | 
            +
             | 
| 1581 | 
            +
                    if batch_images:
         | 
| 1582 | 
            +
                        batch_images = [torch.unbind(images) for images in batch_images]
         | 
| 1583 | 
            +
                        flat_batch_images = [item for sublist in batch_images for item in sublist]
         | 
| 1584 | 
            +
                    else:
         | 
| 1585 | 
            +
                        flat_batch_images = None
         | 
| 1586 | 
            +
                    batch = dict(
         | 
| 1587 | 
            +
                        input_ids=input_ids,
         | 
| 1588 | 
            +
                        labels=labels,
         | 
| 1589 | 
            +
                        # notice that we inject attention mask here
         | 
| 1590 | 
            +
                        attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
         | 
| 1591 | 
            +
                        seqlens_in_batch=seqlens_in_batch,
         | 
| 1592 | 
            +
                        media={"image": flat_batch_images},
         | 
| 1593 | 
            +
                        media_config={"image": {}},
         | 
| 1594 | 
            +
                        position_ids=position_ids,
         | 
| 1595 | 
            +
                    )
         | 
| 1596 | 
            +
                    return batch
         | 
| 1597 | 
            +
             | 
| 1598 | 
            +
             | 
| 1599 | 
            +
            def make_supervised_data_module(
         | 
| 1600 | 
            +
                tokenizer: PreTrainedTokenizer,
         | 
| 1601 | 
            +
                data_args: DataArguments,
         | 
| 1602 | 
            +
                training_args: TrainingArguments,
         | 
| 1603 | 
            +
            ) -> Dict:
         | 
| 1604 | 
            +
                """Make dataset and collator for supervised fine-tuning.
         | 
| 1605 | 
            +
                This function is originally implemented by the LLaVA team and
         | 
| 1606 | 
            +
                modified by Jason Lu, Haotian Tang and Ligeng Zhu."""
         | 
| 1607 | 
            +
                datasets_mixture.register_datasets_mixtures()
         | 
| 1608 | 
            +
             | 
| 1609 | 
            +
                from .builder import build_dataset
         | 
| 1610 | 
            +
             | 
| 1611 | 
            +
                train_dataset = build_dataset(data_args.data_mixture, data_args, training_args, tokenizer)
         | 
| 1612 | 
            +
                training_args.sample_lens = [len(d) for d in train_dataset.datasets]
         | 
| 1613 | 
            +
             | 
| 1614 | 
            +
                PROCESS_GROUP_MANAGER = get_pg_manager()
         | 
| 1615 | 
            +
                if PROCESS_GROUP_MANAGER is None:
         | 
| 1616 | 
            +
                    data_collator = DataCollator(tokenizer=tokenizer)
         | 
| 1617 | 
            +
                else:
         | 
| 1618 | 
            +
                    sp_degree = training_args.seq_parallel_size
         | 
| 1619 | 
            +
                    sp_rank = PROCESS_GROUP_MANAGER.sp_rank
         | 
| 1620 | 
            +
                    ring_degree = PROCESS_GROUP_MANAGER.ring_degree
         | 
| 1621 | 
            +
                    ring_type = PROCESS_GROUP_MANAGER.ring_type
         | 
| 1622 | 
            +
                    data_collator = DataCollatorForSupervisedDatasetSeqParallel(
         | 
| 1623 | 
            +
                        tokenizer=tokenizer,
         | 
| 1624 | 
            +
                        data_args=data_args,
         | 
| 1625 | 
            +
                        training_args=training_args,
         | 
| 1626 | 
            +
                        sp_degree=sp_degree,
         | 
| 1627 | 
            +
                        sp_rank=sp_rank,
         | 
| 1628 | 
            +
                        ring_degree=ring_degree,
         | 
| 1629 | 
            +
                        ring_type=ring_type,
         | 
| 1630 | 
            +
                    )
         | 
| 1631 | 
            +
             | 
| 1632 | 
            +
                return dict(
         | 
| 1633 | 
            +
                    train_dataset=train_dataset,
         | 
| 1634 | 
            +
                    data_collator=data_collator,
         | 
| 1635 | 
            +
                )
         | 
    	
        llava/data/datasets_mixture.py
    ADDED
    
    | @@ -0,0 +1,80 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import warnings
         | 
| 24 | 
            +
            from dataclasses import dataclass, field
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            @dataclass
         | 
| 28 | 
            +
            class Dataset:
         | 
| 29 | 
            +
                dataset_name: str
         | 
| 30 | 
            +
                dataset_type: str = field(default="torch")
         | 
| 31 | 
            +
                data_path: str = field(default=None, metadata={"help": "Path to the training data."})
         | 
| 32 | 
            +
                meta_path: str = field(default=None, metadata={"help": "Path to the meta data for webdataset."})
         | 
| 33 | 
            +
                image_path: str = field(default=None, metadata={"help": "Path to the training image data."})
         | 
| 34 | 
            +
                speech_path: str = field(default=None, metadata={"help": "Path to the training speech data."})
         | 
| 35 | 
            +
                caption_choice: str = field(default=None, metadata={"help": "Path to the caption directory for recaption."})
         | 
| 36 | 
            +
                description: str = field(
         | 
| 37 | 
            +
                    default=None,
         | 
| 38 | 
            +
                    metadata={
         | 
| 39 | 
            +
                        "help": "Detailed desciption of where the data is from, how it is labelled, intended use case and the size of the dataset."
         | 
| 40 | 
            +
                    },
         | 
| 41 | 
            +
                )
         | 
| 42 | 
            +
                test_script: str = (None,)
         | 
| 43 | 
            +
                maintainer: str = (None,)
         | 
| 44 | 
            +
                ############## ############## ############## ############## ############## ##############
         | 
| 45 | 
            +
                caption_choice: str = field(default=None, metadata={"help": "Path to the captions for webdataset."})
         | 
| 46 | 
            +
                caption_choice_2: str = field(default=None, metadata={"help": "Path to the captions for webdataset."})
         | 
| 47 | 
            +
                start_idx: float = field(default=-1, metadata={"help": "Start index of the dataset."})
         | 
| 48 | 
            +
                end_idx: float = field(default=-1, metadata={"help": "Start index of the dataset."})
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            DATASETS_LEGACY = {}
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            def add_dataset(dataset):
         | 
| 55 | 
            +
                if dataset.dataset_name in DATASETS_LEGACY:
         | 
| 56 | 
            +
                    # make sure the data_name is unique
         | 
| 57 | 
            +
                    warnings.warn(f"{dataset.dataset_name} already existed in DATASETS. Make sure the name is unique.")
         | 
| 58 | 
            +
                assert "+" not in dataset.dataset_name, "Dataset name cannot include symbol '+'."
         | 
| 59 | 
            +
                DATASETS_LEGACY.update({dataset.dataset_name: dataset})
         | 
| 60 | 
            +
             | 
| 61 | 
            +
             | 
| 62 | 
            +
            def register_datasets_mixtures():
         | 
| 63 | 
            +
                ############## ############## ############## ############## ############## ############## 
         | 
| 64 | 
            +
                # Audio Datasets 
         | 
| 65 | 
            +
                ############## ############## ############## ############## ############## ##############
         | 
| 66 | 
            +
                
         | 
| 67 | 
            +
                data_mixture_1 = Dataset(
         | 
| 68 | 
            +
                    dataset_name="data_mixture_1",
         | 
| 69 | 
            +
                    dataset_type="torch",
         | 
| 70 | 
            +
                    data_path="/path/to/your/data_mixture_1/train.json",
         | 
| 71 | 
            +
                )
         | 
| 72 | 
            +
                add_dataset(data_mixture_1)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                data_mixture_2 = Dataset(
         | 
| 75 | 
            +
                    dataset_name="data_mixture_2",
         | 
| 76 | 
            +
                    dataset_type="torch",
         | 
| 77 | 
            +
                    data_path="/path/to/your/data_mixture_2/train.json",
         | 
| 78 | 
            +
                )
         | 
| 79 | 
            +
                add_dataset(data_mixture_2)
         | 
| 80 | 
            +
                # Add more data mixtures below
         | 
    	
        llava/data/registry/datasets/audio_test.yaml
    ADDED
    
    | @@ -0,0 +1,97 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            Clotho-AQA-AQA:
         | 
| 3 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 4 | 
            +
              data_path: Clotho-AQA-AQA/test.json
         | 
| 5 | 
            +
            Music-AVQA-AQA_All:
         | 
| 6 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 7 | 
            +
              data_path: Music-AVQA-AQA_All/test.json
         | 
| 8 | 
            +
            CochlScene-SceneClassification:
         | 
| 9 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 10 | 
            +
              data_path: CochlScene-SceneClassification/test.json
         | 
| 11 | 
            +
            NSynth-Source:
         | 
| 12 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 13 | 
            +
              data_path: NSynth-Source/test.json
         | 
| 14 | 
            +
            NSynth-Instrument:
         | 
| 15 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 16 | 
            +
              data_path: NSynth-Instrument/test.json
         | 
| 17 | 
            +
            FSD50k-EventClassification:
         | 
| 18 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 19 | 
            +
              data_path: FSD50k-EventClassification/test.json
         | 
| 20 | 
            +
            Clotho-v2-AudioCaptioning:
         | 
| 21 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 22 | 
            +
              data_path: Clotho-v2-AudioCaptioning/test.json
         | 
| 23 | 
            +
            audiocaps-AudioCaptioning:
         | 
| 24 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 25 | 
            +
              data_path: audiocaps-AudioCaptioning/test.json
         | 
| 26 | 
            +
            ravdess-EmotionClassification:
         | 
| 27 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 28 | 
            +
              data_path: ravdess-EmotionClassification/val.json
         | 
| 29 | 
            +
            GTZAN-GenreClassification:
         | 
| 30 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 31 | 
            +
              data_path: GTZAN-GenreClassification/test.json
         | 
| 32 | 
            +
            UrbanSound8K-EventClassification:
         | 
| 33 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 34 | 
            +
              data_path: UrbanSound8K-EventClassification/train.json
         | 
| 35 | 
            +
            Medley-solos-DB-InstrClassification:
         | 
| 36 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 37 | 
            +
              data_path: Medley-solos-DB-InstrClassification/test.json
         | 
| 38 | 
            +
            ESC50-EventClassification:
         | 
| 39 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 40 | 
            +
              data_path: ESC50-EventClassification/train.json
         | 
| 41 | 
            +
            CREMA-D-EmotionClassification:
         | 
| 42 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 43 | 
            +
              data_path: CREMA-D-EmotionClassification/test.json
         | 
| 44 | 
            +
            IEMOCAP-EmotionClassification:
         | 
| 45 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 46 | 
            +
              data_path: IEMOCAP-EmotionClassification/test.json
         | 
| 47 | 
            +
            MELD-EmotionClassification:
         | 
| 48 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 49 | 
            +
              data_path: MELD-EmotionClassification/test.json
         | 
| 50 | 
            +
            MELD-SentimentClassification:
         | 
| 51 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 52 | 
            +
              data_path: MELD-SentimentClassification/test.json
         | 
| 53 | 
            +
            MMAU:
         | 
| 54 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 55 | 
            +
              data_path: MMAU/test.json
         | 
| 56 | 
            +
            MMAU-mini:
         | 
| 57 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 58 | 
            +
              data_path: MMAU/test-mini.json
         | 
| 59 | 
            +
            AudioEntailmentQA:
         | 
| 60 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 61 | 
            +
              data_path: AudioEntailmentQA/test.json
         | 
| 62 | 
            +
            SPGI-ASR:
         | 
| 63 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 64 | 
            +
              data_path: SPGI-ASR/val.json
         | 
| 65 | 
            +
            SWBD-ASR:
         | 
| 66 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 67 | 
            +
              data_path: SWBD-ASR/val.json
         | 
| 68 | 
            +
            LibriSpeech-ASR-clean:
         | 
| 69 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 70 | 
            +
              data_path: LibriSpeech-ASR/test_clean.json
         | 
| 71 | 
            +
            LibriSpeech-ASR-other:
         | 
| 72 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 73 | 
            +
              data_path: LibriSpeech-ASR/test_other.json
         | 
| 74 | 
            +
            VoxPopuli-ASR:
         | 
| 75 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 76 | 
            +
              data_path: VoxPopuli-ASR/test.json
         | 
| 77 | 
            +
            Europarl-ASR:
         | 
| 78 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 79 | 
            +
              data_path: Europarl-ASR/test.json
         | 
| 80 | 
            +
            CV-ASR:
         | 
| 81 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 82 | 
            +
              data_path: CV-ASR/test.json
         | 
| 83 | 
            +
            GigaSpeech-ASR:
         | 
| 84 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 85 | 
            +
              data_path: GigaSpeech-ASR/test.json
         | 
| 86 | 
            +
            CompA-R-AQA:
         | 
| 87 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 88 | 
            +
              data_path: CompA-R-AQA/test.json
         | 
| 89 | 
            +
            MuschoMusicQA:
         | 
| 90 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 91 | 
            +
              data_path: MuschoMusicQA/test.json
         | 
| 92 | 
            +
            CMM:
         | 
| 93 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 94 | 
            +
              data_path: CMM/test.json
         | 
| 95 | 
            +
            AIR-Bench:
         | 
| 96 | 
            +
              _target_: llava.data.LLaVADataset
         | 
| 97 | 
            +
              data_path: AIR-Bench/test.json
         | 
    	
        llava/data/registry/datasets/default.yaml
    ADDED
    
    | @@ -0,0 +1,5 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            dummy:
         | 
| 3 | 
            +
                _target_: llava.data.DummyDataset
         | 
| 4 | 
            +
                num_instances: 10000
         | 
| 5 | 
            +
                comments: dummy dataset for testing
         | 
    	
        llava/data/registry/mixtures.yaml
    ADDED
    
    | @@ -0,0 +1,78 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            audio_speech_all:
         | 
| 3 | 
            +
                -CV-ASR_1
         | 
| 4 | 
            +
                -MELD-EmotionClassification+
         | 
| 5 | 
            +
                -BBCSoundEffects-AudioDescription
         | 
| 6 | 
            +
                -SWBD-ASR_1
         | 
| 7 | 
            +
                -WavCaps-SoundBible-AudioCaptioning
         | 
| 8 | 
            +
                -AudioSet-Speech-Audio-QA
         | 
| 9 | 
            +
                -SONYC-UST-EventClassification
         | 
| 10 | 
            +
                -VoxPopuli-ASR_1
         | 
| 11 | 
            +
                -FSD50k-EventClassification
         | 
| 12 | 
            +
                -SalmonnQA
         | 
| 13 | 
            +
                -emov-db-EmotionClassification
         | 
| 14 | 
            +
                -LLARK_MagnaTagATune-mir+tess-EmotionClassification
         | 
| 15 | 
            +
                -Europarl-ASR_1
         | 
| 16 | 
            +
                -jl-corpus-EmotionClassification
         | 
| 17 | 
            +
                -Ego-10-AudioCaptioning
         | 
| 18 | 
            +
                -SPGI-ASR_1
         | 
| 19 | 
            +
                -CREMA-D-EmotionClassification
         | 
| 20 | 
            +
                -MusicBenchQA
         | 
| 21 | 
            +
                -WavCaps-BBC_Sound_Effects-AudioCaptioning
         | 
| 22 | 
            +
                -NSynth-Instrument
         | 
| 23 | 
            +
                -SpokenSquadQA
         | 
| 24 | 
            +
                -NSynth-MIR
         | 
| 25 | 
            +
                -AudioEntailmentQA
         | 
| 26 | 
            +
                -GigaSpeech-ASR_1
         | 
| 27 | 
            +
                -WavCaps-AudioSet_SL-AudioCaptioning
         | 
| 28 | 
            +
                -NonSpeech7k-EventClassification
         | 
| 29 | 
            +
                -chime-home-EventClassification
         | 
| 30 | 
            +
                -MusicCaps-AudioCaptioning
         | 
| 31 | 
            +
                -LP-MusicCaps-MSD-AudioCaptioning
         | 
| 32 | 
            +
                -Ego-30-AudioCaptioning
         | 
| 33 | 
            +
                -NSynth-Source+Clotho-v2-AudioCaptioning
         | 
| 34 | 
            +
                -LP-MusicCaps-MC-AudioCaptioning
         | 
| 35 | 
            +
                -Clotho-AQA-EventClassification
         | 
| 36 | 
            +
                -WavCaps-FreeSound-AudioCaptioning
         | 
| 37 | 
            +
                -LLARK_MagnaTagATune-reasoning
         | 
| 38 | 
            +
                -AudioSet-Temporal-Speech-Audio-QA
         | 
| 39 | 
            +
                -TUT-EventClassification
         | 
| 40 | 
            +
                -ESC50-EventClassification
         | 
| 41 | 
            +
                -WavText5K-Tagging
         | 
| 42 | 
            +
                -MELD-SentimentClassification
         | 
| 43 | 
            +
                -Music-AVQA-AQA_All
         | 
| 44 | 
            +
                -Music-AVQA-AVQA_All
         | 
| 45 | 
            +
                -MACS-AudioCaptioning
         | 
| 46 | 
            +
                -Medley-solos-DB-InstrClassification
         | 
| 47 | 
            +
                -AudioSet-EventClassification
         | 
| 48 | 
            +
                -OMGEmotion-EmotionClassification
         | 
| 49 | 
            +
                -FMA-GenreClassification
         | 
| 50 | 
            +
                -Epidemic_sound-AudioCaptioning
         | 
| 51 | 
            +
                -CochlScene-SceneClassification
         | 
| 52 | 
            +
                -LLARK_FMA-reasoning
         | 
| 53 | 
            +
                -ravdess-EmotionClassification
         | 
| 54 | 
            +
                -CompA-R-AQA
         | 
| 55 | 
            +
                -MU-LLAMA-AQA
         | 
| 56 | 
            +
                -musdbhq-InstrClassification
         | 
| 57 | 
            +
                -UrbanSound8K-EventClassification
         | 
| 58 | 
            +
                -audiocaps-AudioCaptioning
         | 
| 59 | 
            +
                -VocalSound-VocalClassification
         | 
| 60 | 
            +
                -CLAP_freesound-AudioCaptioning
         | 
| 61 | 
            +
                -MMAUQA
         | 
| 62 | 
            +
                -SongDescriber-AudioCaptioning
         | 
| 63 | 
            +
                -HeySQuADQA
         | 
| 64 | 
            +
                -Mira-AudioCaptioning
         | 
| 65 | 
            +
                -Clotho-AQA-AQA
         | 
| 66 | 
            +
                -LibriSpeech-ASR_1
         | 
| 67 | 
            +
                -IEMOCAP-EmotionClassification
         | 
| 68 | 
            +
                -AudioSetFullwoAudioMusicCaps-EventClassification
         | 
| 69 | 
            +
                -MSP-PODCAST-Publish-1.9-EmotionClassification
         | 
| 70 | 
            +
                -OpenAQA-AQA
         | 
| 71 | 
            +
                -SoundDescs-AudioDescription
         | 
| 72 | 
            +
                -LibriSQA
         | 
| 73 | 
            +
                -LLARK_FMA-mir
         | 
| 74 | 
            +
                -LP-MusicCaps-MTT-AudioCaptioning
         | 
| 75 | 
            +
                -GTZAN-GenreClassification
         | 
| 76 | 
            +
                -musdbhq-captioning
         | 
| 77 | 
            +
                -YesNoQA
         | 
| 78 | 
            +
             | 
    	
        llava/entry.py
    ADDED
    
    | @@ -0,0 +1,60 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import os
         | 
| 24 | 
            +
            import typing
         | 
| 25 | 
            +
            from typing import List, Optional
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            if typing.TYPE_CHECKING:
         | 
| 28 | 
            +
                from transformers import PreTrainedModel
         | 
| 29 | 
            +
            else:
         | 
| 30 | 
            +
                PreTrainedModel = None
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            __all__ = ["load"]
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            def load(
         | 
| 36 | 
            +
                model_path: str,
         | 
| 37 | 
            +
                model_base: Optional[str] = None,
         | 
| 38 | 
            +
                devices: Optional[List[int]] = None,
         | 
| 39 | 
            +
                **kwargs,
         | 
| 40 | 
            +
            ) -> PreTrainedModel:
         | 
| 41 | 
            +
                import torch
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                from llava.conversation import auto_set_conversation_mode
         | 
| 44 | 
            +
                from llava.mm_utils import get_model_name_from_path
         | 
| 45 | 
            +
                from llava.model.builder import load_pretrained_model
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                auto_set_conversation_mode(model_path)
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                model_name = get_model_name_from_path(model_path)
         | 
| 50 | 
            +
                model_path = os.path.expanduser(model_path)
         | 
| 51 | 
            +
                if os.path.exists(os.path.join(model_path, "model")):
         | 
| 52 | 
            +
                    model_path = os.path.join(model_path, "model")
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                # Set `max_memory` to constrain which GPUs to use
         | 
| 55 | 
            +
                if devices is not None:
         | 
| 56 | 
            +
                    assert "max_memory" not in kwargs, "`max_memory` should not be set when `devices` is set"
         | 
| 57 | 
            +
                    kwargs.update(max_memory={device: torch.cuda.get_device_properties(device).total_memory for device in devices})
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                model = load_pretrained_model(model_path, model_name, model_base, **kwargs)[1]
         | 
| 60 | 
            +
                return model
         | 
    	
        llava/eval/__init__.py
    ADDED
    
    | @@ -0,0 +1,15 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import os
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from llava.utils import io
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            __all__ = ["EVAL_ROOT", "TASKS"]
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            EVAL_ROOT = "scripts/eval"
         | 
| 15 | 
            +
            TASKS = io.load(os.path.join(os.path.dirname(__file__), "registry_audio.yaml"))
         | 
    	
        llava/eval/eval_audio_bench.py
    ADDED
    
    | @@ -0,0 +1,117 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import argparse
         | 
| 8 | 
            +
            import csv
         | 
| 9 | 
            +
            import itertools
         | 
| 10 | 
            +
            import json
         | 
| 11 | 
            +
            import os
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            import torch
         | 
| 14 | 
            +
            from datasets import load_dataset
         | 
| 15 | 
            +
            from tqdm import tqdm
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import llava
         | 
| 18 | 
            +
            from llava import conversation as conversation_lib
         | 
| 19 | 
            +
            from llava.data.builder import DATASETS
         | 
| 20 | 
            +
            from llava.eval.mmmu_utils.eval_utils import parse_choice
         | 
| 21 | 
            +
            from llava.utils import distributed as dist
         | 
| 22 | 
            +
            from llava.utils import io
         | 
| 23 | 
            +
            from llava.utils.logging import logger
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            def load_existing_ids(output_file):
         | 
| 27 | 
            +
                if not os.path.exists(output_file):
         | 
| 28 | 
            +
                    return set(), []
         | 
| 29 | 
            +
                try:
         | 
| 30 | 
            +
                    with open(output_file, "r") as f:
         | 
| 31 | 
            +
                        lines = f.readlines()
         | 
| 32 | 
            +
                        outputs = [json.loads(line) for line in lines]
         | 
| 33 | 
            +
                        processed_ids = {item["id"] for item in outputs}
         | 
| 34 | 
            +
                        return processed_ids, outputs
         | 
| 35 | 
            +
                except Exception as e:
         | 
| 36 | 
            +
                    print(f"Error loading existing outputs: {e}")
         | 
| 37 | 
            +
                    return set(), []
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            def main() -> None:
         | 
| 41 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 42 | 
            +
                parser.add_argument("--model-path", type=str, default=None)
         | 
| 43 | 
            +
                parser.add_argument("--model-base", type=str, default=None)
         | 
| 44 | 
            +
                parser.add_argument("--task", type=str, default=None)
         | 
| 45 | 
            +
                parser.add_argument("--conv-mode", type=str, default="auto")
         | 
| 46 | 
            +
                parser.add_argument("--generation-config", type=json.loads)
         | 
| 47 | 
            +
                parser.add_argument("--output-dir", type=str, default=None)
         | 
| 48 | 
            +
                args = parser.parse_args()
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                # Set up distributed environment
         | 
| 51 | 
            +
                dist.init()
         | 
| 52 | 
            +
                devices = range(dist.local_rank(), torch.cuda.device_count(), dist.local_size())
         | 
| 53 | 
            +
                torch.cuda.set_device(devices[0])
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                # Load stage 3 model with line 56
         | 
| 56 | 
            +
                model = llava.load(args.model_base, model_base=None, devices=devices)
         | 
| 57 | 
            +
                # Uncomment line 58-63 to load stage 3.5 model on top of stage 3 for thinking mode and long audio mode
         | 
| 58 | 
            +
                # model = PeftModel.from_pretrained(
         | 
| 59 | 
            +
                #         model,
         | 
| 60 | 
            +
                #         args.model_path,
         | 
| 61 | 
            +
                #         device_map="auto",
         | 
| 62 | 
            +
                #         torch_dtype=torch.float16,
         | 
| 63 | 
            +
                #     )
         | 
| 64 | 
            +
                # Set up generation config
         | 
| 65 | 
            +
                generation_config = model.default_generation_config
         | 
| 66 | 
            +
                if args.generation_config is not None:
         | 
| 67 | 
            +
                    generation_config.update(**args.generation_config)
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                # Load data and chunk it
         | 
| 70 | 
            +
                json_file = DATASETS[args.task]["data_path"]
         | 
| 71 | 
            +
                instances = io.load(json_file)
         | 
| 72 | 
            +
                instances = instances[dist.rank() :: dist.size()]
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                output_path = os.path.join(args.output_dir, f"outputs_{args.task}.jsonl")
         | 
| 75 | 
            +
                processed_ids, outputs = load_existing_ids(output_path)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                count = len(outputs)
         | 
| 78 | 
            +
                # Run inference
         | 
| 79 | 
            +
                new_outputs = []
         | 
| 80 | 
            +
                for instance in tqdm(instances, disable=not dist.is_main()):
         | 
| 81 | 
            +
                    uuid = instance["id"]
         | 
| 82 | 
            +
                    sound_path = instance["sound"]
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    if sound_path in processed_ids:
         | 
| 85 | 
            +
                        continue  # Skip if already processed
         | 
| 86 | 
            +
                    sound = llava.Sound(sound_path)
         | 
| 87 | 
            +
                    conversations = instance["conversations"]
         | 
| 88 | 
            +
                    question = conversations[0]["value"]
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    response = model.generate_content([sound, question], generation_config=generation_config)
         | 
| 91 | 
            +
                   
         | 
| 92 | 
            +
                    print("response", response)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    output = {"id": sound_path, "question": question, "gt_answer": conversations[1]["value"],  "pred": response}
         | 
| 95 | 
            +
                    new_outputs.append(output)
         | 
| 96 | 
            +
                    count = count +1
         | 
| 97 | 
            +
                    if count % 20 == 0:
         | 
| 98 | 
            +
                        # Gather and save outputs
         | 
| 99 | 
            +
                        if dist.size() > 1:
         | 
| 100 | 
            +
                            outputs_new = dist.gather(new_outputs, dst=0)
         | 
| 101 | 
            +
                            if dist.is_main():
         | 
| 102 | 
            +
                                outputs_new = list(itertools.chain(*outputs_new))
         | 
| 103 | 
            +
                                final_outputs = outputs + outputs_new
         | 
| 104 | 
            +
                                io.save(os.path.join(args.output_dir, f"outputs_{args.task}.jsonl"), final_outputs)
         | 
| 105 | 
            +
                        else:
         | 
| 106 | 
            +
                            final_outputs = outputs + new_outputs
         | 
| 107 | 
            +
                            io.save(os.path.join(args.output_dir, f"outputs_{args.task}.jsonl"), final_outputs)
         | 
| 108 | 
            +
                if dist.size() > 1:
         | 
| 109 | 
            +
                    new_outputs = dist.gather(new_outputs, dst=0)
         | 
| 110 | 
            +
                    if not dist.is_main():
         | 
| 111 | 
            +
                        return
         | 
| 112 | 
            +
                    new_outputs = list(itertools.chain(*new_outputs))
         | 
| 113 | 
            +
                    final_outputs = outputs + new_outputs
         | 
| 114 | 
            +
                io.save(os.path.join(args.output_dir, "outputs_"+str(args.task)+".jsonl"), final_outputs)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
            if __name__ == "__main__":
         | 
| 117 | 
            +
                main()
         | 
    	
        llava/eval/mmmu_utils/__pycache__/eval_utils.cpython-311.pyc
    ADDED
    
    | Binary file (2.58 kB). View file | 
|  | 
    	
        llava/eval/mmmu_utils/eval_utils.py
    ADDED
    
    | @@ -0,0 +1,61 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # This file is originated from the official MMMU codebase:
         | 
| 2 | 
            +
            # https://github.com/MMMU-Benchmark/MMMU
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import random
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import numpy as np
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            def parse_choice(response, all_choices, index2ans=None):
         | 
| 10 | 
            +
                """
         | 
| 11 | 
            +
                Parse the prediction from the generated response.
         | 
| 12 | 
            +
                Return the predicted index e.g., A, B, C, D.
         | 
| 13 | 
            +
                """
         | 
| 14 | 
            +
                for char in [",", ".", "!", "?", ";", ":", "'"]:
         | 
| 15 | 
            +
                    response = response.strip(char)
         | 
| 16 | 
            +
                response = " " + response + " "  # add space to avoid partial match
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                index_ans = True
         | 
| 19 | 
            +
                ans_with_brack = False
         | 
| 20 | 
            +
                candidates = []
         | 
| 21 | 
            +
                for choice in all_choices:  # e.g., (A) (B) (C) (D)
         | 
| 22 | 
            +
                    if f"({choice})" in response:
         | 
| 23 | 
            +
                        candidates.append(choice)
         | 
| 24 | 
            +
                        ans_with_brack = True
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                if len(candidates) == 0:
         | 
| 27 | 
            +
                    for choice in all_choices:  # e.g., A B C D
         | 
| 28 | 
            +
                        if f" {choice} " in response:
         | 
| 29 | 
            +
                            candidates.append(choice)
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                # if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
         | 
| 32 | 
            +
                if len(candidates) == 0 and len(response.split()) > 5 and index2ans is not None:
         | 
| 33 | 
            +
                    for index, ans in index2ans.items():
         | 
| 34 | 
            +
                        if ans.lower() in response.lower():
         | 
| 35 | 
            +
                            candidates.append(index)
         | 
| 36 | 
            +
                            index_ans = False  # it's content ans.
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                if len(candidates) == 0:  # still not get answer, randomly choose one.
         | 
| 39 | 
            +
                    pred_index = random.choice(all_choices)
         | 
| 40 | 
            +
                elif len(candidates) > 1:
         | 
| 41 | 
            +
                    start_indexes = []
         | 
| 42 | 
            +
                    if index_ans:
         | 
| 43 | 
            +
                        if ans_with_brack:
         | 
| 44 | 
            +
                            for can in candidates:
         | 
| 45 | 
            +
                                index = response.rfind(f"({can})")
         | 
| 46 | 
            +
                                start_indexes.append(index)  # -1 will be ignored anyway
         | 
| 47 | 
            +
                            # start_indexes = [generated_response.index(f'({can})') for can in candidates]
         | 
| 48 | 
            +
                        else:
         | 
| 49 | 
            +
                            for can in candidates:
         | 
| 50 | 
            +
                                index = response.rfind(f" {can} ")
         | 
| 51 | 
            +
                                start_indexes.append(index)
         | 
| 52 | 
            +
                    else:
         | 
| 53 | 
            +
                        for can in candidates:
         | 
| 54 | 
            +
                            index = response.lower().rfind(index2ans[can].lower())
         | 
| 55 | 
            +
                            start_indexes.append(index)
         | 
| 56 | 
            +
                    # get the last one
         | 
| 57 | 
            +
                    pred_index = candidates[np.argmax(start_indexes)]
         | 
| 58 | 
            +
                else:  # if only one candidate, use it.
         | 
| 59 | 
            +
                    pred_index = candidates[0]
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                return pred_index
         | 
    	
        llava/eval/registry_audio.yaml
    ADDED
    
    | @@ -0,0 +1,93 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            Clotho-AQA-AQA:
         | 
| 2 | 
            +
              tags:
         | 
| 3 | 
            +
              - local
         | 
| 4 | 
            +
            Music-AVQA-AQA_All:
         | 
| 5 | 
            +
              tags:
         | 
| 6 | 
            +
              - local
         | 
| 7 | 
            +
            CochlScene-SceneClassification:
         | 
| 8 | 
            +
              tags:
         | 
| 9 | 
            +
              - local
         | 
| 10 | 
            +
            NSynth-Source:
         | 
| 11 | 
            +
              tags:
         | 
| 12 | 
            +
              - local
         | 
| 13 | 
            +
            NSynth-Instrument:
         | 
| 14 | 
            +
              tags:
         | 
| 15 | 
            +
              - local
         | 
| 16 | 
            +
            FSD50k-EventClassification:
         | 
| 17 | 
            +
              tags:
         | 
| 18 | 
            +
              - local
         | 
| 19 | 
            +
            Clotho-v2-AudioCaptioning:
         | 
| 20 | 
            +
              tags:
         | 
| 21 | 
            +
              - local
         | 
| 22 | 
            +
            audiocaps-AudioCaptioning:
         | 
| 23 | 
            +
              tags:
         | 
| 24 | 
            +
              - local
         | 
| 25 | 
            +
            ravdess-EmotionClassification:
         | 
| 26 | 
            +
              tags:
         | 
| 27 | 
            +
              - local
         | 
| 28 | 
            +
            GTZAN-GenreClassification:
         | 
| 29 | 
            +
              tags:
         | 
| 30 | 
            +
              - local
         | 
| 31 | 
            +
            UrbanSound8K-EventClassification:
         | 
| 32 | 
            +
              tags:
         | 
| 33 | 
            +
              - local
         | 
| 34 | 
            +
            Medley-solos-DB-InstrClassification:
         | 
| 35 | 
            +
              tags:
         | 
| 36 | 
            +
              - local
         | 
| 37 | 
            +
            ESC50-EventClassification:
         | 
| 38 | 
            +
              tags:
         | 
| 39 | 
            +
              - local
         | 
| 40 | 
            +
            CREMA-D-EmotionClassification:
         | 
| 41 | 
            +
              tags:
         | 
| 42 | 
            +
              - local
         | 
| 43 | 
            +
            IEMOCAP-EmotionClassification:
         | 
| 44 | 
            +
              tags:
         | 
| 45 | 
            +
              - local
         | 
| 46 | 
            +
            MELD-EmotionClassification:
         | 
| 47 | 
            +
              tags:
         | 
| 48 | 
            +
              - local
         | 
| 49 | 
            +
            MELD-SentimentClassification:
         | 
| 50 | 
            +
              tags:
         | 
| 51 | 
            +
              - local
         | 
| 52 | 
            +
            MMAU:
         | 
| 53 | 
            +
              tags:
         | 
| 54 | 
            +
              - local
         | 
| 55 | 
            +
            AudioEntailmentQA:
         | 
| 56 | 
            +
              tags:
         | 
| 57 | 
            +
              - local
         | 
| 58 | 
            +
            SPGI-ASR:
         | 
| 59 | 
            +
              tags:
         | 
| 60 | 
            +
              - local
         | 
| 61 | 
            +
            SWBD-ASR:
         | 
| 62 | 
            +
              tags:
         | 
| 63 | 
            +
              - local
         | 
| 64 | 
            +
            LibriSpeech-ASR-clean:
         | 
| 65 | 
            +
              tags:
         | 
| 66 | 
            +
              - local
         | 
| 67 | 
            +
            LibriSpeech-ASR-other:
         | 
| 68 | 
            +
              tags:
         | 
| 69 | 
            +
              - local
         | 
| 70 | 
            +
            VoxPopuli-ASR:
         | 
| 71 | 
            +
              tags:
         | 
| 72 | 
            +
              - local
         | 
| 73 | 
            +
            Europarl-ASR:
         | 
| 74 | 
            +
              tags:
         | 
| 75 | 
            +
              - local
         | 
| 76 | 
            +
            CV-ASR:
         | 
| 77 | 
            +
              tags:
         | 
| 78 | 
            +
              - local
         | 
| 79 | 
            +
            GigaSpeech-ASR:
         | 
| 80 | 
            +
              tags:
         | 
| 81 | 
            +
              - local
         | 
| 82 | 
            +
            CompA-R-AQA:
         | 
| 83 | 
            +
              tags:
         | 
| 84 | 
            +
              - local
         | 
| 85 | 
            +
            MuschoMusicQA:
         | 
| 86 | 
            +
              tags:
         | 
| 87 | 
            +
              - local
         | 
| 88 | 
            +
            CMM:
         | 
| 89 | 
            +
              tags:
         | 
| 90 | 
            +
              - local
         | 
| 91 | 
            +
            AIR-Bench:
         | 
| 92 | 
            +
              tags:
         | 
| 93 | 
            +
              - local
         | 
    	
        llava/media.py
    ADDED
    
    | @@ -0,0 +1,47 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            __all__ = ["Media", "File", "Image", "Video", "Speech",  "Sound"]
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class Media:
         | 
| 27 | 
            +
                pass
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            class File(Media):
         | 
| 31 | 
            +
                def __init__(self, path: str) -> None:
         | 
| 32 | 
            +
                    self.path = path
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            class Image(File):
         | 
| 36 | 
            +
                pass
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
            class Video(File):
         | 
| 40 | 
            +
                pass
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            class Speech(File):
         | 
| 44 | 
            +
                pass
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            class Sound(File):
         | 
| 47 | 
            +
                pass
         | 
    	
        llava/mm_utils.py
    ADDED
    
    | @@ -0,0 +1,641 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #      http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            # dynamic_preprocess and find_closest_aspect_ratio are referenced from https://github.com/OpenGVLab/InternVL
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            import base64
         | 
| 26 | 
            +
            import os
         | 
| 27 | 
            +
            import tempfile
         | 
| 28 | 
            +
            from io import BytesIO
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            import numpy as np
         | 
| 31 | 
            +
            import torch
         | 
| 32 | 
            +
            from PIL import Image
         | 
| 33 | 
            +
            from transformers import StoppingCriteria
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            from pydub import AudioSegment
         | 
| 36 | 
            +
            from torchvision import transforms
         | 
| 37 | 
            +
            import soundfile as sf
         | 
| 38 | 
            +
            from librosa import resample as librosa_resample
         | 
| 39 | 
            +
            import whisper
         | 
| 40 | 
            +
            import random
         | 
| 41 | 
            +
            from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler, UniformClipSampler
         | 
| 42 | 
            +
            DEFAULT_AUDIO_FRAME_SHIFT_MS = 10  # in milliseconds
         | 
| 43 | 
            +
            def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
         | 
| 44 | 
            +
                import cv2
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                if fps == None or frame_count == None:
         | 
| 47 | 
            +
                    # if one of fps or frame_count is None, still recompute
         | 
| 48 | 
            +
                    fps = vidcap.get(cv2.CAP_PROP_FPS)
         | 
| 49 | 
            +
                    frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
         | 
| 50 | 
            +
                if fps == 0 or frame_count == 0:
         | 
| 51 | 
            +
                    print(f"Video file not found. return empty images. {video_file_name}")
         | 
| 52 | 
            +
                    return [
         | 
| 53 | 
            +
                        Image.new("RGB", (720, 720)),
         | 
| 54 | 
            +
                    ] * num_frames, 0, [0.]
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                duration = frame_count / fps
         | 
| 57 | 
            +
                frame_interval = frame_count // num_frames
         | 
| 58 | 
            +
                if frame_interval == 0 and frame_count <= 1:
         | 
| 59 | 
            +
                    print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
         | 
| 60 | 
            +
                    return [
         | 
| 61 | 
            +
                        Image.new("RGB", (720, 720)),
         | 
| 62 | 
            +
                    ] * num_frames, 0, [0.]
         | 
| 63 | 
            +
                # print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                images = []
         | 
| 66 | 
            +
                count = 0
         | 
| 67 | 
            +
                success = True
         | 
| 68 | 
            +
                frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
         | 
| 69 | 
            +
                frame_times = [frame / fps for frame in frame_indices]
         | 
| 70 | 
            +
                while success:
         | 
| 71 | 
            +
                    # print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval)
         | 
| 72 | 
            +
                    if frame_count >= num_frames:
         | 
| 73 | 
            +
                        success, frame = vidcap.read()
         | 
| 74 | 
            +
                        if count in frame_indices:
         | 
| 75 | 
            +
                            try:
         | 
| 76 | 
            +
                                img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
         | 
| 77 | 
            +
                                im_pil = Image.fromarray(img)
         | 
| 78 | 
            +
                                images.append(im_pil)
         | 
| 79 | 
            +
                            except BaseException:
         | 
| 80 | 
            +
                                continue
         | 
| 81 | 
            +
                            if len(images) >= num_frames:
         | 
| 82 | 
            +
                                return images, num_frames, frame_times
         | 
| 83 | 
            +
                        count += 1
         | 
| 84 | 
            +
                    else:
         | 
| 85 | 
            +
                        # Left padding frames if the video is not long enough
         | 
| 86 | 
            +
                        success, frame = vidcap.read()
         | 
| 87 | 
            +
                        if success:
         | 
| 88 | 
            +
                            try:
         | 
| 89 | 
            +
                                img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
         | 
| 90 | 
            +
                                im_pil = Image.fromarray(img)
         | 
| 91 | 
            +
                                images.append(im_pil)
         | 
| 92 | 
            +
                            except BaseException:
         | 
| 93 | 
            +
                                continue
         | 
| 94 | 
            +
                            count += 1
         | 
| 95 | 
            +
                        else:
         | 
| 96 | 
            +
                            break
         | 
| 97 | 
            +
                if len(images) == 0:
         | 
| 98 | 
            +
                    raise ValueError("Did not find enough frames in the video. return empty image.")
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                return images, len(images), frame_times
         | 
| 101 | 
            +
             | 
| 102 | 
            +
             | 
| 103 | 
            +
            def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
         | 
| 104 | 
            +
                """
         | 
| 105 | 
            +
                num_frames is the max number of frames the model can support.
         | 
| 106 | 
            +
                frame_count is the number of frames in the input video.
         | 
| 107 | 
            +
                max_fps is the max FPS of the model can support.
         | 
| 108 | 
            +
                fps is the fps of the input video.
         | 
| 109 | 
            +
                """
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                import random
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                import cv2
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                if fps == None or frame_count == None:
         | 
| 116 | 
            +
                    # if one of fps or frame_count is None, still recompute
         | 
| 117 | 
            +
                    fps = vidcap.get(cv2.CAP_PROP_FPS)
         | 
| 118 | 
            +
                    frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                if fps == 0 or frame_count == 0:
         | 
| 121 | 
            +
                    print(f"Video file not found. return empty images. {video_file_name}")
         | 
| 122 | 
            +
                    empty_video_frames = int(random.uniform(2, 8 * max_fps))
         | 
| 123 | 
            +
                    return [
         | 
| 124 | 
            +
                        Image.new("RGB", (720, 720)),
         | 
| 125 | 
            +
                    ] * empty_video_frames, 0, [0.]
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                duration = frame_count / fps
         | 
| 128 | 
            +
                # print("duration:", duration, "frames:", frame_count, "fps:", fps, "num_frames:", num_frames, "max_fps:", max_fps)
         | 
| 129 | 
            +
                # If the video is too long (longer than max_fps and num_frames can support),
         | 
| 130 | 
            +
                # we will use lower fps to sample frames.
         | 
| 131 | 
            +
                if duration >= num_frames / max_fps:
         | 
| 132 | 
            +
                    frame_interval = frame_count // num_frames
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    # If the video is too short, we will skip the video if there is only one frame.
         | 
| 135 | 
            +
                    if frame_interval == 0 and frame_count <= 1:
         | 
| 136 | 
            +
                        print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
         | 
| 137 | 
            +
                        empty_video_frames = int(random.uniform(2, 8 * max_fps))
         | 
| 138 | 
            +
                        return [
         | 
| 139 | 
            +
                            Image.new("RGB", (720, 720)),
         | 
| 140 | 
            +
                        ] * empty_video_frames, 0, [0.]
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    images = []
         | 
| 143 | 
            +
                    count = 0
         | 
| 144 | 
            +
                    success = True
         | 
| 145 | 
            +
                    frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
         | 
| 146 | 
            +
                    frame_times = [frame / fps for frame in frame_indices]
         | 
| 147 | 
            +
                    while success:
         | 
| 148 | 
            +
                        if frame_count >= num_frames:
         | 
| 149 | 
            +
                            # success, frame = vidcap.read()
         | 
| 150 | 
            +
                            if count in frame_indices:
         | 
| 151 | 
            +
                                success, frame = vidcap.read()
         | 
| 152 | 
            +
                                try:
         | 
| 153 | 
            +
                                    img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
         | 
| 154 | 
            +
                                    im_pil = Image.fromarray(img)
         | 
| 155 | 
            +
                                    images.append(im_pil)
         | 
| 156 | 
            +
                                except:
         | 
| 157 | 
            +
                                    # print("Failed to read frame:", count)
         | 
| 158 | 
            +
                                    continue
         | 
| 159 | 
            +
                                if len(images) >= num_frames:
         | 
| 160 | 
            +
                                    return images, num_frames, frame_times
         | 
| 161 | 
            +
                            else:
         | 
| 162 | 
            +
                                success = vidcap.grab()
         | 
| 163 | 
            +
                            count += 1
         | 
| 164 | 
            +
                        else:
         | 
| 165 | 
            +
                            # Left padding frames if the video is not long enough
         | 
| 166 | 
            +
                            success, frame = vidcap.read()
         | 
| 167 | 
            +
                            if success:
         | 
| 168 | 
            +
                                try:
         | 
| 169 | 
            +
                                    img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
         | 
| 170 | 
            +
                                    im_pil = Image.fromarray(img)
         | 
| 171 | 
            +
                                    images.append(im_pil)
         | 
| 172 | 
            +
                                except:
         | 
| 173 | 
            +
                                    # print("Failed to read frame:", count)
         | 
| 174 | 
            +
                                    continue
         | 
| 175 | 
            +
                                count += 1
         | 
| 176 | 
            +
                            else:
         | 
| 177 | 
            +
                                break
         | 
| 178 | 
            +
                else:
         | 
| 179 | 
            +
                    frames_required = int(duration * max_fps)
         | 
| 180 | 
            +
                    frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int)
         | 
| 181 | 
            +
                    if frames_required == 0:
         | 
| 182 | 
            +
                        print(f"frames_required is fewer than 2. Duration {duration}, return empty image.")
         | 
| 183 | 
            +
                        empty_video_frames = int(random.uniform(2, 8 * max_fps))
         | 
| 184 | 
            +
                        return [
         | 
| 185 | 
            +
                            Image.new("RGB", (720, 720)),
         | 
| 186 | 
            +
                        ] * empty_video_frames, 0, [0.]
         | 
| 187 | 
            +
                    elif frames_required == 1:
         | 
| 188 | 
            +
                        frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int)
         | 
| 189 | 
            +
                    images = []
         | 
| 190 | 
            +
                    count = 0
         | 
| 191 | 
            +
                    looked = 0
         | 
| 192 | 
            +
                    success = True
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                    while success:
         | 
| 195 | 
            +
                        success, frame = vidcap.read()
         | 
| 196 | 
            +
                        if success and (looked in frame_indices):
         | 
| 197 | 
            +
                            try:
         | 
| 198 | 
            +
                                img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
         | 
| 199 | 
            +
                                im_pil = Image.fromarray(img)
         | 
| 200 | 
            +
                                images.append(im_pil)
         | 
| 201 | 
            +
                            except:
         | 
| 202 | 
            +
                                continue
         | 
| 203 | 
            +
                            count += 1
         | 
| 204 | 
            +
                        looked += 1
         | 
| 205 | 
            +
                frame_times = [frame / fps for frame in frame_indices]
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                if len(images) == 0:
         | 
| 208 | 
            +
                    empty_video_frames = int(random.uniform(2, 8 * max_fps))
         | 
| 209 | 
            +
                    return [
         | 
| 210 | 
            +
                        Image.new("RGB", (720, 720)),
         | 
| 211 | 
            +
                    ] * empty_video_frames, 0, [0.]
         | 
| 212 | 
            +
                else:
         | 
| 213 | 
            +
                    return images, len(images), frame_times
         | 
| 214 | 
            +
             | 
| 215 | 
            +
             | 
| 216 | 
            +
            def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None):
         | 
| 217 | 
            +
                """
         | 
| 218 | 
            +
                Extract frames from a video using OpenCV.
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                Args:
         | 
| 221 | 
            +
                    vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video.
         | 
| 222 | 
            +
                    frames (int): Number of frames to extract from the video.
         | 
| 223 | 
            +
                    fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals.
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                Returns:
         | 
| 226 | 
            +
                    list: List of PIL Images extracted from the video.
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                Raises:
         | 
| 229 | 
            +
                    NotImplementedError: If the type of `vpath_or_bytesio` is not supported.
         | 
| 230 | 
            +
                """
         | 
| 231 | 
            +
                import cv2
         | 
| 232 | 
            +
                if isinstance(vpath_or_bytesio, str):
         | 
| 233 | 
            +
                    vidcap = cv2.VideoCapture(vpath_or_bytesio)
         | 
| 234 | 
            +
                    if max_fps > 0.0:
         | 
| 235 | 
            +
                        return get_frame_from_vcap_with_fps(
         | 
| 236 | 
            +
                            vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
         | 
| 237 | 
            +
                        )
         | 
| 238 | 
            +
                    return get_frame_from_vcap(
         | 
| 239 | 
            +
                        vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
         | 
| 240 | 
            +
                    )
         | 
| 241 | 
            +
                elif isinstance(vpath_or_bytesio, (BytesIO,)):
         | 
| 242 | 
            +
                    # assuming mp4
         | 
| 243 | 
            +
                    with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
         | 
| 244 | 
            +
                        temp_video.write(vpath_or_bytesio.read())
         | 
| 245 | 
            +
                        temp_video_name = temp_video.name
         | 
| 246 | 
            +
                        vidcap = cv2.VideoCapture(temp_video_name)
         | 
| 247 | 
            +
                        if max_fps > 0.0:
         | 
| 248 | 
            +
                            return get_frame_from_vcap_with_fps(
         | 
| 249 | 
            +
                                vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
         | 
| 250 | 
            +
                            )
         | 
| 251 | 
            +
                        return get_frame_from_vcap(
         | 
| 252 | 
            +
                            vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
         | 
| 253 | 
            +
                        )
         | 
| 254 | 
            +
                else:
         | 
| 255 | 
            +
                    raise NotImplementedError(type(vpath_or_bytesio))
         | 
| 256 | 
            +
             | 
| 257 | 
            +
             | 
| 258 | 
            +
            def load_image_from_base64(image):
         | 
| 259 | 
            +
                return Image.open(BytesIO(base64.b64decode(image)))
         | 
| 260 | 
            +
             | 
| 261 | 
            +
             | 
| 262 | 
            +
            def expand2square(pil_img, background_color):
         | 
| 263 | 
            +
                """
         | 
| 264 | 
            +
                Expand the given PIL image to a square shape by adding padding.
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                Parameters:
         | 
| 267 | 
            +
                - pil_img: The PIL image to be expanded.
         | 
| 268 | 
            +
                - background_color: The color of the padding to be added.
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                Returns:
         | 
| 271 | 
            +
                - The expanded PIL image.
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                If the image is already square, it is returned as is.
         | 
| 274 | 
            +
                If the image is wider than it is tall, padding is added to the top and bottom.
         | 
| 275 | 
            +
                If the image is taller than it is wide, padding is added to the left and right.
         | 
| 276 | 
            +
                """
         | 
| 277 | 
            +
                width, height = pil_img.size
         | 
| 278 | 
            +
                if pil_img.mode == "L":
         | 
| 279 | 
            +
                    background_color = background_color[0]
         | 
| 280 | 
            +
                if width == height:
         | 
| 281 | 
            +
                    return pil_img
         | 
| 282 | 
            +
                elif width > height:
         | 
| 283 | 
            +
                    result = Image.new(pil_img.mode, (width, width), background_color)
         | 
| 284 | 
            +
                    result.paste(pil_img, (0, (width - height) // 2))
         | 
| 285 | 
            +
                    return result
         | 
| 286 | 
            +
                else:
         | 
| 287 | 
            +
                    result = Image.new(pil_img.mode, (height, height), background_color)
         | 
| 288 | 
            +
                    result.paste(pil_img, ((height - width) // 2, 0))
         | 
| 289 | 
            +
                    return result
         | 
| 290 | 
            +
             | 
| 291 | 
            +
             | 
| 292 | 
            +
            def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
         | 
| 293 | 
            +
                best_ratio_diff = float("inf")
         | 
| 294 | 
            +
                best_ratio = (1, 1)
         | 
| 295 | 
            +
                area = width * height
         | 
| 296 | 
            +
                for ratio in target_ratios:
         | 
| 297 | 
            +
                    target_aspect_ratio = ratio[0] / ratio[1]
         | 
| 298 | 
            +
                    ratio_diff = abs(aspect_ratio - target_aspect_ratio)
         | 
| 299 | 
            +
                    if ratio_diff < best_ratio_diff:
         | 
| 300 | 
            +
                        best_ratio_diff = ratio_diff
         | 
| 301 | 
            +
                        best_ratio = ratio
         | 
| 302 | 
            +
                    elif ratio_diff == best_ratio_diff:
         | 
| 303 | 
            +
                        if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
         | 
| 304 | 
            +
                            best_ratio = ratio
         | 
| 305 | 
            +
                return best_ratio
         | 
| 306 | 
            +
             | 
| 307 | 
            +
             | 
| 308 | 
            +
            def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True):
         | 
| 309 | 
            +
                orig_width, orig_height = image.size
         | 
| 310 | 
            +
                aspect_ratio = orig_width / orig_height
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                # calculate the existing image aspect ratio
         | 
| 313 | 
            +
                target_ratios = {
         | 
| 314 | 
            +
                    (i, j)
         | 
| 315 | 
            +
                    for n in range(min_num, max_num + 1)
         | 
| 316 | 
            +
                    for i in range(1, n + 1)
         | 
| 317 | 
            +
                    for j in range(1, n + 1)
         | 
| 318 | 
            +
                    if i * j <= max_num and i * j >= min_num
         | 
| 319 | 
            +
                }
         | 
| 320 | 
            +
                target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                # find the closest aspect ratio to the target
         | 
| 323 | 
            +
                target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                # calculate the target width and height
         | 
| 326 | 
            +
                target_width = image_size * target_aspect_ratio[0]
         | 
| 327 | 
            +
                target_height = image_size * target_aspect_ratio[1]
         | 
| 328 | 
            +
                blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                # resize the image
         | 
| 331 | 
            +
                resized_img = image.resize((target_width, target_height))
         | 
| 332 | 
            +
                processed_images = []
         | 
| 333 | 
            +
                for i in range(blocks):
         | 
| 334 | 
            +
                    box = (
         | 
| 335 | 
            +
                        (i % (target_width // image_size)) * image_size,
         | 
| 336 | 
            +
                        (i // (target_width // image_size)) * image_size,
         | 
| 337 | 
            +
                        ((i % (target_width // image_size)) + 1) * image_size,
         | 
| 338 | 
            +
                        ((i // (target_width // image_size)) + 1) * image_size,
         | 
| 339 | 
            +
                    )
         | 
| 340 | 
            +
                    # split the image
         | 
| 341 | 
            +
                    split_img = resized_img.crop(box)
         | 
| 342 | 
            +
                    processed_images.append(split_img)
         | 
| 343 | 
            +
                assert len(processed_images) == blocks
         | 
| 344 | 
            +
                if use_thumbnail and len(processed_images) != 1:
         | 
| 345 | 
            +
                    thumbnail_img = image.resize((image_size, image_size))
         | 
| 346 | 
            +
                    processed_images.append(thumbnail_img)
         | 
| 347 | 
            +
                return processed_images
         | 
| 348 | 
            +
             | 
| 349 | 
            +
             | 
| 350 | 
            +
            def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384):
         | 
| 351 | 
            +
                orig_width, orig_height = image.size
         | 
| 352 | 
            +
                aspect_ratio = orig_width / orig_height
         | 
| 353 | 
            +
                min_num = (s2_scales[-1] // s2_scales[0]) ** 2  # at least use number of tiles as the largest scale
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                processed_images = []
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                ##########################################################################################
         | 
| 358 | 
            +
                ############# Add tiles for all but the last scale using fixed squre ratio ###############
         | 
| 359 | 
            +
                ##########################################################################################
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                for scale in s2_scales[:-1]:
         | 
| 362 | 
            +
                    target_width = image_size * (scale // s2_scales[0])
         | 
| 363 | 
            +
                    target_height = image_size * (scale // s2_scales[0])
         | 
| 364 | 
            +
                    blocks = (scale // s2_scales[0]) ** 2
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                    # resize the image
         | 
| 367 | 
            +
                    resized_img = image.resize((target_width, target_height))
         | 
| 368 | 
            +
                    for i in range(blocks):
         | 
| 369 | 
            +
                        box = (
         | 
| 370 | 
            +
                            (i % (target_width // image_size)) * image_size,
         | 
| 371 | 
            +
                            (i // (target_width // image_size)) * image_size,
         | 
| 372 | 
            +
                            ((i % (target_width // image_size)) + 1) * image_size,
         | 
| 373 | 
            +
                            ((i // (target_width // image_size)) + 1) * image_size,
         | 
| 374 | 
            +
                        )
         | 
| 375 | 
            +
                        # split the image
         | 
| 376 | 
            +
                        split_img = resized_img.crop(box)
         | 
| 377 | 
            +
                        processed_images.append(split_img)
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                ##########################################################################################
         | 
| 380 | 
            +
                ################ Add tiles for the last scale using dynamic aspect ratio #################
         | 
| 381 | 
            +
                ##########################################################################################
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                # calculate the existing image aspect ratio
         | 
| 384 | 
            +
                target_ratios = {
         | 
| 385 | 
            +
                    (i, j)
         | 
| 386 | 
            +
                    for n in range(min_num, max_num + 1)
         | 
| 387 | 
            +
                    for i in range(1, n + 1)
         | 
| 388 | 
            +
                    for j in range(1, n + 1)
         | 
| 389 | 
            +
                    if i * j <= max_num and i * j >= min_num
         | 
| 390 | 
            +
                }
         | 
| 391 | 
            +
                target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                # find the closest aspect ratio to the target
         | 
| 394 | 
            +
                target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                # calculate the target width and height
         | 
| 397 | 
            +
                target_width = image_size * target_aspect_ratio[0]
         | 
| 398 | 
            +
                target_height = image_size * target_aspect_ratio[1]
         | 
| 399 | 
            +
                blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                # resize the image
         | 
| 402 | 
            +
                resized_img = image.resize((target_width, target_height))
         | 
| 403 | 
            +
                for i in range(blocks):
         | 
| 404 | 
            +
                    box = (
         | 
| 405 | 
            +
                        (i % (target_width // image_size)) * image_size,
         | 
| 406 | 
            +
                        (i // (target_width // image_size)) * image_size,
         | 
| 407 | 
            +
                        ((i % (target_width // image_size)) + 1) * image_size,
         | 
| 408 | 
            +
                        ((i // (target_width // image_size)) + 1) * image_size,
         | 
| 409 | 
            +
                    )
         | 
| 410 | 
            +
                    # split the image
         | 
| 411 | 
            +
                    split_img = resized_img.crop(box)
         | 
| 412 | 
            +
                    processed_images.append(split_img)
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0])
         | 
| 415 | 
            +
             | 
| 416 | 
            +
             | 
| 417 | 
            +
             | 
| 418 | 
            +
            def dynamic_s2_process_images_and_prompt(images, data_args, image_folder=None):
         | 
| 419 | 
            +
                idx = 0
         | 
| 420 | 
            +
                all_images = []
         | 
| 421 | 
            +
                all_block_size = []
         | 
| 422 | 
            +
                for img in images:
         | 
| 423 | 
            +
                    processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True)
         | 
| 424 | 
            +
                    all_images.append(processed_images)
         | 
| 425 | 
            +
                    all_block_size.append(block_size)
         | 
| 426 | 
            +
                    idx += 2
         | 
| 427 | 
            +
                if all_images:
         | 
| 428 | 
            +
                    all_images = torch.cat(all_images)
         | 
| 429 | 
            +
                else:
         | 
| 430 | 
            +
                    all_images = None
         | 
| 431 | 
            +
                return all_images, all_block_size
         | 
| 432 | 
            +
             | 
| 433 | 
            +
             | 
| 434 | 
            +
            def process_image(
         | 
| 435 | 
            +
                image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None
         | 
| 436 | 
            +
            ):
         | 
| 437 | 
            +
                processor = data_args.image_processor
         | 
| 438 | 
            +
                if isinstance(image_file, str):
         | 
| 439 | 
            +
                    if image_folder is not None:
         | 
| 440 | 
            +
                        image = Image.open(os.path.join(image_folder, image_file)).convert("RGB")
         | 
| 441 | 
            +
                    else:
         | 
| 442 | 
            +
                        image = Image.open(image_file).convert("RGB")
         | 
| 443 | 
            +
                else:
         | 
| 444 | 
            +
                    # image is stored in bytearray
         | 
| 445 | 
            +
                    image = image_file
         | 
| 446 | 
            +
                image = image.convert("RGB")
         | 
| 447 | 
            +
                if hasattr(data_args.image_processor, "crop_size"):
         | 
| 448 | 
            +
                    # CLIP vision tower
         | 
| 449 | 
            +
                    crop_size = data_args.image_processor.crop_size
         | 
| 450 | 
            +
                else:
         | 
| 451 | 
            +
                    # SIGLIP vision tower
         | 
| 452 | 
            +
                    assert hasattr(data_args.image_processor, "size")
         | 
| 453 | 
            +
                    crop_size = data_args.image_processor.size
         | 
| 454 | 
            +
                if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2:
         | 
| 455 | 
            +
                    assert crop_size["height"] == crop_size["width"]
         | 
| 456 | 
            +
                    images, block_size = dynamic_s2_preprocess(
         | 
| 457 | 
            +
                        image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"]
         | 
| 458 | 
            +
                    )
         | 
| 459 | 
            +
                    images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
         | 
| 460 | 
            +
                    return torch.stack(images), block_size
         | 
| 461 | 
            +
                if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res:
         | 
| 462 | 
            +
                    assert crop_size["height"] == crop_size["width"]
         | 
| 463 | 
            +
                    if max_tiles is not None:
         | 
| 464 | 
            +
                        max_num = max_tiles
         | 
| 465 | 
            +
                    else:
         | 
| 466 | 
            +
                        max_num = data_args.max_tiles
         | 
| 467 | 
            +
                    images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"])
         | 
| 468 | 
            +
                    images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
         | 
| 469 | 
            +
                    return torch.stack(images)
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                if data_args.image_aspect_ratio == "resize":
         | 
| 472 | 
            +
                    image = image.resize((crop_size["width"], crop_size["height"]))
         | 
| 473 | 
            +
                if data_args.image_aspect_ratio == "pad":
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    def expand2square(pil_img, background_color):
         | 
| 476 | 
            +
                        width, height = pil_img.size
         | 
| 477 | 
            +
                        if width == height:
         | 
| 478 | 
            +
                            return pil_img
         | 
| 479 | 
            +
                        elif width > height:
         | 
| 480 | 
            +
                            result = Image.new(pil_img.mode, (width, width), background_color)
         | 
| 481 | 
            +
                            result.paste(pil_img, (0, (width - height) // 2))
         | 
| 482 | 
            +
                            return result
         | 
| 483 | 
            +
                        else:
         | 
| 484 | 
            +
                            result = Image.new(pil_img.mode, (height, height), background_color)
         | 
| 485 | 
            +
                            result.paste(pil_img, ((height - width) // 2, 0))
         | 
| 486 | 
            +
                            return result
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
         | 
| 489 | 
            +
                    image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
         | 
| 490 | 
            +
                else:
         | 
| 491 | 
            +
                    # Using default behavior of the vision encoder
         | 
| 492 | 
            +
                    # For CLIP, default is central crop
         | 
| 493 | 
            +
                    # For Radio, default is central crop
         | 
| 494 | 
            +
                    # For Siglip, default is resize
         | 
| 495 | 
            +
                    # For InternVIT, default is resize
         | 
| 496 | 
            +
                    image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
         | 
| 497 | 
            +
                return image
         | 
| 498 | 
            +
             | 
| 499 | 
            +
            def get_num_windows(T, sr, max_num_window=5):
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                window_length  = int(30.0 * sr)
         | 
| 502 | 
            +
                window_overlap = int(0.0 * sr)
         | 
| 503 | 
            +
                max_num_window = max_num_window
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                num_windows = 1
         | 
| 506 | 
            +
                if T <= window_length:
         | 
| 507 | 
            +
                    num_windows = 1
         | 
| 508 | 
            +
                    full_length = window_length
         | 
| 509 | 
            +
                elif T >= (max_num_window * window_length - (max_num_window - 1) * window_overlap):
         | 
| 510 | 
            +
                    num_windows = max_num_window
         | 
| 511 | 
            +
                    full_length = (max_num_window * window_length - (max_num_window - 1) * window_overlap)
         | 
| 512 | 
            +
                else:
         | 
| 513 | 
            +
                    num_windows = 1 + int(np.ceil((T - window_length) / float(window_length - window_overlap)))
         | 
| 514 | 
            +
                    full_length = num_windows * window_length - (num_windows - 1) * window_overlap
         | 
| 515 | 
            +
                
         | 
| 516 | 
            +
                return num_windows, full_length
         | 
| 517 | 
            +
             | 
| 518 | 
            +
            def load_audio(file_path, target_sr=16000, duration=30.0, start=0.0):
         | 
| 519 | 
            +
                if file_path.endswith('.mp3'):
         | 
| 520 | 
            +
                    audio = AudioSegment.from_file(file_path)
         | 
| 521 | 
            +
                    if len(audio) > (start + duration) * 1000:
         | 
| 522 | 
            +
                        audio = audio[start * 1000:(start + duration) * 1000]
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                    if audio.frame_rate != target_sr:
         | 
| 525 | 
            +
                        audio = audio.set_frame_rate(target_sr)
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    if audio.channels > 1:
         | 
| 528 | 
            +
                        audio = audio.set_channels(1)
         | 
| 529 | 
            +
                    
         | 
| 530 | 
            +
                    data = np.array(audio.get_array_of_samples())
         | 
| 531 | 
            +
                    if audio.sample_width == 2:
         | 
| 532 | 
            +
                        data = data.astype(np.float32) / np.iinfo(np.int16).max
         | 
| 533 | 
            +
                    elif audio.sample_width == 4:
         | 
| 534 | 
            +
                        data = data.astype(np.float32) / np.iinfo(np.int32).max
         | 
| 535 | 
            +
                    else:
         | 
| 536 | 
            +
                        raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                else:
         | 
| 539 | 
            +
                    with sf.SoundFile(file_path) as audio:
         | 
| 540 | 
            +
                        original_sr = audio.samplerate
         | 
| 541 | 
            +
                        channels = audio.channels
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                        max_frames = int((start + duration) * original_sr)
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                        audio.seek(int(start * original_sr))
         | 
| 546 | 
            +
                        frames_to_read = min(max_frames, len(audio))
         | 
| 547 | 
            +
                        data = audio.read(frames_to_read)
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                        if data.max() > 1 or data.min() < -1:
         | 
| 550 | 
            +
                            data = data / max(abs(data.max()), abs(data.min()))
         | 
| 551 | 
            +
                    
         | 
| 552 | 
            +
                    if original_sr != target_sr:
         | 
| 553 | 
            +
                        if channels == 1:
         | 
| 554 | 
            +
                            data = librosa_resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
         | 
| 555 | 
            +
                        else:
         | 
| 556 | 
            +
                            data = librosa_resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
         | 
| 557 | 
            +
                    else:
         | 
| 558 | 
            +
                        if channels != 1:
         | 
| 559 | 
            +
                            data = data.T[0]
         | 
| 560 | 
            +
                
         | 
| 561 | 
            +
                if data.min() >= 0:
         | 
| 562 | 
            +
                    data = 2 * data / abs(data.max()) - 1.0
         | 
| 563 | 
            +
                else:
         | 
| 564 | 
            +
                    data = data / max(abs(data.max()), abs(data.min()))
         | 
| 565 | 
            +
                
         | 
| 566 | 
            +
                assert len(data.shape) == 1, data.shape
         | 
| 567 | 
            +
                return data
         | 
| 568 | 
            +
             | 
| 569 | 
            +
            def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None):
         | 
| 570 | 
            +
                model_cfg.image_processor = image_processor
         | 
| 571 | 
            +
                new_images = [
         | 
| 572 | 
            +
                    process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles)
         | 
| 573 | 
            +
                    for image in images
         | 
| 574 | 
            +
                ]
         | 
| 575 | 
            +
             | 
| 576 | 
            +
                if all(x.shape == new_images[0].shape for x in new_images):
         | 
| 577 | 
            +
                    if len(new_images[0].shape) == 4:
         | 
| 578 | 
            +
                        new_images = torch.cat(new_images, dim=0)
         | 
| 579 | 
            +
                    elif len(new_images[0].shape) == 3:
         | 
| 580 | 
            +
                        new_images = torch.stack(new_images, dim=0)
         | 
| 581 | 
            +
                    else:
         | 
| 582 | 
            +
                        raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}")
         | 
| 583 | 
            +
                else:
         | 
| 584 | 
            +
                    raise ValueError("The shape of images in new_images is different!")
         | 
| 585 | 
            +
                return new_images
         | 
| 586 | 
            +
             | 
| 587 | 
            +
            def process_sounds(sounds):
         | 
| 588 | 
            +
                sounds = torch.tensor(sounds)
         | 
| 589 | 
            +
                return sounds
         | 
| 590 | 
            +
             | 
| 591 | 
            +
            def process_sound_masks(masks):
         | 
| 592 | 
            +
                masks = torch.tensor(masks[0])
         | 
| 593 | 
            +
                return masks
         | 
| 594 | 
            +
             | 
| 595 | 
            +
            def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
         | 
| 596 | 
            +
                return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
         | 
| 597 | 
            +
             | 
| 598 | 
            +
            def is_gemma_tokenizer(tokenizer):
         | 
| 599 | 
            +
                return "gemma" in tokenizer.__class__.__name__.lower()
         | 
| 600 | 
            +
             | 
| 601 | 
            +
             | 
| 602 | 
            +
            def get_model_name_from_path(model_path):
         | 
| 603 | 
            +
                model_path = model_path.strip("/")
         | 
| 604 | 
            +
                model_paths = model_path.split("/")
         | 
| 605 | 
            +
                if model_paths[-1].startswith("checkpoint-"):
         | 
| 606 | 
            +
                    return model_paths[-2] + "_" + model_paths[-1]
         | 
| 607 | 
            +
                else:
         | 
| 608 | 
            +
                    return model_paths[-1]
         | 
| 609 | 
            +
             | 
| 610 | 
            +
            class KeywordsStoppingCriteria(StoppingCriteria):
         | 
| 611 | 
            +
                def __init__(self, keywords, tokenizer, input_ids):
         | 
| 612 | 
            +
                    self.keywords = keywords
         | 
| 613 | 
            +
                    self.keyword_ids = []
         | 
| 614 | 
            +
                    self.max_keyword_len = 0
         | 
| 615 | 
            +
                    for keyword in keywords:
         | 
| 616 | 
            +
                        cur_keyword_ids = tokenizer(keyword).input_ids
         | 
| 617 | 
            +
                        if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
         | 
| 618 | 
            +
                            cur_keyword_ids = cur_keyword_ids[1:]
         | 
| 619 | 
            +
                        if len(cur_keyword_ids) > self.max_keyword_len:
         | 
| 620 | 
            +
                            self.max_keyword_len = len(cur_keyword_ids)
         | 
| 621 | 
            +
                        self.keyword_ids.append(torch.tensor(cur_keyword_ids))
         | 
| 622 | 
            +
                    self.tokenizer = tokenizer
         | 
| 623 | 
            +
                    self.start_len = input_ids.shape[1]
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
         | 
| 626 | 
            +
                    offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
         | 
| 627 | 
            +
                    self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
         | 
| 628 | 
            +
                    for keyword_id in self.keyword_ids:
         | 
| 629 | 
            +
                        if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all():
         | 
| 630 | 
            +
                            return True
         | 
| 631 | 
            +
                    outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
         | 
| 632 | 
            +
                    for keyword in self.keywords:
         | 
| 633 | 
            +
                        if keyword in outputs:
         | 
| 634 | 
            +
                            return True
         | 
| 635 | 
            +
                    return False
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
         | 
| 638 | 
            +
                    outputs = []
         | 
| 639 | 
            +
                    for i in range(output_ids.shape[0]):
         | 
| 640 | 
            +
                        outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
         | 
| 641 | 
            +
                    return all(outputs)
         | 
    	
        llava/model/FloatPointQuantizeTorch.py
    ADDED
    
    | @@ -0,0 +1,85 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import math
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            def floatExMy_quantize_torch(x, e_bit, m_bit, stochastic):
         | 
| 13 | 
            +
                sign, x_abs = x.sign(), x.abs()
         | 
| 14 | 
            +
                Elow, Ehigh, Mhigh = -(2 ** (e_bit - 1)) + 2, 2 ** (e_bit - 1), 2**m_bit
         | 
| 15 | 
            +
                expo = torch.floor(torch.log2(x_abs))
         | 
| 16 | 
            +
                expo = torch.clamp(expo, min=Elow, max=Ehigh)
         | 
| 17 | 
            +
                mant = x_abs / torch.exp2(expo)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                mant_int = torch.floor(mant)
         | 
| 20 | 
            +
                mant_frac = mant - mant_int
         | 
| 21 | 
            +
                mant_frac = mant_frac * Mhigh
         | 
| 22 | 
            +
                if stochastic:
         | 
| 23 | 
            +
                    noise = mant_frac.new(mant_frac.shape).uniform_(-0.5, 0.5)
         | 
| 24 | 
            +
                    mant_frac.add_(noise)
         | 
| 25 | 
            +
                mant_frac = torch.round(mant_frac)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                mant_q = mant_int + mant_frac / Mhigh
         | 
| 28 | 
            +
                y = sign * (2**expo) * mant_q
         | 
| 29 | 
            +
                y = y.to(x)
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                return y
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            def floatExM0_quantize_torch(x, e_bit, stochastic):
         | 
| 35 | 
            +
                sign, x_abs = x.sign(), x.abs()
         | 
| 36 | 
            +
                Elow, Ehigh = -(2 ** (e_bit - 1)) + 1, 2 ** (e_bit - 1)
         | 
| 37 | 
            +
                expo = torch.log2(x_abs)
         | 
| 38 | 
            +
                if stochastic:
         | 
| 39 | 
            +
                    noise = expo.new(expo.shape).uniform_(-0.5, 0.5)
         | 
| 40 | 
            +
                    expo.add(noise)
         | 
| 41 | 
            +
                    log_bias = math.log2(4 / 3) - 1 / 2
         | 
| 42 | 
            +
                    expo.add(torch.ones_like(expo) * log_bias)
         | 
| 43 | 
            +
                expo = torch.clamp(expo, min=Elow - 1, max=Ehigh)
         | 
| 44 | 
            +
                expo = torch.round(expo)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                y = sign * (2**expo) * (expo > Elow)  # When underflow, set the value to 0
         | 
| 47 | 
            +
                y = y.to(x)
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                return y
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            def Dynamic_quantize_torch(x, bit, stochastic):
         | 
| 53 | 
            +
                if stochastic:
         | 
| 54 | 
            +
                    raise NotImplementedError("Dynamic Tree quantization does not support stochastic")
         | 
| 55 | 
            +
                sign, x_abs = x.sign(), x.abs()
         | 
| 56 | 
            +
                expo = torch.ceil(torch.log10(x_abs))
         | 
| 57 | 
            +
                expo = torch.clamp(expo, min=2 - bit)
         | 
| 58 | 
            +
                mant = (10 * x_abs / torch.pow(10, expo) - 1) / 9  # Range from 0 - 1
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                mant_frac = mant * 2 ** (bit - 2 - expo.abs())
         | 
| 61 | 
            +
                mant_frac = torch.round(mant_frac)
         | 
| 62 | 
            +
                mant_frac = mant_frac / (2 ** (bit - 2 - expo.abs())) * 9 + 1
         | 
| 63 | 
            +
                y = sign * (10**expo) * mant_frac / 10
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                zero_mask = y.abs() > 1.01 * 10 ** (1 - bit)
         | 
| 66 | 
            +
                y = y * zero_mask
         | 
| 67 | 
            +
                y = y.to(x)
         | 
| 68 | 
            +
                return y
         | 
| 69 | 
            +
             | 
| 70 | 
            +
             | 
| 71 | 
            +
            def ZeroDynamic_quantize_torch(x, bit, stochastic):
         | 
| 72 | 
            +
                if stochastic:
         | 
| 73 | 
            +
                    raise NotImplementedError("Dynamic Tree quantization does not support stochastic")
         | 
| 74 | 
            +
                sign, x_abs = x.sign(), x.abs()
         | 
| 75 | 
            +
                expo = torch.ceil(torch.log10(x_abs))
         | 
| 76 | 
            +
                expo = torch.clamp(expo, min=2 - bit)
         | 
| 77 | 
            +
                mant = (10 * x_abs / torch.pow(10, expo) - 1) / 9  # Range from 0 - 1
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                mant_frac = mant * 2 ** (bit - 2 - expo.abs())
         | 
| 80 | 
            +
                mant_frac = torch.round(mant_frac)
         | 
| 81 | 
            +
                mant_frac = mant_frac / (2 ** (bit - 2 - expo.abs())) * 9 + 1
         | 
| 82 | 
            +
                y = sign * (10**expo) * mant_frac / 10
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                y = y.to(x)
         | 
| 85 | 
            +
                return y
         | 
    	
        llava/model/FloatPointQuantizeTriton.py
    ADDED
    
    | @@ -0,0 +1,199 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import math
         | 
| 8 | 
            +
            import struct
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import numpy as np
         | 
| 11 | 
            +
            import torch
         | 
| 12 | 
            +
            import triton
         | 
| 13 | 
            +
            import triton.language as tl
         | 
| 14 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            segment_size = 1024**3
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            def floatExMy_quantize_triton(x, e_bit, m_bit, stochastic):
         | 
| 20 | 
            +
                x_ori_shape = x.shape
         | 
| 21 | 
            +
                x = x.view(-1)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                n_elements = x.numel()
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                if n_elements <= segment_size:
         | 
| 26 | 
            +
                    grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
         | 
| 27 | 
            +
                    y = torch.empty_like(x)
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                    if x.dtype in [torch.bfloat16, torch.float32]:
         | 
| 30 | 
            +
                        if stochastic:
         | 
| 31 | 
            +
                            noise = x.new(x.shape).uniform_(-0.5, 0.5)
         | 
| 32 | 
            +
                            _floatExMy_stochastic_quantize_kernel[grid](x, noise, y, n_elements, e_bit, m_bit)
         | 
| 33 | 
            +
                        else:
         | 
| 34 | 
            +
                            _floatExMy_quantize_kernel[grid](x, y, n_elements, e_bit, m_bit)
         | 
| 35 | 
            +
                            torch.cuda.synchronize()
         | 
| 36 | 
            +
                    else:
         | 
| 37 | 
            +
                        raise NotImplementedError(f"Other data format {x.dtype} for float quantization triton")
         | 
| 38 | 
            +
                else:  # Triton will break when x.numel > 2 * 1024 ** 3
         | 
| 39 | 
            +
                    num_segments = n_elements // segment_size + 1
         | 
| 40 | 
            +
                    split_size = [segment_size] * (num_segments - 1) + [n_elements - segment_size * (num_segments - 1)]
         | 
| 41 | 
            +
                    x_list = x.split(split_size)
         | 
| 42 | 
            +
                    y_list = []
         | 
| 43 | 
            +
                    del x
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                    for x in x_list:
         | 
| 46 | 
            +
                        n_elements = x.numel()
         | 
| 47 | 
            +
                        grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
         | 
| 48 | 
            +
                        y = torch.empty_like(x)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                        if x.dtype in [torch.bfloat16, torch.float32]:
         | 
| 51 | 
            +
                            if stochastic:
         | 
| 52 | 
            +
                                noise = x.new(x.shape).uniform_(-0.5, 0.5)
         | 
| 53 | 
            +
                                _floatExMy_stochastic_quantize_kernel[grid](x, noise, y, n_elements, e_bit, m_bit)
         | 
| 54 | 
            +
                            else:
         | 
| 55 | 
            +
                                _floatExMy_quantize_kernel[grid](x, y, n_elements, e_bit, m_bit)
         | 
| 56 | 
            +
                                torch.cuda.synchronize()
         | 
| 57 | 
            +
                        else:
         | 
| 58 | 
            +
                            raise NotImplementedError(f"Other data format {x.dtype} for float quantization triton")
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                        y_list.append(y)
         | 
| 61 | 
            +
                    y = torch.concat(y_list)
         | 
| 62 | 
            +
                    del y_list
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                y = y.reshape(x_ori_shape)
         | 
| 65 | 
            +
                return y
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            @triton.autotune(
         | 
| 69 | 
            +
                configs=[
         | 
| 70 | 
            +
                    # triton.Config({'BLOCK_SIZE': 4,}, num_warps=4),
         | 
| 71 | 
            +
                    triton.Config(
         | 
| 72 | 
            +
                        {
         | 
| 73 | 
            +
                            "BLOCK_SIZE": 1024,
         | 
| 74 | 
            +
                        },
         | 
| 75 | 
            +
                        num_warps=4,
         | 
| 76 | 
            +
                    ),
         | 
| 77 | 
            +
                    triton.Config(
         | 
| 78 | 
            +
                        {
         | 
| 79 | 
            +
                            "BLOCK_SIZE": 2048,
         | 
| 80 | 
            +
                        },
         | 
| 81 | 
            +
                        num_warps=4,
         | 
| 82 | 
            +
                    ),
         | 
| 83 | 
            +
                ],
         | 
| 84 | 
            +
                key=["n_elements"],
         | 
| 85 | 
            +
            )
         | 
| 86 | 
            +
            @triton.jit
         | 
| 87 | 
            +
            def _floatExMy_quantize_kernel(
         | 
| 88 | 
            +
                x_ptr,
         | 
| 89 | 
            +
                output_ptr,
         | 
| 90 | 
            +
                n_elements,
         | 
| 91 | 
            +
                e_bit,
         | 
| 92 | 
            +
                m_bit,
         | 
| 93 | 
            +
                BLOCK_SIZE: tl.constexpr,
         | 
| 94 | 
            +
            ):
         | 
| 95 | 
            +
                if isinstance(e_bit, tl.constexpr):
         | 
| 96 | 
            +
                    ebit = e_bit.value
         | 
| 97 | 
            +
                else:
         | 
| 98 | 
            +
                    ebit = e_bit
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                if isinstance(m_bit, tl.constexpr):
         | 
| 101 | 
            +
                    mbit = m_bit.value
         | 
| 102 | 
            +
                else:
         | 
| 103 | 
            +
                    mbit = m_bit
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                pid = tl.program_id(axis=0)
         | 
| 106 | 
            +
                block_start = pid * BLOCK_SIZE
         | 
| 107 | 
            +
                offsets = block_start + tl.arange(0, BLOCK_SIZE)
         | 
| 108 | 
            +
                mask = offsets < n_elements
         | 
| 109 | 
            +
                x = tl.load(x_ptr + offsets, mask=mask)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                x = x.to(tl.float32)
         | 
| 112 | 
            +
                sign = 1 - 2 * libdevice.signbit(x)
         | 
| 113 | 
            +
                x_abs = tl.abs(x)
         | 
| 114 | 
            +
                Elow = -tl.exp2((ebit - 1).to(tl.float32)) + 2
         | 
| 115 | 
            +
                Ehigh = tl.exp2((ebit - 1).to(tl.float32))
         | 
| 116 | 
            +
                Mhigh = tl.exp2(mbit.to(tl.float32))
         | 
| 117 | 
            +
                expo = tl.floor(tl.log2(x_abs))
         | 
| 118 | 
            +
                expo = tl.clamp(expo, min=Elow, max=Ehigh)
         | 
| 119 | 
            +
                mant = x_abs / tl.exp2(expo)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                mant_int = tl.floor(mant)
         | 
| 122 | 
            +
                mant_frac = mant - mant_int
         | 
| 123 | 
            +
                mant_frac = mant_frac * Mhigh
         | 
| 124 | 
            +
                # mant_frac = mant_frac + noise
         | 
| 125 | 
            +
                mant_frac = libdevice.round(mant_frac)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                mant_q = mant_int + mant_frac / Mhigh
         | 
| 128 | 
            +
                y = sign * tl.exp2(expo) * mant_q
         | 
| 129 | 
            +
                y = y.to(x_ptr.dtype.element_ty)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                tl.store(output_ptr + offsets, y, mask=mask)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
             | 
| 134 | 
            +
            @triton.autotune(
         | 
| 135 | 
            +
                configs=[
         | 
| 136 | 
            +
                    # triton.Config({'BLOCK_SIZE': 4,}, num_warps=4),
         | 
| 137 | 
            +
                    triton.Config(
         | 
| 138 | 
            +
                        {
         | 
| 139 | 
            +
                            "BLOCK_SIZE": 1024,
         | 
| 140 | 
            +
                        },
         | 
| 141 | 
            +
                        num_warps=4,
         | 
| 142 | 
            +
                    ),
         | 
| 143 | 
            +
                    triton.Config(
         | 
| 144 | 
            +
                        {
         | 
| 145 | 
            +
                            "BLOCK_SIZE": 2048,
         | 
| 146 | 
            +
                        },
         | 
| 147 | 
            +
                        num_warps=4,
         | 
| 148 | 
            +
                    ),
         | 
| 149 | 
            +
                ],
         | 
| 150 | 
            +
                key=["n_elements"],
         | 
| 151 | 
            +
            )
         | 
| 152 | 
            +
            @triton.jit
         | 
| 153 | 
            +
            def _floatExMy_stochastic_quantize_kernel(
         | 
| 154 | 
            +
                x_ptr,
         | 
| 155 | 
            +
                noise_ptr,
         | 
| 156 | 
            +
                output_ptr,
         | 
| 157 | 
            +
                n_elements,
         | 
| 158 | 
            +
                e_bit,
         | 
| 159 | 
            +
                m_bit,
         | 
| 160 | 
            +
                BLOCK_SIZE: tl.constexpr,
         | 
| 161 | 
            +
            ):
         | 
| 162 | 
            +
                if isinstance(e_bit, tl.constexpr):
         | 
| 163 | 
            +
                    ebit = e_bit.value
         | 
| 164 | 
            +
                else:
         | 
| 165 | 
            +
                    ebit = e_bit
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                if isinstance(m_bit, tl.constexpr):
         | 
| 168 | 
            +
                    mbit = m_bit.value
         | 
| 169 | 
            +
                else:
         | 
| 170 | 
            +
                    mbit = m_bit
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                pid = tl.program_id(axis=0)
         | 
| 173 | 
            +
                block_start = pid * BLOCK_SIZE
         | 
| 174 | 
            +
                offsets = block_start + tl.arange(0, BLOCK_SIZE)
         | 
| 175 | 
            +
                mask = offsets < n_elements
         | 
| 176 | 
            +
                x = tl.load(x_ptr + offsets, mask=mask)
         | 
| 177 | 
            +
                noise = tl.load(noise_ptr + offsets, mask=mask)
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                x = x.to(tl.float32)
         | 
| 180 | 
            +
                sign = 1 - 2 * libdevice.signbit(x)
         | 
| 181 | 
            +
                x_abs = tl.abs(x)
         | 
| 182 | 
            +
                Elow = -tl.exp2((ebit - 1).to(tl.float32)) + 2
         | 
| 183 | 
            +
                Ehigh = tl.exp2((ebit - 1).to(tl.float32))
         | 
| 184 | 
            +
                Mhigh = tl.exp2(mbit.to(tl.float32))
         | 
| 185 | 
            +
                expo = tl.floor(tl.log2(x_abs))
         | 
| 186 | 
            +
                expo = tl.clamp(expo, min=Elow, max=Ehigh)
         | 
| 187 | 
            +
                mant = x_abs / tl.exp2(expo)
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                mant_int = tl.floor(mant)
         | 
| 190 | 
            +
                mant_frac = mant - mant_int
         | 
| 191 | 
            +
                mant_frac = mant_frac * Mhigh
         | 
| 192 | 
            +
                mant_frac = mant_frac + noise
         | 
| 193 | 
            +
                mant_frac = libdevice.round(mant_frac)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                mant_q = mant_int + mant_frac / Mhigh
         | 
| 196 | 
            +
                y = sign * tl.exp2(expo) * mant_q
         | 
| 197 | 
            +
                y = y.to(x_ptr.dtype.element_ty)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                tl.store(output_ptr + offsets, y, mask=mask)
         | 
    	
        llava/model/__init__.py
    ADDED
    
    | @@ -0,0 +1,35 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from .language_model.llava_llama import LlavaLlamaConfig, LlavaLlamaModel
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # FP8 related comments, development in progress (PI: ligeng zhu, haochen xi)
         | 
| 10 | 
            +
            # NOTE: VLM + LLM
         | 
| 11 | 
            +
            # from .language_model.qllava_qllama import QLlavaLlamaConfig, QLlavaLlamaModel
         | 
| 12 | 
            +
            # NOTE: Linear -> fp8, similar to transformer engine
         | 
| 13 | 
            +
            # from .language_model.qllama import QLlamaConfig, QLlamaForCausalLM, QLlamaModel
         | 
| 14 | 
            +
            # NOTE: Linear + Activation -> fp8, haochen's iclr version
         | 
| 15 | 
            +
            # from .language_model.qmemllama import QMemLlamaConfig, QMemLlamaForCausalLM, QMemLlamaModel
         | 
| 16 | 
            +
            """
         | 
| 17 | 
            +
            TODO:
         | 
| 18 | 
            +
                linear(weights):
         | 
| 19 | 
            +
                    simulated fp8: done
         | 
| 20 | 
            +
                    real fp8: in-progress (code already implmented)
         | 
| 21 | 
            +
                activation:
         | 
| 22 | 
            +
                    simulated fp8: done
         | 
| 23 | 
            +
                    real fp8: in-progress (still coding)
         | 
| 24 | 
            +
                optimizers:
         | 
| 25 | 
            +
                    current VILA: bf16
         | 
| 26 | 
            +
                    simulated fp8: done
         | 
| 27 | 
            +
                    real fp8 + fsdp (single node): done
         | 
| 28 | 
            +
                    real fp8 + fsdp (multiple node): in-progress
         | 
| 29 | 
            +
            1. linear fp8
         | 
| 30 | 
            +
            2. activation fp8
         | 
| 31 | 
            +
            3. fp8 infernce example (load directly from a fp8 and fwd)
         | 
| 32 | 
            +
            4. bind fp8 related configs to QLlamaConfig {"coat_fp8_args": {}}
         | 
| 33 | 
            +
            """
         | 
| 34 | 
            +
            from .language_model.fp8linearqwen2 import FP8LinearQwen2Config, FP8LinearQwen2Model
         | 
| 35 | 
            +
            from .language_model.qllava_qllama import QLlavaLlamaConfig, QLlavaLlamaModel
         | 
    	
        llava/model/apply_delta.py
    ADDED
    
    | @@ -0,0 +1,77 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            # This file is modified from https://github.com/haotian-liu/LLaVA/
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            """
         | 
| 26 | 
            +
            Usage:
         | 
| 27 | 
            +
            python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta
         | 
| 28 | 
            +
            """
         | 
| 29 | 
            +
            import argparse
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            import torch
         | 
| 32 | 
            +
            from tqdm import tqdm
         | 
| 33 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            from llava import LlavaLlamaForCausalLM
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            def apply_delta(base_model_path, target_model_path, delta_path):
         | 
| 39 | 
            +
                print("Loading base model")
         | 
| 40 | 
            +
                base = AutoModelForCausalLM.from_pretrained(base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                print("Loading delta")
         | 
| 43 | 
            +
                delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
         | 
| 44 | 
            +
                delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                print("Applying delta")
         | 
| 47 | 
            +
                for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"):
         | 
| 48 | 
            +
                    if name not in base.state_dict():
         | 
| 49 | 
            +
                        assert name in [
         | 
| 50 | 
            +
                            "model.mm_projector.weight",
         | 
| 51 | 
            +
                            "model.mm_projector.bias",
         | 
| 52 | 
            +
                        ], f"{name} not in base model"
         | 
| 53 | 
            +
                        continue
         | 
| 54 | 
            +
                    if param.data.shape == base.state_dict()[name].shape:
         | 
| 55 | 
            +
                        param.data += base.state_dict()[name]
         | 
| 56 | 
            +
                    else:
         | 
| 57 | 
            +
                        assert name in [
         | 
| 58 | 
            +
                            "model.embed_tokens.weight",
         | 
| 59 | 
            +
                            "lm_head.weight",
         | 
| 60 | 
            +
                        ], f"{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}"
         | 
| 61 | 
            +
                        bparam = base.state_dict()[name]
         | 
| 62 | 
            +
                        param.data[: bparam.shape[0], : bparam.shape[1]] += bparam
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                print("Saving target model")
         | 
| 65 | 
            +
                delta.save_pretrained(target_model_path)
         | 
| 66 | 
            +
                delta_tokenizer.save_pretrained(target_model_path)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            if __name__ == "__main__":
         | 
| 70 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 71 | 
            +
                parser.add_argument("--base-model-path", type=str, required=True)
         | 
| 72 | 
            +
                parser.add_argument("--target-model-path", type=str, required=True)
         | 
| 73 | 
            +
                parser.add_argument("--delta-path", type=str, required=True)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                args = parser.parse_args()
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
         | 
    	
        llava/model/builder.py
    ADDED
    
    | @@ -0,0 +1,161 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # This file is modified from https://github.com/haotian-liu/LLaVA/
         | 
| 8 | 
            +
            #    Copyright 2023 Haotian Liu
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 11 | 
            +
            #    you may not use this file except in compliance with the License.
         | 
| 12 | 
            +
            #    You may obtain a copy of the License at
         | 
| 13 | 
            +
            #
         | 
| 14 | 
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         | 
| 15 | 
            +
            #
         | 
| 16 | 
            +
            #    Unless required by applicable law or agreed to in writing, software
         | 
| 17 | 
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 18 | 
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 19 | 
            +
            #    See the License for the specific language governing permissions and
         | 
| 20 | 
            +
            #    limitations under the License.
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            import os
         | 
| 24 | 
            +
            import warnings
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import torch
         | 
| 27 | 
            +
            from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PretrainedConfig
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            from llava.model import LlavaLlamaModel
         | 
| 30 | 
            +
            from llava.model.utils import is_mm_model
         | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            def load_pretrained_model(
         | 
| 34 | 
            +
                model_path,
         | 
| 35 | 
            +
                model_name,
         | 
| 36 | 
            +
                model_base=None,
         | 
| 37 | 
            +
                load_8bit=False,
         | 
| 38 | 
            +
                load_4bit=False,
         | 
| 39 | 
            +
                device_map="auto",
         | 
| 40 | 
            +
                device="cuda",
         | 
| 41 | 
            +
                **kwargs,
         | 
| 42 | 
            +
            ):
         | 
| 43 | 
            +
                kwargs = {"device_map": device_map, **kwargs}
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                if device != "cuda":
         | 
| 46 | 
            +
                    kwargs["device_map"] = {"": device}
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                if load_8bit:
         | 
| 49 | 
            +
                    kwargs["load_in_8bit"] = True
         | 
| 50 | 
            +
                elif load_4bit:
         | 
| 51 | 
            +
                    kwargs["load_in_4bit"] = True
         | 
| 52 | 
            +
                    kwargs["quantization_config"] = BitsAndBytesConfig(
         | 
| 53 | 
            +
                        load_in_4bit=True,
         | 
| 54 | 
            +
                        bnb_4bit_compute_dtype=torch.float16,
         | 
| 55 | 
            +
                        bnb_4bit_use_double_quant=True,
         | 
| 56 | 
            +
                        bnb_4bit_quant_type="nf4",
         | 
| 57 | 
            +
                    )
         | 
| 58 | 
            +
                else:
         | 
| 59 | 
            +
                    kwargs["torch_dtype"] = torch.float16
         | 
| 60 | 
            +
                    # kwargs["torch_dtype"] = torch.bfloat16
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                if is_mm_model(model_path):
         | 
| 63 | 
            +
                    # Load LLaVA model
         | 
| 64 | 
            +
                    ## TODO @yunhao: mind fixing lora
         | 
| 65 | 
            +
                    if "lora" in model_name.lower() and model_base is None:
         | 
| 66 | 
            +
                        warnings.warn(
         | 
| 67 | 
            +
                            "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged."
         | 
| 68 | 
            +
                        )
         | 
| 69 | 
            +
                    if ("lora" in model_name.lower() or "dora" in model_name.lower()) and model_base is not None:
         | 
| 70 | 
            +
                        lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
         | 
| 71 | 
            +
                        print(lora_cfg_pretrained)
         | 
| 72 | 
            +
                        print("Loading LLaVA from base model...")
         | 
| 73 | 
            +
                        config = AutoConfig.from_pretrained(model_base)
         | 
| 74 | 
            +
                        prepare_config_for_eval(config, kwargs)
         | 
| 75 | 
            +
                        model = LlavaLlamaModel.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
         | 
| 76 | 
            +
                        tokenizer = model.tokenizer
         | 
| 77 | 
            +
                        token_num, tokem_dim = model.llm.lm_head.out_features, model.llm.lm_head.in_features
         | 
| 78 | 
            +
                        if model.llm.lm_head.weight.shape[0] != token_num:
         | 
| 79 | 
            +
                            model.llm.lm_head.weight = torch.nn.Parameter(
         | 
| 80 | 
            +
                                torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
         | 
| 81 | 
            +
                            )
         | 
| 82 | 
            +
                            model.llm.embed_tokens.weight = torch.nn.Parameter(
         | 
| 83 | 
            +
                                torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
         | 
| 84 | 
            +
                            )
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                        print("Loading additional LLaVA weights...")
         | 
| 87 | 
            +
                        if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
         | 
| 88 | 
            +
                            non_lora_trainables = torch.load(
         | 
| 89 | 
            +
                                os.path.join(model_path, "non_lora_trainables.bin"),
         | 
| 90 | 
            +
                                map_location="cpu",
         | 
| 91 | 
            +
                            )
         | 
| 92 | 
            +
                        else:
         | 
| 93 | 
            +
                            # this is probably from HF Hub
         | 
| 94 | 
            +
                            from huggingface_hub import hf_hub_download
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                            def load_from_hf(repo_id, filename, subfolder=None):
         | 
| 97 | 
            +
                                cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)
         | 
| 98 | 
            +
                                return torch.load(cache_file, map_location="cpu")
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                            non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin")
         | 
| 101 | 
            +
                        non_lora_trainables = {
         | 
| 102 | 
            +
                            (k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()
         | 
| 103 | 
            +
                        }
         | 
| 104 | 
            +
                        if any(k.startswith("model.model.") for k in non_lora_trainables):
         | 
| 105 | 
            +
                            non_lora_trainables = {
         | 
| 106 | 
            +
                                (k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()
         | 
| 107 | 
            +
                            }
         | 
| 108 | 
            +
                        model.load_state_dict(non_lora_trainables, strict=False)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                        from peft import PeftModel
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                        print("Loading LoRA weights...")
         | 
| 113 | 
            +
                        model = PeftModel.from_pretrained(model, model_path)
         | 
| 114 | 
            +
                        print("Merging LoRA weights...")
         | 
| 115 | 
            +
                        model = model.merge_and_unload()
         | 
| 116 | 
            +
                        print("Model is loaded...")
         | 
| 117 | 
            +
                    else:
         | 
| 118 | 
            +
                        config = AutoConfig.from_pretrained(model_path)
         | 
| 119 | 
            +
                        config.resume_path = model_path
         | 
| 120 | 
            +
                        prepare_config_for_eval(config, kwargs)
         | 
| 121 | 
            +
                        model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs)
         | 
| 122 | 
            +
                        tokenizer = model.tokenizer
         | 
| 123 | 
            +
                else:
         | 
| 124 | 
            +
                    # Load language model
         | 
| 125 | 
            +
                    if model_base is not None:
         | 
| 126 | 
            +
                        # PEFT model
         | 
| 127 | 
            +
                        from peft import PeftModel
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                        tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
         | 
| 130 | 
            +
                        model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
         | 
| 131 | 
            +
                        print(f"Loading LoRA weights from {model_path}")
         | 
| 132 | 
            +
                        model = PeftModel.from_pretrained(model, model_path)
         | 
| 133 | 
            +
                        print(f"Merging weights")
         | 
| 134 | 
            +
                        model = model.merge_and_unload()
         | 
| 135 | 
            +
                        print("Convert to FP16...")
         | 
| 136 | 
            +
                        model.to(torch.float16)
         | 
| 137 | 
            +
                    else:
         | 
| 138 | 
            +
                        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, legacy=False)
         | 
| 139 | 
            +
                        model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
         | 
| 140 | 
            +
                model.eval()
         | 
| 141 | 
            +
                image_processor = None
         | 
| 142 | 
            +
                if is_mm_model(model_path):
         | 
| 143 | 
            +
                    model.resize_token_embeddings(len(tokenizer))
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                if hasattr(model.llm.config, "max_sequence_length"):
         | 
| 146 | 
            +
                    context_len = model.config.max_sequence_length
         | 
| 147 | 
            +
                else:
         | 
| 148 | 
            +
                    context_len = 2048
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                return tokenizer, model, image_processor, context_len
         | 
| 151 | 
            +
             | 
| 152 | 
            +
             | 
| 153 | 
            +
            def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict):
         | 
| 154 | 
            +
                try:
         | 
| 155 | 
            +
                    # compatible with deprecated config convention
         | 
| 156 | 
            +
                    if getattr(config, "vision_tower_cfg", None) is None:
         | 
| 157 | 
            +
                        config.vision_tower_cfg = config.mm_vision_tower
         | 
| 158 | 
            +
                except AttributeError:
         | 
| 159 | 
            +
                    raise ValueError(f"Invalid configuration! Cannot find vision_tower in config:\n{config}")
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                config.model_dtype = kwargs.pop("torch_dtype").__str__()
         | 
    	
        llava/model/coat/activation/__init__.py
    ADDED
    
    | @@ -0,0 +1,6 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
    	
        llava/model/coat/activation/fake_quantization/FloatPointQuantizeTorch.py
    ADDED
    
    | @@ -0,0 +1,101 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import math
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            import torch
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            def floatExMy_quantize_torch(x, e_bit, m_bit, stochastic):
         | 
| 29 | 
            +
                sign, x_abs = x.sign(), x.abs()
         | 
| 30 | 
            +
                Elow, Ehigh, Mhigh = -(2 ** (e_bit - 1)) + 2, 2 ** (e_bit - 1), 2**m_bit
         | 
| 31 | 
            +
                expo = torch.floor(torch.log2(x_abs))
         | 
| 32 | 
            +
                expo = torch.clamp(expo, min=Elow, max=Ehigh)
         | 
| 33 | 
            +
                mant = x_abs / torch.exp2(expo)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                mant_int = torch.floor(mant)
         | 
| 36 | 
            +
                mant_frac = mant - mant_int
         | 
| 37 | 
            +
                mant_frac = mant_frac * Mhigh
         | 
| 38 | 
            +
                if stochastic:
         | 
| 39 | 
            +
                    noise = mant_frac.new(mant_frac.shape).uniform_(-0.5, 0.5)
         | 
| 40 | 
            +
                    mant_frac.add_(noise)
         | 
| 41 | 
            +
                mant_frac = torch.round(mant_frac)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                mant_q = mant_int + mant_frac / Mhigh
         | 
| 44 | 
            +
                y = sign * (2**expo) * mant_q
         | 
| 45 | 
            +
                y = y.to(x)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                return y
         | 
| 48 | 
            +
             | 
| 49 | 
            +
             | 
| 50 | 
            +
            def floatExM0_quantize_torch(x, e_bit, stochastic):
         | 
| 51 | 
            +
                sign, x_abs = x.sign(), x.abs()
         | 
| 52 | 
            +
                Elow, Ehigh = -(2 ** (e_bit - 1)) + 1, 2 ** (e_bit - 1)
         | 
| 53 | 
            +
                expo = torch.log2(x_abs)
         | 
| 54 | 
            +
                if stochastic:
         | 
| 55 | 
            +
                    noise = expo.new(expo.shape).uniform_(-0.5, 0.5)
         | 
| 56 | 
            +
                    expo.add(noise)
         | 
| 57 | 
            +
                    log_bias = math.log2(4 / 3) - 1 / 2
         | 
| 58 | 
            +
                    expo.add(torch.ones_like(expo) * log_bias)
         | 
| 59 | 
            +
                expo = torch.clamp(expo, min=Elow - 1, max=Ehigh)
         | 
| 60 | 
            +
                expo = torch.round(expo)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                y = sign * (2**expo) * (expo > Elow)  # When underflow, set the value to 0
         | 
| 63 | 
            +
                y = y.to(x)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                return y
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            def Dynamic_quantize_torch(x, bit, stochastic):
         | 
| 69 | 
            +
                if stochastic:
         | 
| 70 | 
            +
                    raise NotImplementedError("Dynamic Tree quantization does not support stochastic")
         | 
| 71 | 
            +
                sign, x_abs = x.sign(), x.abs()
         | 
| 72 | 
            +
                expo = torch.ceil(torch.log10(x_abs))
         | 
| 73 | 
            +
                expo = torch.clamp(expo, min=2 - bit)
         | 
| 74 | 
            +
                mant = (10 * x_abs / torch.pow(10, expo) - 1) / 9  # Range from 0 - 1
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                mant_frac = mant * 2 ** (bit - 2 - expo.abs())
         | 
| 77 | 
            +
                mant_frac = torch.round(mant_frac)
         | 
| 78 | 
            +
                mant_frac = mant_frac / (2 ** (bit - 2 - expo.abs())) * 9 + 1
         | 
| 79 | 
            +
                y = sign * (10**expo) * mant_frac / 10
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                zero_mask = y.abs() > 1.01 * 10 ** (1 - bit)
         | 
| 82 | 
            +
                y = y * zero_mask
         | 
| 83 | 
            +
                y = y.to(x)
         | 
| 84 | 
            +
                return y
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            def ZeroDynamic_quantize_torch(x, bit, stochastic):
         | 
| 88 | 
            +
                if stochastic:
         | 
| 89 | 
            +
                    raise NotImplementedError("Dynamic Tree quantization does not support stochastic")
         | 
| 90 | 
            +
                sign, x_abs = x.sign(), x.abs()
         | 
| 91 | 
            +
                expo = torch.ceil(torch.log10(x_abs))
         | 
| 92 | 
            +
                expo = torch.clamp(expo, min=2 - bit)
         | 
| 93 | 
            +
                mant = (10 * x_abs / torch.pow(10, expo) - 1) / 9  # Range from 0 - 1
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                mant_frac = mant * 2 ** (bit - 2 - expo.abs())
         | 
| 96 | 
            +
                mant_frac = torch.round(mant_frac)
         | 
| 97 | 
            +
                mant_frac = mant_frac / (2 ** (bit - 2 - expo.abs())) * 9 + 1
         | 
| 98 | 
            +
                y = sign * (10**expo) * mant_frac / 10
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                y = y.to(x)
         | 
| 101 | 
            +
                return y
         | 
    	
        llava/model/coat/activation/fake_quantization/FloatPointQuantizeTriton.py
    ADDED
    
    | @@ -0,0 +1,181 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import math
         | 
| 24 | 
            +
            import struct
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import numpy as np
         | 
| 27 | 
            +
            import torch
         | 
| 28 | 
            +
            import triton
         | 
| 29 | 
            +
            import triton.language as tl
         | 
| 30 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            def floatExMy_quantize_triton(x, e_bit, m_bit, stochastic):
         | 
| 34 | 
            +
                n_elements = x.numel()
         | 
| 35 | 
            +
                grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
         | 
| 36 | 
            +
                y = torch.zeros_like(x)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                if x.dtype in [torch.bfloat16, torch.float32]:
         | 
| 39 | 
            +
                    if stochastic:
         | 
| 40 | 
            +
                        noise = x.new(x.shape).uniform_(-0.5, 0.5)
         | 
| 41 | 
            +
                        _floatExMy_stochastic_quantize_kernel[grid](x, noise, y, n_elements, e_bit, m_bit)
         | 
| 42 | 
            +
                    else:
         | 
| 43 | 
            +
                        _floatExMy_quantize_kernel[grid](x, y, n_elements, e_bit, m_bit)
         | 
| 44 | 
            +
                else:
         | 
| 45 | 
            +
                    raise NotImplementedError(f"Other data format {x.dtype} for float quantization triton")
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                return y
         | 
| 48 | 
            +
             | 
| 49 | 
            +
             | 
| 50 | 
            +
            @triton.autotune(
         | 
| 51 | 
            +
                configs=[
         | 
| 52 | 
            +
                    # triton.Config({'BLOCK_SIZE': 4,}, num_warps=4),
         | 
| 53 | 
            +
                    triton.Config(
         | 
| 54 | 
            +
                        {
         | 
| 55 | 
            +
                            "BLOCK_SIZE": 1024,
         | 
| 56 | 
            +
                        },
         | 
| 57 | 
            +
                        num_warps=4,
         | 
| 58 | 
            +
                    ),
         | 
| 59 | 
            +
                    triton.Config(
         | 
| 60 | 
            +
                        {
         | 
| 61 | 
            +
                            "BLOCK_SIZE": 2048,
         | 
| 62 | 
            +
                        },
         | 
| 63 | 
            +
                        num_stages=1,
         | 
| 64 | 
            +
                    ),
         | 
| 65 | 
            +
                ],
         | 
| 66 | 
            +
                key=["n_elements"],
         | 
| 67 | 
            +
            )
         | 
| 68 | 
            +
            @triton.jit
         | 
| 69 | 
            +
            def _floatExMy_quantize_kernel(
         | 
| 70 | 
            +
                x_ptr,
         | 
| 71 | 
            +
                output_ptr,
         | 
| 72 | 
            +
                n_elements,
         | 
| 73 | 
            +
                e_bit,
         | 
| 74 | 
            +
                m_bit,
         | 
| 75 | 
            +
                BLOCK_SIZE: tl.constexpr,
         | 
| 76 | 
            +
            ):
         | 
| 77 | 
            +
                if isinstance(e_bit, tl.constexpr):
         | 
| 78 | 
            +
                    ebit = e_bit.value
         | 
| 79 | 
            +
                else:
         | 
| 80 | 
            +
                    ebit = e_bit
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                if isinstance(m_bit, tl.constexpr):
         | 
| 83 | 
            +
                    mbit = m_bit.value
         | 
| 84 | 
            +
                else:
         | 
| 85 | 
            +
                    mbit = m_bit
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                pid = tl.program_id(axis=0)
         | 
| 88 | 
            +
                block_start = pid * BLOCK_SIZE
         | 
| 89 | 
            +
                offsets = block_start + tl.arange(0, BLOCK_SIZE)
         | 
| 90 | 
            +
                mask = offsets < n_elements
         | 
| 91 | 
            +
                x = tl.load(x_ptr + offsets, mask=mask)
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                x = x.to(tl.float32)
         | 
| 94 | 
            +
                sign = 1 - 2 * libdevice.signbit(x)
         | 
| 95 | 
            +
                x_abs = tl.abs(x)
         | 
| 96 | 
            +
                Elow = -tl.exp2((ebit - 1).to(tl.float32)) + 2
         | 
| 97 | 
            +
                Ehigh = tl.exp2((ebit - 1).to(tl.float32))
         | 
| 98 | 
            +
                Mhigh = tl.exp2(mbit.to(tl.float32))
         | 
| 99 | 
            +
                expo = tl.floor(tl.log2(x_abs))
         | 
| 100 | 
            +
                expo = tl.clamp(expo, min=Elow, max=Ehigh)
         | 
| 101 | 
            +
                mant = x_abs / tl.exp2(expo)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                mant_int = tl.floor(mant)
         | 
| 104 | 
            +
                mant_frac = mant - mant_int
         | 
| 105 | 
            +
                mant_frac = mant_frac * Mhigh
         | 
| 106 | 
            +
                # mant_frac = mant_frac + noise
         | 
| 107 | 
            +
                mant_frac = libdevice.round(mant_frac)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                mant_q = mant_int + mant_frac / Mhigh
         | 
| 110 | 
            +
                y = sign * tl.exp2(expo) * mant_q
         | 
| 111 | 
            +
                y = y.to(x_ptr.dtype.element_ty)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                tl.store(output_ptr + offsets, y, mask=mask)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
             | 
| 116 | 
            +
            @triton.autotune(
         | 
| 117 | 
            +
                configs=[
         | 
| 118 | 
            +
                    # triton.Config({'BLOCK_SIZE': 4,}, num_warps=4),
         | 
| 119 | 
            +
                    triton.Config(
         | 
| 120 | 
            +
                        {
         | 
| 121 | 
            +
                            "BLOCK_SIZE": 1024,
         | 
| 122 | 
            +
                        },
         | 
| 123 | 
            +
                        num_warps=4,
         | 
| 124 | 
            +
                    ),
         | 
| 125 | 
            +
                    triton.Config(
         | 
| 126 | 
            +
                        {
         | 
| 127 | 
            +
                            "BLOCK_SIZE": 2048,
         | 
| 128 | 
            +
                        },
         | 
| 129 | 
            +
                        num_stages=1,
         | 
| 130 | 
            +
                    ),
         | 
| 131 | 
            +
                ],
         | 
| 132 | 
            +
                key=["n_elements"],
         | 
| 133 | 
            +
            )
         | 
| 134 | 
            +
            @triton.jit
         | 
| 135 | 
            +
            def _floatExMy_stochastic_quantize_kernel(
         | 
| 136 | 
            +
                x_ptr,
         | 
| 137 | 
            +
                noise_ptr,
         | 
| 138 | 
            +
                output_ptr,
         | 
| 139 | 
            +
                n_elements,
         | 
| 140 | 
            +
                e_bit,
         | 
| 141 | 
            +
                m_bit,
         | 
| 142 | 
            +
                BLOCK_SIZE: tl.constexpr,
         | 
| 143 | 
            +
            ):
         | 
| 144 | 
            +
                if isinstance(e_bit, tl.constexpr):
         | 
| 145 | 
            +
                    ebit = e_bit.value
         | 
| 146 | 
            +
                else:
         | 
| 147 | 
            +
                    ebit = e_bit
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                if isinstance(m_bit, tl.constexpr):
         | 
| 150 | 
            +
                    mbit = m_bit.value
         | 
| 151 | 
            +
                else:
         | 
| 152 | 
            +
                    mbit = m_bit
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                pid = tl.program_id(axis=0)
         | 
| 155 | 
            +
                block_start = pid * BLOCK_SIZE
         | 
| 156 | 
            +
                offsets = block_start + tl.arange(0, BLOCK_SIZE)
         | 
| 157 | 
            +
                mask = offsets < n_elements
         | 
| 158 | 
            +
                x = tl.load(x_ptr + offsets, mask=mask)
         | 
| 159 | 
            +
                noise = tl.load(noise_ptr + offsets, mask=mask)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                x = x.to(tl.float32)
         | 
| 162 | 
            +
                sign = 1 - 2 * libdevice.signbit(x)
         | 
| 163 | 
            +
                x_abs = tl.abs(x)
         | 
| 164 | 
            +
                Elow = -tl.exp2((ebit - 1).to(tl.float32)) + 2
         | 
| 165 | 
            +
                Ehigh = tl.exp2((ebit - 1).to(tl.float32))
         | 
| 166 | 
            +
                Mhigh = tl.exp2(mbit.to(tl.float32))
         | 
| 167 | 
            +
                expo = tl.floor(tl.log2(x_abs))
         | 
| 168 | 
            +
                expo = tl.clamp(expo, min=Elow, max=Ehigh)
         | 
| 169 | 
            +
                mant = x_abs / tl.exp2(expo)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                mant_int = tl.floor(mant)
         | 
| 172 | 
            +
                mant_frac = mant - mant_int
         | 
| 173 | 
            +
                mant_frac = mant_frac * Mhigh
         | 
| 174 | 
            +
                mant_frac = mant_frac + noise
         | 
| 175 | 
            +
                mant_frac = libdevice.round(mant_frac)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                mant_q = mant_int + mant_frac / Mhigh
         | 
| 178 | 
            +
                y = sign * tl.exp2(expo) * mant_q
         | 
| 179 | 
            +
                y = y.to(x_ptr.dtype.element_ty)
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                tl.store(output_ptr + offsets, y, mask=mask)
         | 
    	
        llava/model/coat/activation/fake_quantization/quantize_function.py
    ADDED
    
    | @@ -0,0 +1,239 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import re
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            import torch
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from .FloatPointQuantizeTorch import *
         | 
| 28 | 
            +
            from .FloatPointQuantizeTriton import *
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            def block_cut(input, row_block, column_block, pad_block=False):
         | 
| 32 | 
            +
                # print(input.shape)
         | 
| 33 | 
            +
                original_shape = input.shape
         | 
| 34 | 
            +
                # input tensor shape is M * N
         | 
| 35 | 
            +
                if len(input.shape) > 2:
         | 
| 36 | 
            +
                    input = input.reshape(-1, input.shape[2])
         | 
| 37 | 
            +
                elif len(input.shape) == 2:
         | 
| 38 | 
            +
                    pass
         | 
| 39 | 
            +
                else:
         | 
| 40 | 
            +
                    raise ValueError(f"input shape {input.shape} does not match for block cut, {input}")
         | 
| 41 | 
            +
                M, N = input.shape[0], input.shape[1]
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                if row_block == -1:
         | 
| 44 | 
            +
                    row_block = M
         | 
| 45 | 
            +
                if column_block == -1:
         | 
| 46 | 
            +
                    column_block = N
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                if pad_block:
         | 
| 49 | 
            +
                    row_remainder, col_remainder = M % row_block, N % column_block
         | 
| 50 | 
            +
                    if row_remainder:
         | 
| 51 | 
            +
                        row_pad = row_block - row_remainder
         | 
| 52 | 
            +
                    else:
         | 
| 53 | 
            +
                        row_pad = 0
         | 
| 54 | 
            +
                    if col_remainder:
         | 
| 55 | 
            +
                        col_pad = column_block - col_remainder
         | 
| 56 | 
            +
                    else:
         | 
| 57 | 
            +
                        col_pad = 0
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    input = torch.nn.functional.pad(
         | 
| 60 | 
            +
                        input, (0, col_pad, 0, row_pad), "constant", 0
         | 
| 61 | 
            +
                    )  # refer to torch's doc to see why
         | 
| 62 | 
            +
                    M, N = input.shape[0], input.shape[1]
         | 
| 63 | 
            +
                    row_num, column_num = M // row_block, N // column_block
         | 
| 64 | 
            +
                else:
         | 
| 65 | 
            +
                    row_num, column_num = M // row_block, N // column_block
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                assert row_num * row_block == M, f"{row_num}, {row_block}, {M}, {original_shape}"
         | 
| 68 | 
            +
                assert column_num * column_block == N, f"{column_num}, {column_block}, {N}, {original_shape}"
         | 
| 69 | 
            +
                # print(input.shape)
         | 
| 70 | 
            +
                input = (
         | 
| 71 | 
            +
                    input.reshape(row_num, row_block, column_num, column_block)
         | 
| 72 | 
            +
                    .permute(0, 2, 1, 3)
         | 
| 73 | 
            +
                    .reshape(row_num * column_num, row_block, column_block)
         | 
| 74 | 
            +
                )
         | 
| 75 | 
            +
                # print(input.shape)
         | 
| 76 | 
            +
                return input
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            def block_reshape(input, origin_input, row_block, column_block, pad_block=False):
         | 
| 80 | 
            +
                if len(origin_input.shape) > 2:
         | 
| 81 | 
            +
                    flatten_input = origin_input.reshape(-1, origin_input.shape[2])
         | 
| 82 | 
            +
                elif len(origin_input.shape) == 2:
         | 
| 83 | 
            +
                    flatten_input = origin_input
         | 
| 84 | 
            +
                else:
         | 
| 85 | 
            +
                    raise ValueError(f"input shape {input.shape} does not match for block cut")
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                M, N = flatten_input.shape[0], flatten_input.shape[1]
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                if row_block == -1:
         | 
| 90 | 
            +
                    row_block = M
         | 
| 91 | 
            +
                if column_block == -1:
         | 
| 92 | 
            +
                    column_block = N
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                if pad_block:
         | 
| 95 | 
            +
                    row_remainder, col_remainder = M % row_block, N % column_block
         | 
| 96 | 
            +
                    if row_remainder:
         | 
| 97 | 
            +
                        row_pad = row_block - row_remainder
         | 
| 98 | 
            +
                    else:
         | 
| 99 | 
            +
                        row_pad = 0
         | 
| 100 | 
            +
                    if col_remainder:
         | 
| 101 | 
            +
                        col_pad = column_block - col_remainder
         | 
| 102 | 
            +
                    else:
         | 
| 103 | 
            +
                        col_pad = 0
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    pad_origin_input = torch.nn.functional.pad(origin_input, (0, col_pad, 0, row_pad), "constant", 0)
         | 
| 106 | 
            +
                    M, N = pad_origin_input.shape[0], pad_origin_input.shape[1]
         | 
| 107 | 
            +
                    row_num, column_num = M // row_block, N // column_block
         | 
| 108 | 
            +
                else:
         | 
| 109 | 
            +
                    row_num, column_num = M // row_block, N // column_block
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                input = (
         | 
| 112 | 
            +
                    input.reshape(row_num, column_num, row_block, column_block)
         | 
| 113 | 
            +
                    .permute(0, 2, 1, 3)
         | 
| 114 | 
            +
                    .reshape(row_num * row_block, column_num * column_block)
         | 
| 115 | 
            +
                )
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                M, N = flatten_input.shape[0], flatten_input.shape[1]
         | 
| 118 | 
            +
                input = input[:M, :N]
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                if len(origin_input.shape) > 2:
         | 
| 121 | 
            +
                    input = input.reshape(origin_input.shape)
         | 
| 122 | 
            +
                elif len(origin_input.shape) == 2:
         | 
| 123 | 
            +
                    pass
         | 
| 124 | 
            +
                else:
         | 
| 125 | 
            +
                    raise ValueError(f"input shape {input.shape} does not match for block reshape")
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                return input
         | 
| 128 | 
            +
             | 
| 129 | 
            +
             | 
| 130 | 
            +
            def block_verify_int8(input, row_block, column_block, layer_type, necessary=True):
         | 
| 131 | 
            +
                Binput = block_cut(input, row_block, column_block)
         | 
| 132 | 
            +
                Binput = Binput.to(torch.float32)
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                for n in range(Binput.shape[0]):
         | 
| 135 | 
            +
                    unique_values = len(torch.unique(Binput[n, :, :]))
         | 
| 136 | 
            +
                    if unique_values > 256:
         | 
| 137 | 
            +
                        if necessary:
         | 
| 138 | 
            +
                            raise ValueError(f"{layer_type} contains more than 256 unique values.")
         | 
| 139 | 
            +
                        else:
         | 
| 140 | 
            +
                            return False
         | 
| 141 | 
            +
                return True
         | 
| 142 | 
            +
             | 
| 143 | 
            +
             | 
| 144 | 
            +
            def block_quant(input, symm, bits, stochastic, epsilon, apply_quantize, layer_name):
         | 
| 145 | 
            +
                Quant_fn = SymmQuantizer
         | 
| 146 | 
            +
                return Quant_fn.apply(input, symm, bits, stochastic, epsilon, apply_quantize, layer_name)
         | 
| 147 | 
            +
             | 
| 148 | 
            +
             | 
| 149 | 
            +
            def extract_bit(string):
         | 
| 150 | 
            +
                match = re.match(r"INT(\d+)", string)  # INT8
         | 
| 151 | 
            +
                if match:
         | 
| 152 | 
            +
                    return "integer", int(match.group(1)), None
         | 
| 153 | 
            +
                match = re.match(r"E(\d+)M(\d+)", string)  # E4M3 / E5M2
         | 
| 154 | 
            +
                if match:
         | 
| 155 | 
            +
                    Ebit, Mbit = int(match.group(1)), int(match.group(2))
         | 
| 156 | 
            +
                    if Ebit == 1:
         | 
| 157 | 
            +
                        return "integer", Mbit + 1, None
         | 
| 158 | 
            +
                    if Mbit == 0:
         | 
| 159 | 
            +
                        return "floatExM0", int(match.group(1)), 0
         | 
| 160 | 
            +
                    return "floatExMy", int(match.group(1)), int(match.group(2))
         | 
| 161 | 
            +
                match = re.match(r"DE(\d+)", string)
         | 
| 162 | 
            +
                if match:
         | 
| 163 | 
            +
                    return "Dynamic", int(match.group(1)), None
         | 
| 164 | 
            +
                match = re.match(r"ZeroD(\d+)", string)
         | 
| 165 | 
            +
                if match:
         | 
| 166 | 
            +
                    return "ZeroDynamic", int(match.group(1)), None
         | 
| 167 | 
            +
                raise ValueError(f"{string} data format is not supported")
         | 
| 168 | 
            +
             | 
| 169 | 
            +
             | 
| 170 | 
            +
            class SymmQuantizer(torch.autograd.function.InplaceFunction):
         | 
| 171 | 
            +
                @staticmethod
         | 
| 172 | 
            +
                def forward(ctx, input, symm, bits, stochastic, epsilon, apply_quantize=True, layer_name=None):
         | 
| 173 | 
            +
                    with torch.no_grad():
         | 
| 174 | 
            +
                        absmax_per_block = input.abs().amax(dim=(1, 2)).unsqueeze(1).unsqueeze(2) + epsilon
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                        if bits == "100" or not apply_quantize:
         | 
| 177 | 
            +
                            return input, input, torch.ones_like(absmax_per_block)
         | 
| 178 | 
            +
                        elif bits == "FP32":
         | 
| 179 | 
            +
                            return input.to(torch.float32), input.to(torch.float32), torch.ones_like(absmax_per_block)
         | 
| 180 | 
            +
                        elif bits == "FP16":
         | 
| 181 | 
            +
                            return input.to(torch.float16), input.to(torch.float16), torch.ones_like(absmax_per_block)
         | 
| 182 | 
            +
                        elif bits == "BF16":
         | 
| 183 | 
            +
                            return input.to(torch.bfloat16), input.to(torch.bfloat16), torch.ones_like(absmax_per_block)
         | 
| 184 | 
            +
                        else:
         | 
| 185 | 
            +
                            QuantType, bit1, bit2 = extract_bit(bits)
         | 
| 186 | 
            +
                            if not symm:
         | 
| 187 | 
            +
                                bit1 = bit1 + 1  # pretend to be asymmtric
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                            if QuantType == "integer":
         | 
| 190 | 
            +
                                Qn, Qp = -(2 ** (bit1 - 1) - 1), 2 ** (bit1 - 1) - 1
         | 
| 191 | 
            +
                            elif QuantType == "floatExMy":
         | 
| 192 | 
            +
                                Qn, Qp = -(2 - 2 ** (-bit2)) * (2 ** (2 ** (bit1 - 1))), (2 - 2 ** (-bit2)) * (
         | 
| 193 | 
            +
                                    2 ** (2 ** (bit1 - 1))
         | 
| 194 | 
            +
                                )
         | 
| 195 | 
            +
                                if bit1 == 4 and bit2 == 3:  # E4M3
         | 
| 196 | 
            +
                                    Qn, Qp = -448, 448
         | 
| 197 | 
            +
                                if bit1 == 5 and bit2 == 2:  # E5M2
         | 
| 198 | 
            +
                                    Qn, Qp = -57344, 57344
         | 
| 199 | 
            +
                            elif QuantType == "floatExM0":
         | 
| 200 | 
            +
                                Qn, Qp = -(2 ** (2 ** (bit1 - 1))) + 1, 2 ** (2 ** (bit1 - 1))
         | 
| 201 | 
            +
                            elif QuantType == "Dynamic":
         | 
| 202 | 
            +
                                Qn, Qp = -1, 1
         | 
| 203 | 
            +
                            elif QuantType == "ZeroDynamic":
         | 
| 204 | 
            +
                                Qn, Qp = -1, 1
         | 
| 205 | 
            +
                            else:
         | 
| 206 | 
            +
                                raise NotImplementedError(f"{bits} is not supported by quantization")
         | 
| 207 | 
            +
                            scale_per_block = (2 * absmax_per_block) / (Qp - Qn)
         | 
| 208 | 
            +
                            scale_per_block = scale_per_block.to(input)
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                            Qinput = input / scale_per_block
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                            if QuantType == "integer":
         | 
| 213 | 
            +
                                if stochastic:
         | 
| 214 | 
            +
                                    noise = Qinput.new(Qinput.shape).uniform_(-0.5, 0.5)
         | 
| 215 | 
            +
                                    Qinput.add_(noise)
         | 
| 216 | 
            +
                                Qinput.clamp_(Qn, Qp).round_()
         | 
| 217 | 
            +
                            elif QuantType == "floatExMy":
         | 
| 218 | 
            +
                                # Qinput = floatExMy_quantize_torch(Qinput, bit1, bit2, stochastic)
         | 
| 219 | 
            +
                                Qinput = floatExMy_quantize_triton(Qinput, bit1, bit2, stochastic)
         | 
| 220 | 
            +
                            elif QuantType == "floatExM0":
         | 
| 221 | 
            +
                                Qinput = floatExM0_quantize_torch(Qinput, bit1, stochastic)
         | 
| 222 | 
            +
                            else:
         | 
| 223 | 
            +
                                raise NotImplementedError(f"{bits} is not supported by quantization")
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                            RQinput = Qinput * scale_per_block
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                            if input.dtype != Qinput.dtype:
         | 
| 228 | 
            +
                                print(
         | 
| 229 | 
            +
                                    f"Input type is {input.dtype}, Qinput type is {Qinput.dtype}, scale_per_block type is {scale_per_block.dtype}",
         | 
| 230 | 
            +
                                    file=open("debug.txt", "a"),
         | 
| 231 | 
            +
                                )
         | 
| 232 | 
            +
                                import IPython
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                                IPython.embed()
         | 
| 235 | 
            +
                            return RQinput, Qinput, scale_per_block
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                @staticmethod
         | 
| 238 | 
            +
                def backward(ctx, grad_output):
         | 
| 239 | 
            +
                    return grad_output, None, None, None, None, None
         | 
    	
        llava/model/coat/activation/fake_quantization/utils.py
    ADDED
    
    | @@ -0,0 +1,115 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import os
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            import matplotlib.pyplot as plt
         | 
| 26 | 
            +
            import numpy as np
         | 
| 27 | 
            +
            import torch
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            def list_has_common_element(list1, list2):
         | 
| 31 | 
            +
                set1 = set(list1)
         | 
| 32 | 
            +
                set2 = set(list2)
         | 
| 33 | 
            +
                return len(set1.intersection(set2)) > 0
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            def calculate_scale_num(input, row_block, col_block):
         | 
| 37 | 
            +
                if len(input.shape) > 2:
         | 
| 38 | 
            +
                    input = input.reshape(-1, input.shape[2])
         | 
| 39 | 
            +
                elif len(input.shape) == 2:
         | 
| 40 | 
            +
                    pass
         | 
| 41 | 
            +
                else:
         | 
| 42 | 
            +
                    raise ValueError(f"input shape {input.shape} does not match for block cut, {input}")
         | 
| 43 | 
            +
                M, N = input.shape[0], input.shape[1]
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                if row_block == -1:
         | 
| 46 | 
            +
                    row_block = M
         | 
| 47 | 
            +
                if col_block == -1:
         | 
| 48 | 
            +
                    col_block = N
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                return input.numel() / (row_block * col_block)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            def quant_get_local_rank() -> int:
         | 
| 54 | 
            +
                return int(os.environ.get("LOCAL_RANK") or 0)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            def format_string_with_condition(
         | 
| 58 | 
            +
                input_string,
         | 
| 59 | 
            +
                condition_config,
         | 
| 60 | 
            +
                symm,
         | 
| 61 | 
            +
                bits,
         | 
| 62 | 
            +
                blocksize_config,
         | 
| 63 | 
            +
                input_pad=20,
         | 
| 64 | 
            +
            ):
         | 
| 65 | 
            +
                padded_string = input_string.ljust(input_pad)
         | 
| 66 | 
            +
                output_string = padded_string
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                for k, v in condition_config.items():
         | 
| 69 | 
            +
                    if v:
         | 
| 70 | 
            +
                        output_string = output_string + k.ljust(10) + "True".ljust(6) + "".ljust(6)
         | 
| 71 | 
            +
                    else:
         | 
| 72 | 
            +
                        output_string = output_string + k.ljust(10) + "".ljust(6) + "False".ljust(6)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                output_string = output_string + f"Symm {symm}".ljust(10)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                for k, v in bits.items():
         | 
| 77 | 
            +
                    output_string = output_string + f"{k} bit".ljust(10) + v.ljust(10)
         | 
| 78 | 
            +
                for k, v in blocksize_config.items():
         | 
| 79 | 
            +
                    output_string += f"{k}: {v}".ljust(15)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                return output_string
         | 
| 82 | 
            +
             | 
| 83 | 
            +
             | 
| 84 | 
            +
            def print_warning(sentence):
         | 
| 85 | 
            +
                print("*" * (len(sentence) + 4))
         | 
| 86 | 
            +
                print(f"* {sentence} *")
         | 
| 87 | 
            +
                print("*" * (len(sentence) + 4))
         | 
| 88 | 
            +
             | 
| 89 | 
            +
             | 
| 90 | 
            +
            def check_nan_inf(tensor, check_nan, check_inf):
         | 
| 91 | 
            +
                if check_nan:
         | 
| 92 | 
            +
                    contain_nan = torch.isnan(tensor).any()
         | 
| 93 | 
            +
                else:
         | 
| 94 | 
            +
                    contain_nan = False
         | 
| 95 | 
            +
                if check_inf:
         | 
| 96 | 
            +
                    contain_inf = torch.isinf(tensor).any()
         | 
| 97 | 
            +
                else:
         | 
| 98 | 
            +
                    contain_inf = False
         | 
| 99 | 
            +
                return contain_nan, contain_inf
         | 
| 100 | 
            +
             | 
| 101 | 
            +
             | 
| 102 | 
            +
            def move_torch_to_numpy(tensor):
         | 
| 103 | 
            +
                if tensor is None:
         | 
| 104 | 
            +
                    return None
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                if tensor.is_cuda:
         | 
| 107 | 
            +
                    tensor = tensor.cpu()
         | 
| 108 | 
            +
                return tensor.detach().float().numpy()
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            def flatten_to_1d(tensor):
         | 
| 112 | 
            +
                if tensor is None:
         | 
| 113 | 
            +
                    return None
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                return tensor.reshape(-1)
         | 
    	
        llava/model/coat/activation/models/_fp8_quantization_config.py
    ADDED
    
    | @@ -0,0 +1,67 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from dataclasses import dataclass
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from transformers import PretrainedConfig
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            @dataclass
         | 
| 13 | 
            +
            class QuantizationConfig:
         | 
| 14 | 
            +
                quantize_model: str = "false"
         | 
| 15 | 
            +
                symm: bool = True
         | 
| 16 | 
            +
                epsilon: float = 1e-10
         | 
| 17 | 
            +
                fabit: str = "E4M3"
         | 
| 18 | 
            +
                fwbit: str = "E4M3"
         | 
| 19 | 
            +
                fobit: str = "E4M3"
         | 
| 20 | 
            +
                babit: str = "E5M2"
         | 
| 21 | 
            +
                bwbit: str = "E5M2"
         | 
| 22 | 
            +
                bobit: str = "E5M2"
         | 
| 23 | 
            +
                qchoice: str = "none"
         | 
| 24 | 
            +
                group_size: int = -1
         | 
| 25 | 
            +
                pad_to_multiple_of: int = 0
         | 
| 26 | 
            +
                weight_memory_efficient: bool = True
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                # Legacy
         | 
| 29 | 
            +
                row_blocksize: int = -1
         | 
| 30 | 
            +
                col_blocksize: int = -1
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                def __init__(
         | 
| 33 | 
            +
                    self,
         | 
| 34 | 
            +
                    quantize_model: str = "false",
         | 
| 35 | 
            +
                    symm: bool = True,
         | 
| 36 | 
            +
                    epsilon: float = 1e-10,
         | 
| 37 | 
            +
                    fabit: str = "E4M3",
         | 
| 38 | 
            +
                    fwbit: str = "E4M3",
         | 
| 39 | 
            +
                    fobit: str = "E4M3",
         | 
| 40 | 
            +
                    babit: str = "E5M2",
         | 
| 41 | 
            +
                    bwbit: str = "E5M2",
         | 
| 42 | 
            +
                    bobit: str = "E5M2",
         | 
| 43 | 
            +
                    qchoice: str = "none",
         | 
| 44 | 
            +
                    group_size: int = -1,
         | 
| 45 | 
            +
                    pad_to_multiple_of: int = 0,
         | 
| 46 | 
            +
                    weight_memory_efficient: bool = True,
         | 
| 47 | 
            +
                    row_blocksize: int = -1,
         | 
| 48 | 
            +
                    col_blocksize: int = -1,
         | 
| 49 | 
            +
                    **kwargs,
         | 
| 50 | 
            +
                ):
         | 
| 51 | 
            +
                    super().__init__()
         | 
| 52 | 
            +
                    self.quantize_model = quantize_model
         | 
| 53 | 
            +
                    self.symm = symm
         | 
| 54 | 
            +
                    self.epsilon = epsilon
         | 
| 55 | 
            +
                    self.fabit = fabit
         | 
| 56 | 
            +
                    self.fwbit = fwbit
         | 
| 57 | 
            +
                    self.fobit = fobit
         | 
| 58 | 
            +
                    self.babit = babit
         | 
| 59 | 
            +
                    self.bwbit = bwbit
         | 
| 60 | 
            +
                    self.bobit = bobit
         | 
| 61 | 
            +
                    self.qchoice = qchoice
         | 
| 62 | 
            +
                    self.group_size = group_size
         | 
| 63 | 
            +
                    self.pad_to_multiple_of = pad_to_multiple_of
         | 
| 64 | 
            +
                    self.weight_memory_efficient = weight_memory_efficient
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    self.row_blocksize = row_blocksize
         | 
| 67 | 
            +
                    self.col_blocksize = col_blocksize
         | 
    	
        llava/model/coat/activation/models/_fp8_weightcache.py
    ADDED
    
    | @@ -0,0 +1,48 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import torch.nn as nn
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from ..real_quantization import fp8_division_transpose
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            class FP8CacheWeightModule(nn.Module):
         | 
| 13 | 
            +
                def __init__(self, config, qargs, layer_id):
         | 
| 14 | 
            +
                    super().__init__()
         | 
| 15 | 
            +
                    self.config = config
         | 
| 16 | 
            +
                    self.qargs = qargs
         | 
| 17 | 
            +
                    self.layer_id = layer_id
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                def prepare_weight(self, weight, weight_name, is_first_microbatch):
         | 
| 20 | 
            +
                    if is_first_microbatch:
         | 
| 21 | 
            +
                        if self.qargs.weight_memory_efficient:
         | 
| 22 | 
            +
                            # print(f"{weight_name} uses first microbatch")
         | 
| 23 | 
            +
                            weight_fp8, weight_s, weight_fp8_t = fp8_division_transpose(
         | 
| 24 | 
            +
                                weight, self.qargs.group_size, self.fwobits["fwbit"]
         | 
| 25 | 
            +
                            )
         | 
| 26 | 
            +
                            setattr(self, f"{weight_name}_fp8_scale", weight_s)
         | 
| 27 | 
            +
                            return weight_fp8, weight_fp8_t, weight_s
         | 
| 28 | 
            +
                        else:
         | 
| 29 | 
            +
                            # print(f"{weight_name} uses first microbatch")
         | 
| 30 | 
            +
                            weight_fp8, weight_s, weight_fp8_t = fp8_division_transpose(
         | 
| 31 | 
            +
                                weight, self.qargs.group_size, self.fwobits["fwbit"]
         | 
| 32 | 
            +
                            )
         | 
| 33 | 
            +
                            setattr(self, f"{weight_name}_fp8", weight_fp8)
         | 
| 34 | 
            +
                            setattr(self, f"{weight_name}_fp8_t", weight_fp8_t)
         | 
| 35 | 
            +
                            setattr(self, f"{weight_name}_fp8_scale", weight_s)
         | 
| 36 | 
            +
                            return weight_fp8, weight_fp8_t, weight_s
         | 
| 37 | 
            +
                    else:
         | 
| 38 | 
            +
                        if self.qargs.weight_memory_efficient:
         | 
| 39 | 
            +
                            return getattr(self, f"{weight_name}_fp8_scale")
         | 
| 40 | 
            +
                        else:
         | 
| 41 | 
            +
                            return (
         | 
| 42 | 
            +
                                getattr(self, f"{weight_name}_fp8"),
         | 
| 43 | 
            +
                                getattr(self, f"{weight_name}_fp8_t"),
         | 
| 44 | 
            +
                                getattr(self, f"{weight_name}_fp8_scale"),
         | 
| 45 | 
            +
                            )
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                def forward(self, x):
         | 
| 48 | 
            +
                    pass
         | 
    	
        llava/model/coat/activation/models/_fp8manager.py
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class FP8Manager:
         | 
| 27 | 
            +
                """Class to keep track of and manipulate the global
         | 
| 28 | 
            +
                FP8 state at different stages of execution.
         | 
| 29 | 
            +
                """
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                is_first_microbatch = False
         | 
    	
        llava/model/coat/activation/models/coat_llama.py
    ADDED
    
    | @@ -0,0 +1,1479 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 10 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 11 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 12 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 13 | 
            +
            #
         | 
| 14 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 15 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 16 | 
            +
            # You may obtain a copy of the License at
         | 
| 17 | 
            +
            #
         | 
| 18 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 19 | 
            +
            #
         | 
| 20 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 21 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 22 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 23 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 24 | 
            +
            # limitations under the License.
         | 
| 25 | 
            +
            import math
         | 
| 26 | 
            +
            import os
         | 
| 27 | 
            +
            from fnmatch import fnmatch
         | 
| 28 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            import torch
         | 
| 31 | 
            +
            import torch.nn.functional as F
         | 
| 32 | 
            +
            import torch.utils.checkpoint
         | 
| 33 | 
            +
            from torch import nn
         | 
| 34 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 35 | 
            +
            from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
         | 
| 36 | 
            +
            from transformers.activations import ACT2FN
         | 
| 37 | 
            +
            from transformers.cache_utils import Cache, DynamicCache, StaticCache
         | 
| 38 | 
            +
            from transformers.generation import GenerationMixin
         | 
| 39 | 
            +
            from transformers.modeling_attn_mask_utils import AttentionMaskConverter
         | 
| 40 | 
            +
            from transformers.modeling_flash_attention_utils import _flash_attention_forward
         | 
| 41 | 
            +
            from transformers.modeling_outputs import (
         | 
| 42 | 
            +
                BaseModelOutputWithPast,
         | 
| 43 | 
            +
                CausalLMOutputWithPast,
         | 
| 44 | 
            +
                QuestionAnsweringModelOutput,
         | 
| 45 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 46 | 
            +
                TokenClassifierOutput,
         | 
| 47 | 
            +
            )
         | 
| 48 | 
            +
            from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
         | 
| 49 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 50 | 
            +
            from transformers.models.llama.configuration_llama import LlamaConfig
         | 
| 51 | 
            +
            from transformers.models.llama.modeling_llama import (
         | 
| 52 | 
            +
                LlamaAttention,
         | 
| 53 | 
            +
                LlamaDynamicNTKScalingRotaryEmbedding,
         | 
| 54 | 
            +
                LlamaForCausalLM,
         | 
| 55 | 
            +
                LlamaLinearScalingRotaryEmbedding,
         | 
| 56 | 
            +
                LlamaModel,
         | 
| 57 | 
            +
                LlamaPreTrainedModel,
         | 
| 58 | 
            +
                LlamaRMSNorm,
         | 
| 59 | 
            +
                LlamaRotaryEmbedding,
         | 
| 60 | 
            +
                _prepare_4d_causal_attention_mask_with_cache_position,
         | 
| 61 | 
            +
                apply_rotary_pos_emb,
         | 
| 62 | 
            +
                repeat_kv,
         | 
| 63 | 
            +
                rotate_half,
         | 
| 64 | 
            +
            )
         | 
| 65 | 
            +
            from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
         | 
| 66 | 
            +
            from transformers.utils import (
         | 
| 67 | 
            +
                add_start_docstrings,
         | 
| 68 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 69 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 70 | 
            +
                is_torchdynamo_compiling,
         | 
| 71 | 
            +
                logging,
         | 
| 72 | 
            +
                replace_return_docstrings,
         | 
| 73 | 
            +
            )
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            from ..real_quantization import (
         | 
| 76 | 
            +
                Coat_quantize_bgn,
         | 
| 77 | 
            +
                Coat_quantize_end,
         | 
| 78 | 
            +
                fp8_add_Ifp_Ifp_Ofp_Og16,
         | 
| 79 | 
            +
                fp8_add_Ifp_Ifp_Ofp_Opt,
         | 
| 80 | 
            +
                fp8_division,
         | 
| 81 | 
            +
                fp8_division_transpose,
         | 
| 82 | 
            +
                fp8_gelu_backward,
         | 
| 83 | 
            +
                fp8_gelu_forward,
         | 
| 84 | 
            +
                fp8_layernorm_noparam_backward,
         | 
| 85 | 
            +
                fp8_layernorm_noparam_forward,
         | 
| 86 | 
            +
                fp8_linear_backward,
         | 
| 87 | 
            +
                fp8_linear_forward,
         | 
| 88 | 
            +
                fp8_mul_backward,
         | 
| 89 | 
            +
                fp8_mul_forward,
         | 
| 90 | 
            +
                fp8_quantize,
         | 
| 91 | 
            +
                fp8_quantize_pertensor,
         | 
| 92 | 
            +
                fp8_quantize_pertensor_transpose,
         | 
| 93 | 
            +
                fp8_rmsnorm_backward,
         | 
| 94 | 
            +
                fp8_rmsnorm_forward,
         | 
| 95 | 
            +
                fp8_silu_backward,
         | 
| 96 | 
            +
                fp8_silu_forward,
         | 
| 97 | 
            +
                fp8_transpose,
         | 
| 98 | 
            +
            )
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            # FP8 related
         | 
| 101 | 
            +
            from ._fp8_quantization_config import QuantizationConfig
         | 
| 102 | 
            +
            from ._fp8_weightcache import FP8CacheWeightModule
         | 
| 103 | 
            +
            from ._fp8manager import FP8Manager
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
             | 
| 108 | 
            +
            class CoatLlamaConfig(LlamaConfig):
         | 
| 109 | 
            +
                model_type = "fp8_llama"
         | 
| 110 | 
            +
             | 
| 111 | 
            +
             | 
| 112 | 
            +
            class CoatLlamaBeforeAttentionResidual(FP8CacheWeightModule):
         | 
| 113 | 
            +
                """
         | 
| 114 | 
            +
                This is a typical transformer attention module that contains (1) Residual (2) LayerNorm / RMSNorm (3) 1 * Linear layers
         | 
| 115 | 
            +
                """
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                def __init__(self, config: CoatLlamaConfig, qargs: QuantizationConfig, layer_idx: Optional[int] = None):
         | 
| 118 | 
            +
                    super().__init__(config, qargs, layer_idx)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    self.qargs = qargs
         | 
| 121 | 
            +
                    self.fwobits = {
         | 
| 122 | 
            +
                        "fabit": self.qargs.fabit,
         | 
| 123 | 
            +
                        "fwbit": self.qargs.fwbit,
         | 
| 124 | 
            +
                        "fobit": self.qargs.fobit,
         | 
| 125 | 
            +
                        "babit": self.qargs.babit,
         | 
| 126 | 
            +
                        "bwbit": self.qargs.bwbit,
         | 
| 127 | 
            +
                        "bobit": self.qargs.bobit,
         | 
| 128 | 
            +
                    }
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    self.config = config
         | 
| 131 | 
            +
                    self.layer_idx = layer_idx
         | 
| 132 | 
            +
                    if layer_idx is None:
         | 
| 133 | 
            +
                        logger.warning_once(
         | 
| 134 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
         | 
| 135 | 
            +
                            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 136 | 
            +
                            "when creating this class."
         | 
| 137 | 
            +
                        )
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 140 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 141 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 142 | 
            +
                    self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
         | 
| 143 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 144 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 145 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 146 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
         | 
| 149 | 
            +
                    self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 150 | 
            +
                    self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                def forward(self, re_x, x, s, rmsnorm_weight):
         | 
| 153 | 
            +
                    if self.training:
         | 
| 154 | 
            +
                        if self.qargs.weight_memory_efficient:
         | 
| 155 | 
            +
                            # Prepare
         | 
| 156 | 
            +
                            with torch.no_grad():
         | 
| 157 | 
            +
                                weight1_s = self.prepare_weight(self.q_proj.weight, "q_proj", FP8Manager.is_first_microbatch)
         | 
| 158 | 
            +
                                weight2_s = self.prepare_weight(self.k_proj.weight, "k_proj", FP8Manager.is_first_microbatch)
         | 
| 159 | 
            +
                                weight3_s = self.prepare_weight(self.v_proj.weight, "v_proj", FP8Manager.is_first_microbatch)
         | 
| 160 | 
            +
                            return _CoatLlamaBeforeAttentionResidual.apply(
         | 
| 161 | 
            +
                                re_x,
         | 
| 162 | 
            +
                                x,
         | 
| 163 | 
            +
                                s,
         | 
| 164 | 
            +
                                self.q_proj.weight,
         | 
| 165 | 
            +
                                None,
         | 
| 166 | 
            +
                                None,
         | 
| 167 | 
            +
                                weight1_s,
         | 
| 168 | 
            +
                                self.k_proj.weight,
         | 
| 169 | 
            +
                                None,
         | 
| 170 | 
            +
                                None,
         | 
| 171 | 
            +
                                weight2_s,
         | 
| 172 | 
            +
                                self.v_proj.weight,
         | 
| 173 | 
            +
                                None,
         | 
| 174 | 
            +
                                None,
         | 
| 175 | 
            +
                                weight3_s,
         | 
| 176 | 
            +
                                rmsnorm_weight,
         | 
| 177 | 
            +
                                self.qargs.group_size,
         | 
| 178 | 
            +
                                self.fwobits,
         | 
| 179 | 
            +
                                self.layer_id,
         | 
| 180 | 
            +
                                self.config,
         | 
| 181 | 
            +
                                self.qargs,
         | 
| 182 | 
            +
                            )
         | 
| 183 | 
            +
                        else:
         | 
| 184 | 
            +
                            # Prepare
         | 
| 185 | 
            +
                            with torch.no_grad():
         | 
| 186 | 
            +
                                weight1, weight1_t, weight1_s = self.prepare_weight(
         | 
| 187 | 
            +
                                    self.q_proj.weight, "q_proj", FP8Manager.is_first_microbatch
         | 
| 188 | 
            +
                                )
         | 
| 189 | 
            +
                                weight2, weight2_t, weight2_s = self.prepare_weight(
         | 
| 190 | 
            +
                                    self.k_proj.weight, "k_proj", FP8Manager.is_first_microbatch
         | 
| 191 | 
            +
                                )
         | 
| 192 | 
            +
                                weight3, weight3_t, weight3_s = self.prepare_weight(
         | 
| 193 | 
            +
                                    self.v_proj.weight, "v_proj", FP8Manager.is_first_microbatch
         | 
| 194 | 
            +
                                )
         | 
| 195 | 
            +
                            return _CoatLlamaBeforeAttentionResidual.apply(
         | 
| 196 | 
            +
                                re_x,
         | 
| 197 | 
            +
                                x,
         | 
| 198 | 
            +
                                s,
         | 
| 199 | 
            +
                                self.q_proj.weight,
         | 
| 200 | 
            +
                                weight1,
         | 
| 201 | 
            +
                                weight1_t,
         | 
| 202 | 
            +
                                weight1_s,
         | 
| 203 | 
            +
                                self.k_proj.weight,
         | 
| 204 | 
            +
                                weight2,
         | 
| 205 | 
            +
                                weight2_t,
         | 
| 206 | 
            +
                                weight2_s,
         | 
| 207 | 
            +
                                self.v_proj.weight,
         | 
| 208 | 
            +
                                weight3,
         | 
| 209 | 
            +
                                weight3_t,
         | 
| 210 | 
            +
                                weight3_s,
         | 
| 211 | 
            +
                                rmsnorm_weight,
         | 
| 212 | 
            +
                                self.qargs.group_size,
         | 
| 213 | 
            +
                                self.fwobits,
         | 
| 214 | 
            +
                                self.layer_id,
         | 
| 215 | 
            +
                                self.config,
         | 
| 216 | 
            +
                                self.qargs,
         | 
| 217 | 
            +
                            )
         | 
| 218 | 
            +
                    else:
         | 
| 219 | 
            +
                        return re_x, self.att_proj(self.attn_norm(re_x))
         | 
| 220 | 
            +
             | 
| 221 | 
            +
             | 
| 222 | 
            +
            class _CoatLlamaBeforeAttentionResidual(torch.autograd.Function):
         | 
| 223 | 
            +
                @staticmethod
         | 
| 224 | 
            +
                def forward(
         | 
| 225 | 
            +
                    ctx,
         | 
| 226 | 
            +
                    re_x,
         | 
| 227 | 
            +
                    in_x,
         | 
| 228 | 
            +
                    in_s,
         | 
| 229 | 
            +
                    weight1_origin,
         | 
| 230 | 
            +
                    weight1,
         | 
| 231 | 
            +
                    weight1_t,
         | 
| 232 | 
            +
                    weight1_s,
         | 
| 233 | 
            +
                    weight2_origin,
         | 
| 234 | 
            +
                    weight2,
         | 
| 235 | 
            +
                    weight2_t,
         | 
| 236 | 
            +
                    weight2_s,
         | 
| 237 | 
            +
                    weight3_origin,
         | 
| 238 | 
            +
                    weight3,
         | 
| 239 | 
            +
                    weight3_t,
         | 
| 240 | 
            +
                    weight3_s,
         | 
| 241 | 
            +
                    rmsnorm_weight,
         | 
| 242 | 
            +
                    group_size,
         | 
| 243 | 
            +
                    fwobits,
         | 
| 244 | 
            +
                    layer_id,
         | 
| 245 | 
            +
                    config,
         | 
| 246 | 
            +
                    qargs,
         | 
| 247 | 
            +
                    eps=1e-5,
         | 
| 248 | 
            +
                ):
         | 
| 249 | 
            +
                    # for autograd
         | 
| 250 | 
            +
                    if fwobits["fabit"] == "E4M3":
         | 
| 251 | 
            +
                        # in_x = in_x.to(torch.float8_e4m3fn)
         | 
| 252 | 
            +
                        in_x = in_x.view(torch.float8_e4m3fn)
         | 
| 253 | 
            +
                    else:
         | 
| 254 | 
            +
                        raise ValueError("fabit should be E4M3")
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    # LayerNorm
         | 
| 257 | 
            +
                    ln_x, ln_s, ln_x_t, ln_utils = fp8_rmsnorm_forward(
         | 
| 258 | 
            +
                        in_x, in_s, rmsnorm_weight, group_size, eps, transpose_output_2d=True
         | 
| 259 | 
            +
                    )
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    # Linear Layer QKV Projection
         | 
| 262 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 263 | 
            +
                        assert weight1 is None  # memory efficient
         | 
| 264 | 
            +
                        weight1, weight1_s = fp8_division(weight1_origin, qargs.group_size, fwobits["fwbit"], weight1_s)
         | 
| 265 | 
            +
                        weight2, weight2_s = fp8_division(weight2_origin, qargs.group_size, fwobits["fwbit"], weight2_s)
         | 
| 266 | 
            +
                        weight3, weight3_s = fp8_division(weight3_origin, qargs.group_size, fwobits["fwbit"], weight3_s)
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    fc1_x = fp8_linear_forward(ln_x, ln_s, weight1, weight1_s, False, group_size)  # query states
         | 
| 269 | 
            +
                    fc2_x = fp8_linear_forward(ln_x, ln_s, weight2, weight2_s, False, group_size)  # key states
         | 
| 270 | 
            +
                    fc3_x = fp8_linear_forward(ln_x, ln_s, weight3, weight3_s, False, group_size)  # value states
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    # ==================== save for backward ====================
         | 
| 273 | 
            +
                    ctx.save_for_backward(in_x, in_s, ln_x_t, ln_s)
         | 
| 274 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 275 | 
            +
                        assert weight1_t is None and weight2_t is None and weight3_t is None
         | 
| 276 | 
            +
                        ctx.weight = weight1_origin, weight1_s, weight2_origin, weight2_s, weight3_origin, weight3_s
         | 
| 277 | 
            +
                    else:
         | 
| 278 | 
            +
                        ctx.weight = weight1_t, weight1_s, weight2_t, weight2_s, weight3_t, weight3_s
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    ctx.group_size = group_size
         | 
| 281 | 
            +
                    ctx.ln_utils = ln_utils
         | 
| 282 | 
            +
                    ctx.utils = fwobits, layer_id, config, qargs
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    return re_x, fc1_x, fc2_x, fc3_x
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                @staticmethod
         | 
| 287 | 
            +
                def backward(ctx, fp_grad, query_g, key_g, value_g):
         | 
| 288 | 
            +
                    in_x, in_s, ln_x_t, ln_s = ctx.saved_tensors
         | 
| 289 | 
            +
                    weight1_t, weight1_s, weight2_t, weight2_s, weight3_t, weight3_s = ctx.weight
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    group_size = ctx.group_size
         | 
| 292 | 
            +
                    rms_weight, rstd, num_warps = ctx.ln_utils
         | 
| 293 | 
            +
                    fwobits, layer_id, config, qargs = ctx.utils
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    # ==================== Begin backward ====================
         | 
| 296 | 
            +
                    # Quantize the RoPE and FlashAttention Output. grad_input and grad_weight requires different data layout.
         | 
| 297 | 
            +
                    query_g, query_gs, query_g_t = fp8_quantize_pertensor_transpose(
         | 
| 298 | 
            +
                        query_g, group_size, fwobits["babit"], transpose_output_2d=True, stochastic=False
         | 
| 299 | 
            +
                    )
         | 
| 300 | 
            +
                    key_g, key_gs, key_g_t = fp8_quantize_pertensor_transpose(
         | 
| 301 | 
            +
                        key_g, group_size, fwobits["babit"], transpose_output_2d=True, stochastic=False
         | 
| 302 | 
            +
                    )
         | 
| 303 | 
            +
                    value_g, value_gs, value_g_t = fp8_quantize_pertensor_transpose(
         | 
| 304 | 
            +
                        value_g, group_size, fwobits["babit"], transpose_output_2d=True, stochastic=False
         | 
| 305 | 
            +
                    )
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    # Linear Layer QKV Projection
         | 
| 308 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 309 | 
            +
                        weight1_t, weight1_s = fp8_division_transpose(
         | 
| 310 | 
            +
                            weight1_t, qargs.group_size, fwobits["fwbit"], weight1_s, only_transposed=True
         | 
| 311 | 
            +
                        )
         | 
| 312 | 
            +
                        weight2_t, weight2_s = fp8_division_transpose(
         | 
| 313 | 
            +
                            weight2_t, qargs.group_size, fwobits["fwbit"], weight2_s, only_transposed=True
         | 
| 314 | 
            +
                        )
         | 
| 315 | 
            +
                        weight3_t, weight3_s = fp8_division_transpose(
         | 
| 316 | 
            +
                            weight3_t, qargs.group_size, fwobits["fwbit"], weight3_s, only_transposed=True
         | 
| 317 | 
            +
                        )
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    fc1_g1, att_q_wg = fp8_linear_backward(
         | 
| 320 | 
            +
                        ln_x_t, ln_s, query_g, query_gs, query_g_t, weight1_t, weight1_s, group_size
         | 
| 321 | 
            +
                    )
         | 
| 322 | 
            +
                    fc1_g2, att_k_wg = fp8_linear_backward(ln_x_t, ln_s, key_g, key_gs, key_g_t, weight2_t, weight2_s, group_size)
         | 
| 323 | 
            +
                    fc1_g3, att_v_wg = fp8_linear_backward(
         | 
| 324 | 
            +
                        ln_x_t, ln_s, value_g, value_gs, value_g_t, weight3_t, weight3_s, group_size
         | 
| 325 | 
            +
                    )
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                    fc1_g = fc1_g1 + fc1_g2 + fc1_g3
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    # LayerNorm
         | 
| 330 | 
            +
                    in_g, rms_weight_grad = fp8_rmsnorm_backward(in_x, in_s, fc1_g, rms_weight, rstd, group_size, num_warps)
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    # Add the gradient together, and prepare the input of the next layer.
         | 
| 333 | 
            +
                    re_g, (in_g, in_sg, in_sg_g16) = fp8_add_Ifp_Ifp_Ofp_Opt(
         | 
| 334 | 
            +
                        fp_grad, in_g, group_size, fwobits["babit"], stochastic=False
         | 
| 335 | 
            +
                    )
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    # for autograd. forward's data type should be the same of backward tensor. this will not change the actual binary representation.
         | 
| 338 | 
            +
                    in_g = in_g.view(torch.float8_e4m3fn)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                    # Although the next operator is a linear layer in MLPResidual module, we return in_sg_g16 to make the size compatible with the forward. Otherwise it will not pass autograd.
         | 
| 341 | 
            +
                    return (
         | 
| 342 | 
            +
                        re_g,
         | 
| 343 | 
            +
                        in_g,
         | 
| 344 | 
            +
                        in_sg_g16,
         | 
| 345 | 
            +
                        att_q_wg,
         | 
| 346 | 
            +
                        None,
         | 
| 347 | 
            +
                        None,
         | 
| 348 | 
            +
                        None,
         | 
| 349 | 
            +
                        att_k_wg,
         | 
| 350 | 
            +
                        None,
         | 
| 351 | 
            +
                        None,
         | 
| 352 | 
            +
                        None,
         | 
| 353 | 
            +
                        att_v_wg,
         | 
| 354 | 
            +
                        None,
         | 
| 355 | 
            +
                        None,
         | 
| 356 | 
            +
                        None,
         | 
| 357 | 
            +
                        rms_weight_grad,
         | 
| 358 | 
            +
                        None,
         | 
| 359 | 
            +
                        None,
         | 
| 360 | 
            +
                        None,
         | 
| 361 | 
            +
                        None,
         | 
| 362 | 
            +
                        None,
         | 
| 363 | 
            +
                        None,
         | 
| 364 | 
            +
                    )
         | 
| 365 | 
            +
             | 
| 366 | 
            +
             | 
| 367 | 
            +
            class CoatLlamaAfterAttentionResidual(FP8CacheWeightModule):
         | 
| 368 | 
            +
                """
         | 
| 369 | 
            +
                This is a typical transformer attention module that contains (1) Residual (2) 1 * Linear layers
         | 
| 370 | 
            +
                """
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                def __init__(self, config: CoatLlamaConfig, qargs: QuantizationConfig, layer_id):
         | 
| 373 | 
            +
                    super().__init__(config, qargs, layer_id)
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                    self.qargs = qargs
         | 
| 376 | 
            +
                    self.fwobits = {
         | 
| 377 | 
            +
                        "fabit": self.qargs.fabit,
         | 
| 378 | 
            +
                        "fwbit": self.qargs.fwbit,
         | 
| 379 | 
            +
                        "fobit": self.qargs.fobit,
         | 
| 380 | 
            +
                        "babit": self.qargs.babit,
         | 
| 381 | 
            +
                        "bwbit": self.qargs.bwbit,
         | 
| 382 | 
            +
                        "bobit": self.qargs.bobit,
         | 
| 383 | 
            +
                    }
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 386 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 387 | 
            +
                    self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                def forward(self, re_x, in_x):
         | 
| 392 | 
            +
                    if self.training:
         | 
| 393 | 
            +
                        if self.qargs.weight_memory_efficient:
         | 
| 394 | 
            +
                            # prepare for the weight
         | 
| 395 | 
            +
                            with torch.no_grad():
         | 
| 396 | 
            +
                                weight4_s = self.prepare_weight(self.o_proj.weight, "o_proj", FP8Manager.is_first_microbatch)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                            return _CoatLlamaAfterAttentionResidual.apply(
         | 
| 399 | 
            +
                                re_x,
         | 
| 400 | 
            +
                                in_x,
         | 
| 401 | 
            +
                                self.o_proj.weight,
         | 
| 402 | 
            +
                                None,
         | 
| 403 | 
            +
                                None,
         | 
| 404 | 
            +
                                weight4_s,
         | 
| 405 | 
            +
                                self.qargs.group_size,
         | 
| 406 | 
            +
                                self.fwobits,
         | 
| 407 | 
            +
                                self.layer_id,
         | 
| 408 | 
            +
                                self.config,
         | 
| 409 | 
            +
                                self.qargs,
         | 
| 410 | 
            +
                            )
         | 
| 411 | 
            +
                        else:
         | 
| 412 | 
            +
                            # prepare for the weight
         | 
| 413 | 
            +
                            with torch.no_grad():
         | 
| 414 | 
            +
                                weight4, weight4_t, weight4_s = self.prepare_weight(
         | 
| 415 | 
            +
                                    self.o_proj.weight, "o_proj", FP8Manager.is_first_microbatch
         | 
| 416 | 
            +
                                )
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                            return _CoatLlamaAfterAttentionResidual.apply(
         | 
| 419 | 
            +
                                re_x,
         | 
| 420 | 
            +
                                in_x,
         | 
| 421 | 
            +
                                self.o_proj.weight,
         | 
| 422 | 
            +
                                weight4,
         | 
| 423 | 
            +
                                weight4_t,
         | 
| 424 | 
            +
                                weight4_s,
         | 
| 425 | 
            +
                                self.qargs.group_size,
         | 
| 426 | 
            +
                                self.fwobits,
         | 
| 427 | 
            +
                                self.layer_id,
         | 
| 428 | 
            +
                                self.config,
         | 
| 429 | 
            +
                                self.qargs,
         | 
| 430 | 
            +
                            )
         | 
| 431 | 
            +
                    else:
         | 
| 432 | 
            +
                        return re_x + self.attn_out(in_x), None, None
         | 
| 433 | 
            +
             | 
| 434 | 
            +
             | 
| 435 | 
            +
            class _CoatLlamaAfterAttentionResidual(torch.autograd.Function):
         | 
| 436 | 
            +
                @staticmethod
         | 
| 437 | 
            +
                def forward(
         | 
| 438 | 
            +
                    ctx, re_x, flash_x, weight4_origin, weight4, weight4_t, weight4_s, group_size, fwobits, layer_id, config, qargs
         | 
| 439 | 
            +
                ):
         | 
| 440 | 
            +
                    # Quantize the FlashAttention Output
         | 
| 441 | 
            +
                    flash_qx, flash_s, _ = fp8_quantize_pertensor(
         | 
| 442 | 
            +
                        flash_x, group_size, fwobits["fabit"]
         | 
| 443 | 
            +
                    )  # Modified to make it memory efficient
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    # # Attention Projection Linear Layer
         | 
| 446 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 447 | 
            +
                        assert weight4 is None  # memory efficient
         | 
| 448 | 
            +
                        weight4, weight4_s = fp8_division(weight4_origin, qargs.group_size, fwobits["fwbit"], weight4_s)
         | 
| 449 | 
            +
                    fc4_x = fp8_linear_forward(flash_qx, flash_s, weight4, weight4_s, False, group_size)  #
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    # import IPython
         | 
| 452 | 
            +
                    # IPython.embed()
         | 
| 453 | 
            +
                    # Add the activations together
         | 
| 454 | 
            +
                    fp_x, (out_x, out_s) = fp8_add_Ifp_Ifp_Ofp_Og16(re_x, fc4_x, flash_qx.dtype, group_size)
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    # ==================== save for backward ====================
         | 
| 457 | 
            +
                    ctx.save_for_backward(flash_x, flash_s)
         | 
| 458 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 459 | 
            +
                        assert weight4_t is None
         | 
| 460 | 
            +
                        ctx.weight = weight4_origin, weight4_s
         | 
| 461 | 
            +
                    else:
         | 
| 462 | 
            +
                        ctx.weight = weight4_t, weight4_s
         | 
| 463 | 
            +
                    ctx.group_size = group_size
         | 
| 464 | 
            +
                    ctx.fwobits = fwobits
         | 
| 465 | 
            +
                    ctx.utils = fwobits, layer_id, config, qargs
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                    # For autograd
         | 
| 468 | 
            +
                    out_x = out_x.view(torch.float8_e4m3fn)
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                    return fp_x, out_x, out_s
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                @staticmethod
         | 
| 473 | 
            +
                def backward(ctx, fp_grad, out_g, out_gs):
         | 
| 474 | 
            +
                    flash_x, flash_s = ctx.saved_tensors
         | 
| 475 | 
            +
                    weight4_t, weight4_s = ctx.weight
         | 
| 476 | 
            +
                    group_size = ctx.group_size
         | 
| 477 | 
            +
                    fwobits = ctx.fwobits
         | 
| 478 | 
            +
                    fwobits, layer_id, config, qargs = ctx.utils
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    # for autograd
         | 
| 481 | 
            +
                    if fwobits["babit"] == "E5M2":
         | 
| 482 | 
            +
                        # out_g = out_g.to(torch.float8_e5m2)
         | 
| 483 | 
            +
                        out_g = out_g.view(torch.float8_e5m2)
         | 
| 484 | 
            +
                    else:
         | 
| 485 | 
            +
                        raise ValueError("babit should be E5M2")
         | 
| 486 | 
            +
                    out_gs_max = out_gs.max()
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    # ==================== Begin backward ====================
         | 
| 489 | 
            +
                    # Output Projection
         | 
| 490 | 
            +
                    out_g_t = fp8_transpose(out_g, transpose_output_2d=True)
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                    # We do not save an extra flash_x to save the memory usage
         | 
| 493 | 
            +
                    flash_x_t, flash_s = fp8_division_transpose(
         | 
| 494 | 
            +
                        flash_x, group_size, fwobits["fabit"], flash_s, stochastic=False, only_transposed=True
         | 
| 495 | 
            +
                    )
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 498 | 
            +
                        weight4_t, weight4_s = fp8_division_transpose(
         | 
| 499 | 
            +
                            weight4_t, qargs.group_size, fwobits["fwbit"], weight4_s, only_transposed=True
         | 
| 500 | 
            +
                        )
         | 
| 501 | 
            +
                    fc4_g, attn_out_wg = fp8_linear_backward(
         | 
| 502 | 
            +
                        flash_x_t, flash_s, out_g, out_gs_max, out_g_t, weight4_t, weight4_s, group_size
         | 
| 503 | 
            +
                    )
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                    return fp_grad, fc4_g, attn_out_wg, None, None, None, None, None, None, None, None
         | 
| 506 | 
            +
             | 
| 507 | 
            +
             | 
| 508 | 
            +
            class CoatLlamaMLPResidual(FP8CacheWeightModule):
         | 
| 509 | 
            +
                """
         | 
| 510 | 
            +
                This is a typical transformer attention module that contains (1) Residual (2) LayerNorm / RMSNorm (3) 2 / 3 * Linear layers
         | 
| 511 | 
            +
                (4) GELU / Silu Activation
         | 
| 512 | 
            +
                """
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                def __init__(self, config: CoatLlamaConfig, qargs: QuantizationConfig, layer_id, hidden_size: int):
         | 
| 515 | 
            +
                    super().__init__(config, qargs, layer_id)
         | 
| 516 | 
            +
             | 
| 517 | 
            +
                    self.qargs = qargs
         | 
| 518 | 
            +
                    self.fwobits = {
         | 
| 519 | 
            +
                        "fabit": self.qargs.fabit,
         | 
| 520 | 
            +
                        "fwbit": self.qargs.fwbit,
         | 
| 521 | 
            +
                        "fobit": self.qargs.fobit,
         | 
| 522 | 
            +
                        "babit": self.qargs.babit,
         | 
| 523 | 
            +
                        "bwbit": self.qargs.bwbit,
         | 
| 524 | 
            +
                        "bobit": self.qargs.bobit,
         | 
| 525 | 
            +
                    }
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    self.config = config
         | 
| 528 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 529 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
         | 
| 532 | 
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
         | 
| 533 | 
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
         | 
| 534 | 
            +
                    self.training = True
         | 
| 535 | 
            +
             | 
| 536 | 
            +
                    # below is only used when training = False
         | 
| 537 | 
            +
                    assert config.hidden_act == "silu", "We only support silu activation currently"
         | 
| 538 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                def forward(self, re_x, x, s, rmsnorm_weight):
         | 
| 541 | 
            +
                    if self.training:
         | 
| 542 | 
            +
                        if self.qargs.weight_memory_efficient:  # prepare for the weight
         | 
| 543 | 
            +
                            with torch.no_grad():
         | 
| 544 | 
            +
                                weight1_s = self.prepare_weight(self.gate_proj.weight, "gate_proj", FP8Manager.is_first_microbatch)
         | 
| 545 | 
            +
                                weight2_s = self.prepare_weight(self.up_proj.weight, "up_proj", FP8Manager.is_first_microbatch)
         | 
| 546 | 
            +
                                weight3_s = self.prepare_weight(self.down_proj.weight, "down_proj", FP8Manager.is_first_microbatch)
         | 
| 547 | 
            +
             | 
| 548 | 
            +
                            return _CoatLlamaMLPResidual.apply(
         | 
| 549 | 
            +
                                re_x,
         | 
| 550 | 
            +
                                x,
         | 
| 551 | 
            +
                                s,
         | 
| 552 | 
            +
                                self.gate_proj.weight,
         | 
| 553 | 
            +
                                None,
         | 
| 554 | 
            +
                                None,
         | 
| 555 | 
            +
                                weight1_s,
         | 
| 556 | 
            +
                                self.up_proj.weight,
         | 
| 557 | 
            +
                                None,
         | 
| 558 | 
            +
                                None,
         | 
| 559 | 
            +
                                weight2_s,
         | 
| 560 | 
            +
                                self.down_proj.weight,
         | 
| 561 | 
            +
                                None,
         | 
| 562 | 
            +
                                None,
         | 
| 563 | 
            +
                                weight3_s,
         | 
| 564 | 
            +
                                rmsnorm_weight,
         | 
| 565 | 
            +
                                self.qargs.group_size,
         | 
| 566 | 
            +
                                self.fwobits,
         | 
| 567 | 
            +
                                self.layer_id,
         | 
| 568 | 
            +
                                self.config,
         | 
| 569 | 
            +
                                self.qargs,
         | 
| 570 | 
            +
                            )
         | 
| 571 | 
            +
                        else:
         | 
| 572 | 
            +
                            # prepare for the weight
         | 
| 573 | 
            +
                            with torch.no_grad():
         | 
| 574 | 
            +
                                weight1, weight1_t, weight1_s = self.prepare_weight(
         | 
| 575 | 
            +
                                    self.gate_proj.weight, "gate_proj", FP8Manager.is_first_microbatch
         | 
| 576 | 
            +
                                )
         | 
| 577 | 
            +
                                weight2, weight2_t, weight2_s = self.prepare_weight(
         | 
| 578 | 
            +
                                    self.up_proj.weight, "up_proj", FP8Manager.is_first_microbatch
         | 
| 579 | 
            +
                                )
         | 
| 580 | 
            +
                                weight3, weight3_t, weight3_s = self.prepare_weight(
         | 
| 581 | 
            +
                                    self.down_proj.weight, "down_proj", FP8Manager.is_first_microbatch
         | 
| 582 | 
            +
                                )
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                            return _CoatLlamaMLPResidual.apply(
         | 
| 585 | 
            +
                                re_x,
         | 
| 586 | 
            +
                                x,
         | 
| 587 | 
            +
                                s,
         | 
| 588 | 
            +
                                self.gate_proj.weight,
         | 
| 589 | 
            +
                                weight1,
         | 
| 590 | 
            +
                                weight1_t,
         | 
| 591 | 
            +
                                weight1_s,
         | 
| 592 | 
            +
                                self.up_proj.weight,
         | 
| 593 | 
            +
                                weight2,
         | 
| 594 | 
            +
                                weight2_t,
         | 
| 595 | 
            +
                                weight2_s,
         | 
| 596 | 
            +
                                self.down_proj.weight,
         | 
| 597 | 
            +
                                weight3,
         | 
| 598 | 
            +
                                weight3_t,
         | 
| 599 | 
            +
                                weight3_s,
         | 
| 600 | 
            +
                                rmsnorm_weight,
         | 
| 601 | 
            +
                                self.qargs.group_size,
         | 
| 602 | 
            +
                                self.fwobits,
         | 
| 603 | 
            +
                                self.layer_id,
         | 
| 604 | 
            +
                                self.config,
         | 
| 605 | 
            +
                                self.qargs,
         | 
| 606 | 
            +
                            )
         | 
| 607 | 
            +
                    else:
         | 
| 608 | 
            +
                        raise NotImplementedError("Need TODO")
         | 
| 609 | 
            +
                        og_x = re_x
         | 
| 610 | 
            +
                        re_x = self.ff_norm(re_x)
         | 
| 611 | 
            +
                        re_x = self.ff_proj(re_x)
         | 
| 612 | 
            +
                        re_x = self.act(re_x)
         | 
| 613 | 
            +
                        re_x = self.ff_out(re_x)
         | 
| 614 | 
            +
                        re_x = og_x + re_x
         | 
| 615 | 
            +
                        return re_x, None, None
         | 
| 616 | 
            +
             | 
| 617 | 
            +
             | 
| 618 | 
            +
            class _CoatLlamaMLPResidual(torch.autograd.Function):
         | 
| 619 | 
            +
                @staticmethod
         | 
| 620 | 
            +
                def forward(
         | 
| 621 | 
            +
                    ctx,
         | 
| 622 | 
            +
                    re_x,
         | 
| 623 | 
            +
                    in_x,
         | 
| 624 | 
            +
                    in_s,
         | 
| 625 | 
            +
                    weight1_origin,
         | 
| 626 | 
            +
                    weight1,
         | 
| 627 | 
            +
                    weight1_t,
         | 
| 628 | 
            +
                    weight1_s,
         | 
| 629 | 
            +
                    weight2_origin,
         | 
| 630 | 
            +
                    weight2,
         | 
| 631 | 
            +
                    weight2_t,
         | 
| 632 | 
            +
                    weight2_s,
         | 
| 633 | 
            +
                    weight3_origin,
         | 
| 634 | 
            +
                    weight3,
         | 
| 635 | 
            +
                    weight3_t,
         | 
| 636 | 
            +
                    weight3_s,
         | 
| 637 | 
            +
                    rmsnorm_weight,
         | 
| 638 | 
            +
                    group_size,
         | 
| 639 | 
            +
                    fwobits,
         | 
| 640 | 
            +
                    layer_id,
         | 
| 641 | 
            +
                    config,
         | 
| 642 | 
            +
                    qargs,
         | 
| 643 | 
            +
                    eps=1e-5,
         | 
| 644 | 
            +
                ):
         | 
| 645 | 
            +
                    # For autograd
         | 
| 646 | 
            +
                    if fwobits["fabit"] == "E4M3":
         | 
| 647 | 
            +
                        # in_x = in_x.to(torch.float8_e4m3fn)
         | 
| 648 | 
            +
                        in_x = in_x.view(torch.float8_e4m3fn)
         | 
| 649 | 
            +
                    else:
         | 
| 650 | 
            +
                        raise ValueError("fabit should be E4M3")
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                    # LayerNorm
         | 
| 653 | 
            +
                    ln_x, ln_s, ln_x_t, ln_utils = fp8_rmsnorm_forward(
         | 
| 654 | 
            +
                        in_x, in_s, rmsnorm_weight, group_size, eps, transpose_output_2d=True
         | 
| 655 | 
            +
                    )
         | 
| 656 | 
            +
             | 
| 657 | 
            +
                    # Linear Layer of Up Projection and Gate Projection. They are fused as one linear layer.
         | 
| 658 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 659 | 
            +
                        assert weight1 is None and weight2 is None and weight3 is None  # memory efficient
         | 
| 660 | 
            +
                        weight1, weight1_s = fp8_division(weight1_origin, qargs.group_size, fwobits["fwbit"], weight1_s)
         | 
| 661 | 
            +
                        weight2, weight2_s = fp8_division(weight2_origin, qargs.group_size, fwobits["fwbit"], weight2_s)
         | 
| 662 | 
            +
                        weight3, weight3_s = fp8_division(weight3_origin, qargs.group_size, fwobits["fwbit"], weight3_s)
         | 
| 663 | 
            +
             | 
| 664 | 
            +
                    gate_x, gate_s = fp8_linear_forward(ln_x, ln_s, weight1, weight1_s, True, group_size)  # Gate Proj
         | 
| 665 | 
            +
                    up_x, up_s = fp8_linear_forward(ln_x, ln_s, weight2, weight2_s, True, group_size)  # Up Proj
         | 
| 666 | 
            +
             | 
| 667 | 
            +
                    # silu Activation
         | 
| 668 | 
            +
                    silu_x, silu_s = fp8_silu_forward(gate_x, gate_s, group_size)
         | 
| 669 | 
            +
             | 
| 670 | 
            +
                    # Element-wise Multiplication
         | 
| 671 | 
            +
                    mul_x, mul_s, mul_x_t = fp8_mul_forward(silu_x, silu_s, up_x, up_s, group_size, transpose_output_2d=True)
         | 
| 672 | 
            +
             | 
| 673 | 
            +
                    # Output Projection
         | 
| 674 | 
            +
                    if weight3 is None:  # memory efficient
         | 
| 675 | 
            +
                        weight3, weight3_s = fp8_division(weight3_origin, qargs.group_size, fwobits["fwbit"], weight3_s)
         | 
| 676 | 
            +
                    fc3_x = fp8_linear_forward(mul_x, mul_s, weight3, weight3_s, False, group_size)
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                    # Add the activation together
         | 
| 679 | 
            +
                    fp_x, (out_x, out_s) = fp8_add_Ifp_Ifp_Ofp_Og16(re_x, fc3_x, mul_x.dtype, group_size)
         | 
| 680 | 
            +
             | 
| 681 | 
            +
                    # ==================== save for backward ====================
         | 
| 682 | 
            +
                    ctx.save_for_backward(in_x, in_s, ln_x_t, ln_s, gate_x, gate_s, up_x, up_s, silu_x, silu_s, mul_x_t, mul_s)
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                    ctx.weight = (weight1_t, weight1_s, weight2_t, weight2_s)
         | 
| 685 | 
            +
                    if (
         | 
| 686 | 
            +
                        qargs.weight_memory_efficient
         | 
| 687 | 
            +
                    ):  # Weight_1/2_origin will not be saved twice, so it will be more memory efficient.
         | 
| 688 | 
            +
                        assert weight1_t is None and weight2_t is None and weight3_t is None
         | 
| 689 | 
            +
                        ctx.weight = (weight1_origin, weight1_s, weight2_origin, weight2_s, weight3_origin, weight3_s)
         | 
| 690 | 
            +
                    else:  # Weight1/2_t is different from the origin weight, so saving it will consumes additional memory footprint.
         | 
| 691 | 
            +
                        ctx.weight = (weight1_t, weight1_s, weight2_t, weight2_s, weight3_t, weight3_s)
         | 
| 692 | 
            +
             | 
| 693 | 
            +
                    ctx.group_size = group_size
         | 
| 694 | 
            +
                    ctx.ln_utils = ln_utils
         | 
| 695 | 
            +
                    ctx.utils = fwobits, layer_id, config, qargs
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                    out_x = out_x.view(torch.float8_e4m3fn)
         | 
| 698 | 
            +
             | 
| 699 | 
            +
                    return fp_x, out_x, out_s
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                @staticmethod
         | 
| 702 | 
            +
                def backward(ctx, fp_grad, out_g, out_gs):
         | 
| 703 | 
            +
                    fwobits, layer_id, config, qargs = ctx.utils
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                    in_x, in_s, ln_x_t, ln_s, gate_x, gate_s, up_x, up_s, silu_x, silu_s, mul_x_t, mul_s = ctx.saved_tensors
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                    (weight1_t, weight1_s, weight2_t, weight2_s, weight3_t, weight3_s) = ctx.weight
         | 
| 708 | 
            +
                    group_size = ctx.group_size
         | 
| 709 | 
            +
                    rms_weight, rstd, num_warps = ctx.ln_utils
         | 
| 710 | 
            +
                    fwobits, layer_id, config, qargs = ctx.utils
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                    # For autograd
         | 
| 713 | 
            +
                    if fwobits["babit"] == "E5M2":
         | 
| 714 | 
            +
                        # out_g = out_g.to(torch.float8_e5m2)
         | 
| 715 | 
            +
                        out_g = out_g.view(torch.float8_e5m2)
         | 
| 716 | 
            +
                    else:
         | 
| 717 | 
            +
                        raise ValueError("babit should be E5M2")
         | 
| 718 | 
            +
                    out_gs_max = out_gs.max()
         | 
| 719 | 
            +
             | 
| 720 | 
            +
                    # ==================== Begin backward ====================
         | 
| 721 | 
            +
                    # Output Projection
         | 
| 722 | 
            +
                    out_gs = out_gs.max()
         | 
| 723 | 
            +
                    out_g_t = fp8_transpose(out_g, transpose_output_2d=True)
         | 
| 724 | 
            +
             | 
| 725 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 726 | 
            +
                        weight3_t, weight3_s = fp8_division_transpose(
         | 
| 727 | 
            +
                            weight3_t, qargs.group_size, fwobits["fwbit"], weight3_s, only_transposed=True
         | 
| 728 | 
            +
                        )
         | 
| 729 | 
            +
                    fc3_g, weight3_grad = fp8_linear_backward(
         | 
| 730 | 
            +
                        mul_x_t, mul_s, out_g, out_gs_max, out_g_t, weight3_t, weight3_s, group_size
         | 
| 731 | 
            +
                    )
         | 
| 732 | 
            +
             | 
| 733 | 
            +
                    # [MEM TEST]
         | 
| 734 | 
            +
                    del out_g, out_g_t, weight3_t
         | 
| 735 | 
            +
             | 
| 736 | 
            +
                    # Element-wise Multiplication, 1 means gate, 2 means up
         | 
| 737 | 
            +
                    mul_g1, (mul_g2, mul_gs2, mul_g2_t) = fp8_mul_backward(
         | 
| 738 | 
            +
                        silu_x, silu_s, up_x, up_s, fc3_g, group_size, fwobits["babit"], output_quantized_transpose=True
         | 
| 739 | 
            +
                    )
         | 
| 740 | 
            +
             | 
| 741 | 
            +
                    # Silu activation
         | 
| 742 | 
            +
                    silu_g, silu_gs, silu_g_t = fp8_silu_backward(
         | 
| 743 | 
            +
                        gate_x, gate_s, mul_g1, group_size, fwobits["babit"], output_quantized_transpose=True
         | 
| 744 | 
            +
                    )
         | 
| 745 | 
            +
             | 
| 746 | 
            +
                    # Linear Layer of Up and Gate Projection
         | 
| 747 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 748 | 
            +
                        weight1_t, weight1_s = fp8_division_transpose(
         | 
| 749 | 
            +
                            weight1_t, group_size, fwobits["fwbit"], weight1_s, only_transposed=True
         | 
| 750 | 
            +
                        )
         | 
| 751 | 
            +
                        weight2_t, weight2_s = fp8_division_transpose(
         | 
| 752 | 
            +
                            weight2_t, group_size, fwobits["fwbit"], weight2_s, only_transposed=True
         | 
| 753 | 
            +
                        )
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                    # Gate Proj
         | 
| 756 | 
            +
                    fc1_g, weight1_grad = fp8_linear_backward(
         | 
| 757 | 
            +
                        ln_x_t, ln_s, silu_g, silu_gs, silu_g_t, weight1_t, weight1_s, group_size
         | 
| 758 | 
            +
                    )
         | 
| 759 | 
            +
                    fc2_g, weight2_grad = fp8_linear_backward(
         | 
| 760 | 
            +
                        ln_x_t, ln_s, mul_g2, mul_gs2, mul_g2_t, weight2_t, weight2_s, group_size
         | 
| 761 | 
            +
                    )
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    fc_g = fc1_g + fc2_g
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                    # layerNorm
         | 
| 766 | 
            +
                    in_g, rms_weight_grad = fp8_rmsnorm_backward(in_x, in_s, fc_g, rms_weight, rstd, group_size, num_warps)
         | 
| 767 | 
            +
             | 
| 768 | 
            +
                    # Add the gradient together
         | 
| 769 | 
            +
                    re_g, (in_g, in_sg, in_sg_g16) = fp8_add_Ifp_Ifp_Ofp_Opt(
         | 
| 770 | 
            +
                        fp_grad, in_g, group_size, fwobits["babit"], stochastic=False
         | 
| 771 | 
            +
                    )
         | 
| 772 | 
            +
             | 
| 773 | 
            +
                    in_g = in_g.view(torch.float8_e4m3fn)
         | 
| 774 | 
            +
             | 
| 775 | 
            +
                    return (
         | 
| 776 | 
            +
                        re_g,
         | 
| 777 | 
            +
                        in_g,
         | 
| 778 | 
            +
                        in_sg_g16,
         | 
| 779 | 
            +
                        weight1_grad,
         | 
| 780 | 
            +
                        None,
         | 
| 781 | 
            +
                        None,
         | 
| 782 | 
            +
                        None,
         | 
| 783 | 
            +
                        weight2_grad,
         | 
| 784 | 
            +
                        None,
         | 
| 785 | 
            +
                        None,
         | 
| 786 | 
            +
                        None,
         | 
| 787 | 
            +
                        weight3_grad,
         | 
| 788 | 
            +
                        None,
         | 
| 789 | 
            +
                        None,
         | 
| 790 | 
            +
                        None,
         | 
| 791 | 
            +
                        rms_weight_grad,
         | 
| 792 | 
            +
                        None,
         | 
| 793 | 
            +
                        None,
         | 
| 794 | 
            +
                        None,
         | 
| 795 | 
            +
                        None,
         | 
| 796 | 
            +
                        None,
         | 
| 797 | 
            +
                        None,
         | 
| 798 | 
            +
                    )
         | 
| 799 | 
            +
             | 
| 800 | 
            +
             | 
| 801 | 
            +
            class LlamaAttentionWithoutLinear(nn.Module):
         | 
| 802 | 
            +
                """
         | 
| 803 | 
            +
                Remove the Q/K/V/O projection layer in LlamaAttention module and only calculate the attention logic.
         | 
| 804 | 
            +
                The Q/K/V Projection is moved to BeforeAttention Module, and the O Projection is moved to AfterAttention Module.
         | 
| 805 | 
            +
                """
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
         | 
| 808 | 
            +
                    super().__init__()
         | 
| 809 | 
            +
                    self.config = config
         | 
| 810 | 
            +
                    self.layer_idx = layer_idx
         | 
| 811 | 
            +
                    if layer_idx is None:
         | 
| 812 | 
            +
                        logger.warning_once(
         | 
| 813 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
         | 
| 814 | 
            +
                            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 815 | 
            +
                            "when creating this class."
         | 
| 816 | 
            +
                        )
         | 
| 817 | 
            +
             | 
| 818 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 819 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 820 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 821 | 
            +
                    self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
         | 
| 822 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 823 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 824 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 825 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 826 | 
            +
                    self.is_causal = True
         | 
| 827 | 
            +
             | 
| 828 | 
            +
                    # TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
         | 
| 829 | 
            +
                    self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
         | 
| 830 | 
            +
             | 
| 831 | 
            +
                def forward(
         | 
| 832 | 
            +
                    self,
         | 
| 833 | 
            +
                    query_states: torch.Tensor,
         | 
| 834 | 
            +
                    key_states: torch.Tensor,
         | 
| 835 | 
            +
                    value_states: torch.Tensor,
         | 
| 836 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 837 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 838 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 839 | 
            +
                    output_attentions: bool = False,
         | 
| 840 | 
            +
                    use_cache: bool = False,
         | 
| 841 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 842 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.46
         | 
| 843 | 
            +
                    **kwargs,
         | 
| 844 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 845 | 
            +
                    bsz, q_len, _ = query_states.size()
         | 
| 846 | 
            +
             | 
| 847 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 848 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 849 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 850 | 
            +
             | 
| 851 | 
            +
                    if position_embeddings is None:
         | 
| 852 | 
            +
                        logger.warning_once(
         | 
| 853 | 
            +
                            "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
         | 
| 854 | 
            +
                            "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
         | 
| 855 | 
            +
                            "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
         | 
| 856 | 
            +
                            "removed and `position_embeddings` will be mandatory."
         | 
| 857 | 
            +
                        )
         | 
| 858 | 
            +
                        cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 859 | 
            +
                    else:
         | 
| 860 | 
            +
                        cos, sin = position_embeddings
         | 
| 861 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 862 | 
            +
             | 
| 863 | 
            +
                    if past_key_value is not None:
         | 
| 864 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 865 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 866 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 867 | 
            +
             | 
| 868 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 869 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 870 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 871 | 
            +
             | 
| 872 | 
            +
                    if attention_mask is not None:  # no matter the length, we just slice it
         | 
| 873 | 
            +
                        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         | 
| 874 | 
            +
                        attn_weights = attn_weights + causal_mask
         | 
| 875 | 
            +
             | 
| 876 | 
            +
                    # upcast attention to fp32
         | 
| 877 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 878 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
         | 
| 879 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 880 | 
            +
             | 
| 881 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 882 | 
            +
                        raise ValueError(
         | 
| 883 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 884 | 
            +
                            f" {attn_output.size()}"
         | 
| 885 | 
            +
                        )
         | 
| 886 | 
            +
             | 
| 887 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 888 | 
            +
             | 
| 889 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, -1)
         | 
| 890 | 
            +
             | 
| 891 | 
            +
                    if not output_attentions:
         | 
| 892 | 
            +
                        attn_weights = None
         | 
| 893 | 
            +
             | 
| 894 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 895 | 
            +
             | 
| 896 | 
            +
             | 
| 897 | 
            +
            class LlamaFlashAttention2WithoutLinear(LlamaAttentionWithoutLinear):
         | 
| 898 | 
            +
                """
         | 
| 899 | 
            +
                Remove the Q/K/V/O projection layer in LlamaFlashAttention2 module and only calculate the attention logic.
         | 
| 900 | 
            +
                The Q/K/V Projection is moved to BeforeAttention Module, and the O Projection is moved to AfterAttention Module.
         | 
| 901 | 
            +
                """
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 904 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 905 | 
            +
             | 
| 906 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 907 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 908 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 909 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 910 | 
            +
             | 
| 911 | 
            +
                def forward(
         | 
| 912 | 
            +
                    self,
         | 
| 913 | 
            +
                    query_states: torch.Tensor,
         | 
| 914 | 
            +
                    key_states: torch.Tensor,
         | 
| 915 | 
            +
                    value_states: torch.Tensor,
         | 
| 916 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 917 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 918 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 919 | 
            +
                    output_attentions: bool = False,
         | 
| 920 | 
            +
                    use_cache: bool = False,
         | 
| 921 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 922 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.46
         | 
| 923 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 924 | 
            +
                    if isinstance(past_key_value, StaticCache):
         | 
| 925 | 
            +
                        raise ValueError(
         | 
| 926 | 
            +
                            "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
         | 
| 927 | 
            +
                            "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
         | 
| 928 | 
            +
                        )
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                    output_attentions = False
         | 
| 931 | 
            +
             | 
| 932 | 
            +
                    bsz, q_len, _ = query_states.size()
         | 
| 933 | 
            +
             | 
| 934 | 
            +
                    # Flash attention requires the input to have the shape
         | 
| 935 | 
            +
                    # batch_size x seq_length x head_dim x hidden_dim
         | 
| 936 | 
            +
                    # therefore we just need to keep the original shape
         | 
| 937 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 938 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 939 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 940 | 
            +
             | 
| 941 | 
            +
                    if position_embeddings is None:
         | 
| 942 | 
            +
                        logger.warning_once(
         | 
| 943 | 
            +
                            "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
         | 
| 944 | 
            +
                            "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
         | 
| 945 | 
            +
                            "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
         | 
| 946 | 
            +
                            "removed and `position_embeddings` will be mandatory."
         | 
| 947 | 
            +
                        )
         | 
| 948 | 
            +
                        cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 949 | 
            +
                    else:
         | 
| 950 | 
            +
                        cos, sin = position_embeddings
         | 
| 951 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 952 | 
            +
             | 
| 953 | 
            +
                    if past_key_value is not None:
         | 
| 954 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 955 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 956 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 957 | 
            +
             | 
| 958 | 
            +
                    # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
         | 
| 959 | 
            +
                    # to be able to avoid many of these transpose/reshape/view.
         | 
| 960 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 961 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 962 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 963 | 
            +
             | 
| 964 | 
            +
                    dropout_rate = self.attention_dropout if self.training else 0.0
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 967 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 968 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 969 | 
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         | 
| 970 | 
            +
                    # in fp32. (LlamaRMSNorm handles it correctly)
         | 
| 971 | 
            +
             | 
| 972 | 
            +
                    input_dtype = query_states.dtype
         | 
| 973 | 
            +
                    if input_dtype == torch.float32:
         | 
| 974 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 975 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 976 | 
            +
                        # Handle the case where the model is quantized
         | 
| 977 | 
            +
                        elif hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 978 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 979 | 
            +
                        else:
         | 
| 980 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 981 | 
            +
             | 
| 982 | 
            +
                        logger.warning_once(
         | 
| 983 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 984 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 985 | 
            +
                            f" {target_dtype}."
         | 
| 986 | 
            +
                        )
         | 
| 987 | 
            +
             | 
| 988 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 989 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 990 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 991 | 
            +
             | 
| 992 | 
            +
                    attn_output = _flash_attention_forward(
         | 
| 993 | 
            +
                        query_states,
         | 
| 994 | 
            +
                        key_states,
         | 
| 995 | 
            +
                        value_states,
         | 
| 996 | 
            +
                        attention_mask,
         | 
| 997 | 
            +
                        q_len,
         | 
| 998 | 
            +
                        position_ids=position_ids,
         | 
| 999 | 
            +
                        dropout=dropout_rate,
         | 
| 1000 | 
            +
                        sliding_window=getattr(self, "sliding_window", None),
         | 
| 1001 | 
            +
                        use_top_left_mask=self._flash_attn_uses_top_left_mask,
         | 
| 1002 | 
            +
                        is_causal=self.is_causal,
         | 
| 1003 | 
            +
                    )
         | 
| 1004 | 
            +
             | 
| 1005 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                    if not output_attentions:
         | 
| 1008 | 
            +
                        attn_weights = None
         | 
| 1009 | 
            +
             | 
| 1010 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 1011 | 
            +
             | 
| 1012 | 
            +
             | 
| 1013 | 
            +
            class LlamaSdpaAttentionWithoutLinear(LlamaAttentionWithoutLinear):
         | 
| 1014 | 
            +
                """
         | 
| 1015 | 
            +
                Remove the Q/K/V/O projection layer in LlamaSdpaAttention module and only calculate the attention logic.
         | 
| 1016 | 
            +
                The Q/K/V Projection is moved to BeforeAttention Module, and the O Projection is moved to AfterAttention Module.
         | 
| 1017 | 
            +
                """
         | 
| 1018 | 
            +
             | 
| 1019 | 
            +
                # Adapted from LlamaAttention.forward
         | 
| 1020 | 
            +
                def forward(
         | 
| 1021 | 
            +
                    self,
         | 
| 1022 | 
            +
                    query_states: torch.Tensor,
         | 
| 1023 | 
            +
                    key_states: torch.Tensor,
         | 
| 1024 | 
            +
                    value_states: torch.Tensor,
         | 
| 1025 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1026 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1027 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 1028 | 
            +
                    output_attentions: bool = False,
         | 
| 1029 | 
            +
                    use_cache: bool = False,
         | 
| 1030 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1031 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.46
         | 
| 1032 | 
            +
                    **kwargs,
         | 
| 1033 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 1034 | 
            +
                    if output_attentions:
         | 
| 1035 | 
            +
                        # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
         | 
| 1036 | 
            +
                        logger.warning_once(
         | 
| 1037 | 
            +
                            "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         | 
| 1038 | 
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 1039 | 
            +
                        )
         | 
| 1040 | 
            +
                        return super().forward(
         | 
| 1041 | 
            +
                            query_states=query_states,
         | 
| 1042 | 
            +
                            key_states=key_states,
         | 
| 1043 | 
            +
                            value_states=value_states,
         | 
| 1044 | 
            +
                            attention_mask=attention_mask,
         | 
| 1045 | 
            +
                            position_ids=position_ids,
         | 
| 1046 | 
            +
                            past_key_value=past_key_value,
         | 
| 1047 | 
            +
                            output_attentions=output_attentions,
         | 
| 1048 | 
            +
                            use_cache=use_cache,
         | 
| 1049 | 
            +
                            cache_position=cache_position,
         | 
| 1050 | 
            +
                            position_embeddings=position_embeddings,
         | 
| 1051 | 
            +
                        )
         | 
| 1052 | 
            +
             | 
| 1053 | 
            +
                    bsz, q_len, _ = query_states.size()
         | 
| 1054 | 
            +
             | 
| 1055 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 1056 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 1057 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 1058 | 
            +
             | 
| 1059 | 
            +
                    if position_embeddings is None:
         | 
| 1060 | 
            +
                        logger.warning_once(
         | 
| 1061 | 
            +
                            "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
         | 
| 1062 | 
            +
                            "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
         | 
| 1063 | 
            +
                            "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
         | 
| 1064 | 
            +
                            "removed and `position_embeddings` will be mandatory."
         | 
| 1065 | 
            +
                        )
         | 
| 1066 | 
            +
                        cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 1067 | 
            +
                    else:
         | 
| 1068 | 
            +
                        cos, sin = position_embeddings
         | 
| 1069 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 1070 | 
            +
             | 
| 1071 | 
            +
                    if past_key_value is not None:
         | 
| 1072 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 1073 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 1074 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 1075 | 
            +
             | 
| 1076 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 1077 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 1078 | 
            +
             | 
| 1079 | 
            +
                    causal_mask = attention_mask
         | 
| 1080 | 
            +
                    if attention_mask is not None:
         | 
| 1081 | 
            +
                        causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
         | 
| 1082 | 
            +
             | 
| 1083 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         | 
| 1084 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 1085 | 
            +
                    if query_states.device.type == "cuda" and causal_mask is not None:
         | 
| 1086 | 
            +
                        query_states = query_states.contiguous()
         | 
| 1087 | 
            +
                        key_states = key_states.contiguous()
         | 
| 1088 | 
            +
                        value_states = value_states.contiguous()
         | 
| 1089 | 
            +
             | 
| 1090 | 
            +
                    # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
         | 
| 1091 | 
            +
                    # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
         | 
| 1092 | 
            +
                    is_causal = True if causal_mask is None and q_len > 1 else False
         | 
| 1093 | 
            +
             | 
| 1094 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 1095 | 
            +
                        query_states,
         | 
| 1096 | 
            +
                        key_states,
         | 
| 1097 | 
            +
                        value_states,
         | 
| 1098 | 
            +
                        attn_mask=causal_mask,
         | 
| 1099 | 
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         | 
| 1100 | 
            +
                        is_causal=is_causal,
         | 
| 1101 | 
            +
                    )
         | 
| 1102 | 
            +
             | 
| 1103 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 1104 | 
            +
                    attn_output = attn_output.view(bsz, q_len, -1)
         | 
| 1105 | 
            +
             | 
| 1106 | 
            +
                    return attn_output, None, past_key_value
         | 
| 1107 | 
            +
             | 
| 1108 | 
            +
             | 
| 1109 | 
            +
            COAT_LLAMA_ATTENTION_CLASSES = {
         | 
| 1110 | 
            +
                "eager": LlamaAttentionWithoutLinear,
         | 
| 1111 | 
            +
                "flash_attention_2": LlamaFlashAttention2WithoutLinear,
         | 
| 1112 | 
            +
                "sdpa": LlamaSdpaAttentionWithoutLinear,
         | 
| 1113 | 
            +
            }
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
             | 
| 1116 | 
            +
            class CoatLlamaDecoderLayer(nn.Module):
         | 
| 1117 | 
            +
                def __init__(self, config: CoatLlamaConfig, layer_idx: int):
         | 
| 1118 | 
            +
                    super().__init__()
         | 
| 1119 | 
            +
                    self.layer_idx = layer_idx
         | 
| 1120 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 1121 | 
            +
             | 
| 1122 | 
            +
                    self.self_attn = COAT_LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
         | 
| 1123 | 
            +
             | 
| 1124 | 
            +
                    self.qargs = QuantizationConfig(**config.coat_fp8_args)
         | 
| 1125 | 
            +
                    self.BeforeAttention = CoatLlamaBeforeAttentionResidual(config, self.qargs, layer_idx)
         | 
| 1126 | 
            +
                    self.AfterAttention = CoatLlamaAfterAttentionResidual(config, self.qargs, layer_idx)
         | 
| 1127 | 
            +
                    self.MLPResidual = CoatLlamaMLPResidual(config, self.qargs, layer_idx, self.hidden_size)
         | 
| 1128 | 
            +
             | 
| 1129 | 
            +
                    self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 1130 | 
            +
                    self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 1131 | 
            +
             | 
| 1132 | 
            +
                def forward(
         | 
| 1133 | 
            +
                    self,
         | 
| 1134 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 1135 | 
            +
                    quant_hidden_states: torch.Tensor,
         | 
| 1136 | 
            +
                    scale_hidden_states: torch.Tensor,
         | 
| 1137 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1138 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1139 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 1140 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 1141 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 1142 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1143 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.46
         | 
| 1144 | 
            +
                    **kwargs,
         | 
| 1145 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 1146 | 
            +
                    """
         | 
| 1147 | 
            +
                    Args:
         | 
| 1148 | 
            +
                        hidden_states (`torch.FloatTensor`): BF16 input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 1149 | 
            +
                        quant_hidden_states (`torch.float8_e4m3fn`): FP8 input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 1150 | 
            +
                        scale_hidden_states (`torch.bfloat16`): BF16 scaling factor to the layer of shape `(batch, seq_len, embed_dim // group_size)`
         | 
| 1151 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 1152 | 
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         | 
| 1153 | 
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         | 
| 1154 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 1155 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 1156 | 
            +
                            returned tensors for more detail.
         | 
| 1157 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 1158 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 1159 | 
            +
                            (see `past_key_values`).
         | 
| 1160 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 1161 | 
            +
                        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 1162 | 
            +
                            Indices depicting the position of the input sequence tokens in the sequence
         | 
| 1163 | 
            +
                        position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
         | 
| 1164 | 
            +
                            Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
         | 
| 1165 | 
            +
                            with `head_dim` being the embedding dimension of each attention head.
         | 
| 1166 | 
            +
                        kwargs (`dict`, *optional*):
         | 
| 1167 | 
            +
                            Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
         | 
| 1168 | 
            +
                            into the model
         | 
| 1169 | 
            +
                    """
         | 
| 1170 | 
            +
             | 
| 1171 | 
            +
                    # Coat: The residual, LayerNorm, and the Q/K/V Projection Linear Layer
         | 
| 1172 | 
            +
                    residual, query_states, key_states, value_states = self.BeforeAttention(
         | 
| 1173 | 
            +
                        hidden_states, quant_hidden_states, scale_hidden_states, self.input_layernorm.weight
         | 
| 1174 | 
            +
                    )
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
                    # Self Attention without any linear layer
         | 
| 1177 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 1178 | 
            +
                        query_states=query_states,
         | 
| 1179 | 
            +
                        key_states=key_states,
         | 
| 1180 | 
            +
                        value_states=value_states,
         | 
| 1181 | 
            +
                        attention_mask=attention_mask,
         | 
| 1182 | 
            +
                        position_ids=position_ids,
         | 
| 1183 | 
            +
                        past_key_value=past_key_value,
         | 
| 1184 | 
            +
                        output_attentions=output_attentions,
         | 
| 1185 | 
            +
                        use_cache=use_cache,
         | 
| 1186 | 
            +
                        cache_position=cache_position,
         | 
| 1187 | 
            +
                        position_embeddings=position_embeddings,
         | 
| 1188 | 
            +
                        **kwargs,
         | 
| 1189 | 
            +
                    )
         | 
| 1190 | 
            +
             | 
| 1191 | 
            +
                    # Coat: The Output Projection Linear Layer and Residual
         | 
| 1192 | 
            +
                    hidden_states, quant_hidden_states, scale_hidden_states = self.AfterAttention(residual, hidden_states)
         | 
| 1193 | 
            +
             | 
| 1194 | 
            +
                    # Residual Connection, LayerNorm, and the whole MLP module
         | 
| 1195 | 
            +
                    hidden_states, quant_hidden_states, scale_hidden_states = self.MLPResidual(
         | 
| 1196 | 
            +
                        hidden_states, quant_hidden_states, scale_hidden_states, self.post_attention_layernorm.weight
         | 
| 1197 | 
            +
                    )
         | 
| 1198 | 
            +
             | 
| 1199 | 
            +
                    outputs = ((hidden_states, quant_hidden_states, scale_hidden_states),)
         | 
| 1200 | 
            +
             | 
| 1201 | 
            +
                    if output_attentions:
         | 
| 1202 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 1203 | 
            +
             | 
| 1204 | 
            +
                    if use_cache:
         | 
| 1205 | 
            +
                        outputs += (present_key_value,)
         | 
| 1206 | 
            +
             | 
| 1207 | 
            +
                    return outputs
         | 
| 1208 | 
            +
             | 
| 1209 | 
            +
             | 
| 1210 | 
            +
            class CoatLlamaPreTrainedModel(PreTrainedModel):
         | 
| 1211 | 
            +
                config_class = CoatLlamaConfig
         | 
| 1212 | 
            +
                base_model_prefix = "model"
         | 
| 1213 | 
            +
                supports_gradient_checkpointing = True
         | 
| 1214 | 
            +
                _no_split_modules = ["LlamaDecoderLayer"]
         | 
| 1215 | 
            +
                _skip_keys_device_placement = ["past_key_values"]
         | 
| 1216 | 
            +
                _supports_flash_attn_2 = True
         | 
| 1217 | 
            +
                _supports_sdpa = True
         | 
| 1218 | 
            +
                _supports_cache_class = True
         | 
| 1219 | 
            +
                _supports_quantized_cache = True
         | 
| 1220 | 
            +
                _supports_static_cache = True
         | 
| 1221 | 
            +
             | 
| 1222 | 
            +
                def _init_weights(self, module):
         | 
| 1223 | 
            +
                    std = self.config.initializer_range
         | 
| 1224 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 1225 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1226 | 
            +
                        if module.bias is not None:
         | 
| 1227 | 
            +
                            module.bias.data.zero_()
         | 
| 1228 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 1229 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1230 | 
            +
                        if module.padding_idx is not None:
         | 
| 1231 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 1232 | 
            +
             | 
| 1233 | 
            +
             | 
| 1234 | 
            +
            class CoatLlamaModel(CoatLlamaPreTrainedModel):
         | 
| 1235 | 
            +
                """
         | 
| 1236 | 
            +
                Coat Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`CoatLlamaDecoderLayer`]
         | 
| 1237 | 
            +
             | 
| 1238 | 
            +
                Args:
         | 
| 1239 | 
            +
                    config: CoatLlamaConfig
         | 
| 1240 | 
            +
                """
         | 
| 1241 | 
            +
             | 
| 1242 | 
            +
                def __init__(self, config: CoatLlamaConfig):
         | 
| 1243 | 
            +
                    super().__init__(config)
         | 
| 1244 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 1245 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1246 | 
            +
             | 
| 1247 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 1248 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 1249 | 
            +
                        [CoatLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 1250 | 
            +
                    )
         | 
| 1251 | 
            +
                    self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 1252 | 
            +
                    self.rotary_emb = LlamaRotaryEmbedding(config=config)
         | 
| 1253 | 
            +
                    self.gradient_checkpointing = False
         | 
| 1254 | 
            +
             | 
| 1255 | 
            +
                    # Quantize
         | 
| 1256 | 
            +
                    self.qargs = QuantizationConfig(**config.coat_fp8_args)
         | 
| 1257 | 
            +
                    self.quantize_input_before_block = Coat_quantize_bgn(self.qargs)
         | 
| 1258 | 
            +
                    self.quantize_output_after_block = Coat_quantize_end(self.qargs)
         | 
| 1259 | 
            +
             | 
| 1260 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1261 | 
            +
                    self.post_init()
         | 
| 1262 | 
            +
             | 
| 1263 | 
            +
                def get_input_embeddings(self):
         | 
| 1264 | 
            +
                    return self.embed_tokens
         | 
| 1265 | 
            +
             | 
| 1266 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1267 | 
            +
                    self.embed_tokens = value
         | 
| 1268 | 
            +
             | 
| 1269 | 
            +
                def forward(
         | 
| 1270 | 
            +
                    self,
         | 
| 1271 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1272 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1273 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1274 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 1275 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1276 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1277 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1278 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1279 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1280 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1281 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 1282 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1283 | 
            +
                    output_hidden_states = (
         | 
| 1284 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1285 | 
            +
                    )
         | 
| 1286 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 1287 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1288 | 
            +
             | 
| 1289 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 1290 | 
            +
                        raise ValueError(
         | 
| 1291 | 
            +
                            "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
         | 
| 1292 | 
            +
                        )
         | 
| 1293 | 
            +
             | 
| 1294 | 
            +
                    if self.gradient_checkpointing and self.training and use_cache:
         | 
| 1295 | 
            +
                        logger.warning_once(
         | 
| 1296 | 
            +
                            "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
         | 
| 1297 | 
            +
                        )
         | 
| 1298 | 
            +
                        use_cache = False
         | 
| 1299 | 
            +
             | 
| 1300 | 
            +
                    if inputs_embeds is None:
         | 
| 1301 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 1302 | 
            +
             | 
| 1303 | 
            +
                    # kept for BC (non `Cache` `past_key_values` inputs)
         | 
| 1304 | 
            +
                    return_legacy_cache = False
         | 
| 1305 | 
            +
                    if use_cache and not isinstance(past_key_values, Cache):
         | 
| 1306 | 
            +
                        return_legacy_cache = True
         | 
| 1307 | 
            +
                        if past_key_values is None:
         | 
| 1308 | 
            +
                            past_key_values = DynamicCache()
         | 
| 1309 | 
            +
                        else:
         | 
| 1310 | 
            +
                            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 1311 | 
            +
                            logger.warning_once(
         | 
| 1312 | 
            +
                                "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
         | 
| 1313 | 
            +
                                "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
         | 
| 1314 | 
            +
                                "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
         | 
| 1315 | 
            +
                            )
         | 
| 1316 | 
            +
             | 
| 1317 | 
            +
                    if cache_position is None:
         | 
| 1318 | 
            +
                        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 1319 | 
            +
                        cache_position = torch.arange(
         | 
| 1320 | 
            +
                            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
         | 
| 1321 | 
            +
                        )
         | 
| 1322 | 
            +
                    if position_ids is None:
         | 
| 1323 | 
            +
                        position_ids = cache_position.unsqueeze(0)
         | 
| 1324 | 
            +
             | 
| 1325 | 
            +
                    causal_mask = self._update_causal_mask(
         | 
| 1326 | 
            +
                        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
         | 
| 1327 | 
            +
                    )
         | 
| 1328 | 
            +
                    hidden_states = inputs_embeds
         | 
| 1329 | 
            +
             | 
| 1330 | 
            +
                    # create position embeddings to be shared across the decoder layers
         | 
| 1331 | 
            +
                    position_embeddings = self.rotary_emb(hidden_states, position_ids)
         | 
| 1332 | 
            +
             | 
| 1333 | 
            +
                    # decoder layers
         | 
| 1334 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 1335 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 1336 | 
            +
                    next_decoder_cache = None
         | 
| 1337 | 
            +
             | 
| 1338 | 
            +
                    # Prepare the input for Coat decoderlayer
         | 
| 1339 | 
            +
                    hidden_states, quant_hidden_states, scale_hidden_states = self.quantize_input_before_block(hidden_states)
         | 
| 1340 | 
            +
             | 
| 1341 | 
            +
                    for decoder_layer in self.layers:
         | 
| 1342 | 
            +
                        if output_hidden_states:
         | 
| 1343 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 1344 | 
            +
             | 
| 1345 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 1346 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 1347 | 
            +
                                decoder_layer.__call__,
         | 
| 1348 | 
            +
                                hidden_states,
         | 
| 1349 | 
            +
                                quant_hidden_states,
         | 
| 1350 | 
            +
                                scale_hidden_states,
         | 
| 1351 | 
            +
                                causal_mask,
         | 
| 1352 | 
            +
                                position_ids,
         | 
| 1353 | 
            +
                                past_key_values,
         | 
| 1354 | 
            +
                                output_attentions,
         | 
| 1355 | 
            +
                                use_cache,
         | 
| 1356 | 
            +
                                cache_position,
         | 
| 1357 | 
            +
                                position_embeddings,
         | 
| 1358 | 
            +
                            )
         | 
| 1359 | 
            +
                        else:
         | 
| 1360 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 1361 | 
            +
                                hidden_states,
         | 
| 1362 | 
            +
                                quant_hidden_states,
         | 
| 1363 | 
            +
                                scale_hidden_states,
         | 
| 1364 | 
            +
                                attention_mask=causal_mask,
         | 
| 1365 | 
            +
                                position_ids=position_ids,
         | 
| 1366 | 
            +
                                past_key_value=past_key_values,
         | 
| 1367 | 
            +
                                output_attentions=output_attentions,
         | 
| 1368 | 
            +
                                use_cache=use_cache,
         | 
| 1369 | 
            +
                                cache_position=cache_position,
         | 
| 1370 | 
            +
                                position_embeddings=position_embeddings,
         | 
| 1371 | 
            +
                            )
         | 
| 1372 | 
            +
             | 
| 1373 | 
            +
                        hidden_states, quant_hidden_states, scale_hidden_states = layer_outputs[0]
         | 
| 1374 | 
            +
             | 
| 1375 | 
            +
                        if use_cache:
         | 
| 1376 | 
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1377 | 
            +
             | 
| 1378 | 
            +
                        if output_attentions:
         | 
| 1379 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1380 | 
            +
             | 
| 1381 | 
            +
                    # Summarize the output of the Decoder Layer
         | 
| 1382 | 
            +
                    hidden_states = self.quantize_output_after_block(hidden_states, quant_hidden_states, scale_hidden_states)
         | 
| 1383 | 
            +
             | 
| 1384 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1385 | 
            +
             | 
| 1386 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1387 | 
            +
                    if output_hidden_states:
         | 
| 1388 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1389 | 
            +
             | 
| 1390 | 
            +
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 1391 | 
            +
                    if return_legacy_cache:
         | 
| 1392 | 
            +
                        next_cache = next_cache.to_legacy_cache()
         | 
| 1393 | 
            +
             | 
| 1394 | 
            +
                    if not return_dict:
         | 
| 1395 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 1396 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 1397 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1398 | 
            +
                        past_key_values=next_cache,
         | 
| 1399 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1400 | 
            +
                        attentions=all_self_attns,
         | 
| 1401 | 
            +
                    )
         | 
| 1402 | 
            +
             | 
| 1403 | 
            +
                _update_causal_mask = LlamaModel._update_causal_mask
         | 
| 1404 | 
            +
             | 
| 1405 | 
            +
             | 
| 1406 | 
            +
            class CoatLlamaForCausalLM(CoatLlamaPreTrainedModel, GenerationMixin):
         | 
| 1407 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 1408 | 
            +
             | 
| 1409 | 
            +
                def __init__(self, config):
         | 
| 1410 | 
            +
                    super().__init__(config)
         | 
| 1411 | 
            +
                    self.model = CoatLlamaModel(config)
         | 
| 1412 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1413 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1414 | 
            +
             | 
| 1415 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1416 | 
            +
                    self.post_init()
         | 
| 1417 | 
            +
             | 
| 1418 | 
            +
                def get_input_embeddings(self):
         | 
| 1419 | 
            +
                    return self.model.embed_tokens
         | 
| 1420 | 
            +
             | 
| 1421 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1422 | 
            +
                    self.model.embed_tokens = value
         | 
| 1423 | 
            +
             | 
| 1424 | 
            +
                def get_output_embeddings(self):
         | 
| 1425 | 
            +
                    return self.lm_head
         | 
| 1426 | 
            +
             | 
| 1427 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1428 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1429 | 
            +
             | 
| 1430 | 
            +
                def set_decoder(self, decoder):
         | 
| 1431 | 
            +
                    self.model = decoder
         | 
| 1432 | 
            +
             | 
| 1433 | 
            +
                def get_decoder(self):
         | 
| 1434 | 
            +
                    return self.model
         | 
| 1435 | 
            +
             | 
| 1436 | 
            +
                forward = LlamaForCausalLM.forward
         | 
| 1437 | 
            +
             | 
| 1438 | 
            +
                prepare_inputs_for_generation = LlamaForCausalLM.prepare_inputs_for_generation
         | 
| 1439 | 
            +
             | 
| 1440 | 
            +
             | 
| 1441 | 
            +
            # TODO
         | 
| 1442 | 
            +
            # class LlamaForSequenceClassification(LlamaPreTrainedModel):
         | 
| 1443 | 
            +
             | 
| 1444 | 
            +
            # class LlamaForQuestionAnswering(LlamaPreTrainedModel):
         | 
| 1445 | 
            +
             | 
| 1446 | 
            +
            # class LlamaForTokenClassification(LlamaPreTrainedModel):
         | 
| 1447 | 
            +
             | 
| 1448 | 
            +
             | 
| 1449 | 
            +
            def make_state_dict_compatible(state_dict: dict[str, torch.Tensor]):
         | 
| 1450 | 
            +
                compatible_state_dict = {}
         | 
| 1451 | 
            +
             | 
| 1452 | 
            +
                for key, value in state_dict.items():
         | 
| 1453 | 
            +
                    if fnmatch(key, "*self_attn.q_proj*"):
         | 
| 1454 | 
            +
                        new_key = key.replace("self_attn.q_proj", "BeforeAttention.q_proj")
         | 
| 1455 | 
            +
                    elif fnmatch(key, "*self_attn.k_proj*"):
         | 
| 1456 | 
            +
                        new_key = key.replace("self_attn.k_proj", "BeforeAttention.k_proj")
         | 
| 1457 | 
            +
                    elif fnmatch(key, "*self_attn.v_proj*"):
         | 
| 1458 | 
            +
                        new_key = key.replace("self_attn.v_proj", "BeforeAttention.v_proj")
         | 
| 1459 | 
            +
                    elif fnmatch(key, "*self_attn.o_proj*"):
         | 
| 1460 | 
            +
                        new_key = key.replace("self_attn.o_proj", "AfterAttention.o_proj")
         | 
| 1461 | 
            +
             | 
| 1462 | 
            +
                    elif fnmatch(key, "*mlp.gate_proj*"):
         | 
| 1463 | 
            +
                        new_key = key.replace("mlp.gate_proj", "MLPResidual.gate_proj")
         | 
| 1464 | 
            +
                    elif fnmatch(key, "*mlp.up_proj*"):
         | 
| 1465 | 
            +
                        new_key = key.replace("mlp.up_proj", "MLPResidual.up_proj")
         | 
| 1466 | 
            +
                    elif fnmatch(key, "*mlp.down_proj*"):
         | 
| 1467 | 
            +
                        new_key = key.replace("mlp.down_proj", "MLPResidual.down_proj")
         | 
| 1468 | 
            +
             | 
| 1469 | 
            +
                    else:
         | 
| 1470 | 
            +
                        new_key = key
         | 
| 1471 | 
            +
             | 
| 1472 | 
            +
                    compatible_state_dict[new_key] = value
         | 
| 1473 | 
            +
             | 
| 1474 | 
            +
                return compatible_state_dict
         | 
| 1475 | 
            +
             | 
| 1476 | 
            +
             | 
| 1477 | 
            +
            AutoConfig.register("fp8_llama", CoatLlamaConfig)
         | 
| 1478 | 
            +
            AutoModel.register(CoatLlamaConfig, CoatLlamaModel)
         | 
| 1479 | 
            +
            AutoModelForCausalLM.register(CoatLlamaConfig, CoatLlamaForCausalLM)
         | 
    	
        llava/model/coat/activation/models/coat_llama_convert_from_hf.py
    ADDED
    
    | @@ -0,0 +1,71 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import argparse
         | 
| 8 | 
            +
            import os
         | 
| 9 | 
            +
            from dataclasses import asdict, dataclass, field
         | 
| 10 | 
            +
            from typing import Optional
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import torch
         | 
| 13 | 
            +
            import transformers
         | 
| 14 | 
            +
            from coat.activation.models._fp8_quantization_config import QuantizationConfig
         | 
| 15 | 
            +
            from coat.activation.models.coat_llama import CoatLlamaConfig, CoatLlamaForCausalLM, make_state_dict_compatible
         | 
| 16 | 
            +
            from transformers import AutoConfig, AutoModelForCausalLM
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            @dataclass
         | 
| 20 | 
            +
            class ConvertArguments:
         | 
| 21 | 
            +
                model_name: str = field(metadata={"help": "The model name or path to download the LLaMA model"})
         | 
| 22 | 
            +
                save_path: str = field(metadata={"help": "The path where the converted model weights will be saved"})
         | 
| 23 | 
            +
                cache_dir: str = field(default=None, metadata={"help": "Directory to cache the model"})
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            def download_and_convert_llama(convert_args: ConvertArguments, quantization_args: QuantizationConfig):
         | 
| 27 | 
            +
                """
         | 
| 28 | 
            +
                Downloads a LLaMA model, converts its weights using `make_state_dict_compatible`,
         | 
| 29 | 
            +
                and saves the converted model.
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                Args:
         | 
| 32 | 
            +
                    model_name (str): The model name or path to download the LLaMA model.
         | 
| 33 | 
            +
                    save_path (str): The path where the converted model weights will be saved.
         | 
| 34 | 
            +
                    cache_dir (Optional[str]): Directory to cache the model. Defaults to None.
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                Returns:
         | 
| 37 | 
            +
                    None
         | 
| 38 | 
            +
                """
         | 
| 39 | 
            +
                model_name = convert_args.model_name
         | 
| 40 | 
            +
                save_path = convert_args.save_path
         | 
| 41 | 
            +
                cache_dir = convert_args.cache_dir
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                # Step 1: Download the original LLaMA model
         | 
| 44 | 
            +
                model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=cache_dir)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                # Step 2: Initialize the model configuration for FP8 or other custom config
         | 
| 47 | 
            +
                config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                # Step 3: Apply make_state_dict_compatible to convert weights
         | 
| 50 | 
            +
                compatible_state_dict = make_state_dict_compatible(model.state_dict())
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                # Step 4: Create a new model instance with compatible configuration
         | 
| 53 | 
            +
                fp8_config = CoatLlamaConfig(**config.to_dict())
         | 
| 54 | 
            +
                fp8_config.coat_fp8_args = asdict(quantization_args)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                converted_model = AutoModelForCausalLM.from_config(fp8_config)
         | 
| 57 | 
            +
                converted_model.load_state_dict(compatible_state_dict)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                # Step 5: Save the converted model and configuration using save_pretrained
         | 
| 60 | 
            +
                os.makedirs(save_path, exist_ok=True)
         | 
| 61 | 
            +
                converted_model.save_pretrained(save_path)
         | 
| 62 | 
            +
                print(f"Converted model saved at {save_path}")
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            if __name__ == "__main__":
         | 
| 66 | 
            +
                # Parse command-line arguments
         | 
| 67 | 
            +
                parser = transformers.HfArgumentParser((ConvertArguments, QuantizationConfig))  # NOTE: FP8
         | 
| 68 | 
            +
                convert_args, quantization_args = parser.parse_args_into_dataclasses()
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                # Call the function with parsed arguments
         | 
| 71 | 
            +
                download_and_convert_llama(convert_args, quantization_args)
         | 
    	
        llava/model/coat/activation/models/coat_olmo.py
    ADDED
    
    | @@ -0,0 +1,1942 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            """
         | 
| 24 | 
            +
            Adapted from
         | 
| 25 | 
            +
            [MosaiclML](https://github.com/mosaicml/examples.git) and
         | 
| 26 | 
            +
            [minGPT](https://github.com/karpathy/minGPT.git)
         | 
| 27 | 
            +
            """
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            from __future__ import annotations
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            import logging
         | 
| 32 | 
            +
            import math
         | 
| 33 | 
            +
            import sys
         | 
| 34 | 
            +
            from abc import abstractmethod
         | 
| 35 | 
            +
            from collections import defaultdict
         | 
| 36 | 
            +
            from functools import partial
         | 
| 37 | 
            +
            from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Sequence, Set, Tuple, cast
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            import torch
         | 
| 40 | 
            +
            import torch.backends.cuda
         | 
| 41 | 
            +
            import torch.nn as nn
         | 
| 42 | 
            +
            import torch.nn.functional as F
         | 
| 43 | 
            +
            from olmo.aliases import PathOrStr
         | 
| 44 | 
            +
            from olmo.beam_search import BeamSearch, Constraint, FinalSequenceScorer, Sampler
         | 
| 45 | 
            +
            from olmo.config import (
         | 
| 46 | 
            +
                ActivationCheckpointingStrategy,
         | 
| 47 | 
            +
                ActivationType,
         | 
| 48 | 
            +
                BlockType,
         | 
| 49 | 
            +
                CheckpointType,
         | 
| 50 | 
            +
                FSDPWrapStrategy,
         | 
| 51 | 
            +
                InitFnType,
         | 
| 52 | 
            +
                LayerNormType,
         | 
| 53 | 
            +
                ModelConfig,
         | 
| 54 | 
            +
                QuantActivationConfig,
         | 
| 55 | 
            +
                ShardedCheckpointerType,
         | 
| 56 | 
            +
                TrainConfig,
         | 
| 57 | 
            +
            )
         | 
| 58 | 
            +
            from olmo.exceptions import OLMoConfigurationError
         | 
| 59 | 
            +
            from olmo.initialization import init_normal
         | 
| 60 | 
            +
            from olmo.model import (
         | 
| 61 | 
            +
                Activation,
         | 
| 62 | 
            +
                BufferCache,
         | 
| 63 | 
            +
                Dropout,
         | 
| 64 | 
            +
                LayerNorm,
         | 
| 65 | 
            +
                LayerNormBase,
         | 
| 66 | 
            +
                OLMo,
         | 
| 67 | 
            +
                OLMoBlock,
         | 
| 68 | 
            +
                OLMoBlockGroup,
         | 
| 69 | 
            +
                OLMoGenerateOutput,
         | 
| 70 | 
            +
                OLMoOutput,
         | 
| 71 | 
            +
                RMSLayerNorm,
         | 
| 72 | 
            +
                RotaryEmbedding,
         | 
| 73 | 
            +
                _non_meta_init_device,
         | 
| 74 | 
            +
                activation_checkpoint_function,
         | 
| 75 | 
            +
                alibi_attention_bias,
         | 
| 76 | 
            +
                causal_attention_bias,
         | 
| 77 | 
            +
                get_causal_attention_bias,
         | 
| 78 | 
            +
                should_checkpoint_block,
         | 
| 79 | 
            +
            )
         | 
| 80 | 
            +
            from olmo.torch_util import ensure_finite_, get_cumulative_document_lengths
         | 
| 81 | 
            +
            from torch import einsum
         | 
| 82 | 
            +
             | 
| 83 | 
            +
            from ..real_quantization import (
         | 
| 84 | 
            +
                Coat_quantize_bgn,
         | 
| 85 | 
            +
                Coat_quantize_end,
         | 
| 86 | 
            +
                fp8_add_Ifp_Ifp_Ofp_Og16,
         | 
| 87 | 
            +
                fp8_add_Ifp_Ifp_Ofp_Opt,
         | 
| 88 | 
            +
                fp8_division,
         | 
| 89 | 
            +
                fp8_division_transpose,
         | 
| 90 | 
            +
                fp8_gelu_backward,
         | 
| 91 | 
            +
                fp8_gelu_forward,
         | 
| 92 | 
            +
                fp8_layernorm_noparam_backward,
         | 
| 93 | 
            +
                fp8_layernorm_noparam_forward,
         | 
| 94 | 
            +
                fp8_linear_backward,
         | 
| 95 | 
            +
                fp8_linear_forward,
         | 
| 96 | 
            +
                fp8_mul_backward,
         | 
| 97 | 
            +
                fp8_mul_forward,
         | 
| 98 | 
            +
                fp8_quantize,
         | 
| 99 | 
            +
                fp8_quantize_pertensor,
         | 
| 100 | 
            +
                fp8_quantize_pertensor_transpose,
         | 
| 101 | 
            +
                fp8_rmsnorm_backward,
         | 
| 102 | 
            +
                fp8_rmsnorm_forward,
         | 
| 103 | 
            +
                fp8_silu_backward,
         | 
| 104 | 
            +
                fp8_silu_forward,
         | 
| 105 | 
            +
                fp8_transpose,
         | 
| 106 | 
            +
            )
         | 
| 107 | 
            +
            from ._fp8_weightcache import FP8CacheWeightModule
         | 
| 108 | 
            +
            from ._fp8manager import FP8Manager
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            if sys.version_info.minor > 8:
         | 
| 111 | 
            +
                from collections.abc import MutableMapping
         | 
| 112 | 
            +
            elif sys.version_info.minor == 8:
         | 
| 113 | 
            +
                from typing import MutableMapping
         | 
| 114 | 
            +
            else:
         | 
| 115 | 
            +
                raise SystemExit("This script supports Python 3.8 or higher")
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            __all__ = [
         | 
| 118 | 
            +
                "LayerNormBase",
         | 
| 119 | 
            +
                "LayerNorm",
         | 
| 120 | 
            +
                "RMSLayerNorm",
         | 
| 121 | 
            +
                "RotaryEmbedding",
         | 
| 122 | 
            +
                "Activation",
         | 
| 123 | 
            +
                "GELU",
         | 
| 124 | 
            +
                "ReLU",
         | 
| 125 | 
            +
                "SwiGLU",
         | 
| 126 | 
            +
                "OLMoBlock",
         | 
| 127 | 
            +
                "OLMoSequentialBlock",
         | 
| 128 | 
            +
                "OLMo",
         | 
| 129 | 
            +
                "OLMoOutput",
         | 
| 130 | 
            +
                "OLMoGenerateOutput",
         | 
| 131 | 
            +
            ]
         | 
| 132 | 
            +
             | 
| 133 | 
            +
             | 
| 134 | 
            +
            log = logging.getLogger(__name__)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
            +
            class CoatOLMoBeforeAttentionResidual(FP8CacheWeightModule):
         | 
| 138 | 
            +
                """
         | 
| 139 | 
            +
                This is a typical transformer attention module that contains (1) Residual (2) LayerNorm / RMSNorm (3) 1 * Linear layers
         | 
| 140 | 
            +
                """
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                def __init__(self, config: ModelConfig, qargs: QuantActivationConfig, layer_id, fused_dims: tuple):
         | 
| 143 | 
            +
                    super().__init__(config, qargs, layer_id)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    self.qargs = qargs
         | 
| 146 | 
            +
                    self.fwobits = {
         | 
| 147 | 
            +
                        "fabit": self.qargs.fabit,
         | 
| 148 | 
            +
                        "fwbit": self.qargs.fwbit,
         | 
| 149 | 
            +
                        "fobit": self.qargs.fobit,
         | 
| 150 | 
            +
                        "babit": self.qargs.babit,
         | 
| 151 | 
            +
                        "bwbit": self.qargs.bwbit,
         | 
| 152 | 
            +
                        "bobit": self.qargs.bobit,
         | 
| 153 | 
            +
                    }
         | 
| 154 | 
            +
                    self.ln_normalized_shape = config.d_model
         | 
| 155 | 
            +
                    self.att_proj = nn.Linear(config.d_model, sum(fused_dims), bias=config.include_bias, device=config.init_device)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    self.attn_norm = LayerNorm.build(config)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                def forward(self, re_x, x, s):
         | 
| 160 | 
            +
                    if self.training:
         | 
| 161 | 
            +
                        if self.qargs.weight_memory_efficient:
         | 
| 162 | 
            +
                            # Prepare
         | 
| 163 | 
            +
                            with torch.no_grad():
         | 
| 164 | 
            +
                                weight1_s = self.prepare_weight(self.att_proj.weight, "att_proj", FP8Manager.is_first_microbatch)
         | 
| 165 | 
            +
                            return _CoatOLMoBeforeAttentionResidual.apply(
         | 
| 166 | 
            +
                                re_x,
         | 
| 167 | 
            +
                                x,
         | 
| 168 | 
            +
                                s,
         | 
| 169 | 
            +
                                self.att_proj.weight,
         | 
| 170 | 
            +
                                None,
         | 
| 171 | 
            +
                                None,
         | 
| 172 | 
            +
                                weight1_s,
         | 
| 173 | 
            +
                                self.qargs.group_size,
         | 
| 174 | 
            +
                                self.fwobits,
         | 
| 175 | 
            +
                                self.layer_id,
         | 
| 176 | 
            +
                                self.config,
         | 
| 177 | 
            +
                                self.qargs,
         | 
| 178 | 
            +
                            )
         | 
| 179 | 
            +
                        else:
         | 
| 180 | 
            +
                            # Prepare
         | 
| 181 | 
            +
                            with torch.no_grad():
         | 
| 182 | 
            +
                                weight1, weight1_t, weight1_s = self.prepare_weight(
         | 
| 183 | 
            +
                                    self.att_proj.weight, "att_proj", FP8Manager.is_first_microbatch
         | 
| 184 | 
            +
                                )
         | 
| 185 | 
            +
                            return _CoatOLMoBeforeAttentionResidual.apply(
         | 
| 186 | 
            +
                                re_x,
         | 
| 187 | 
            +
                                x,
         | 
| 188 | 
            +
                                s,
         | 
| 189 | 
            +
                                self.att_proj.weight,
         | 
| 190 | 
            +
                                weight1,
         | 
| 191 | 
            +
                                weight1_t,
         | 
| 192 | 
            +
                                weight1_s,
         | 
| 193 | 
            +
                                self.qargs.group_size,
         | 
| 194 | 
            +
                                self.fwobits,
         | 
| 195 | 
            +
                                self.layer_id,
         | 
| 196 | 
            +
                                self.config,
         | 
| 197 | 
            +
                                self.qargs,
         | 
| 198 | 
            +
                            )
         | 
| 199 | 
            +
                    else:
         | 
| 200 | 
            +
                        return re_x, self.att_proj(self.attn_norm(re_x))
         | 
| 201 | 
            +
             | 
| 202 | 
            +
             | 
| 203 | 
            +
            class _CoatOLMoBeforeAttentionResidual(torch.autograd.Function):
         | 
| 204 | 
            +
                @staticmethod
         | 
| 205 | 
            +
                def forward(
         | 
| 206 | 
            +
                    ctx,
         | 
| 207 | 
            +
                    re_x,
         | 
| 208 | 
            +
                    in_x,
         | 
| 209 | 
            +
                    in_s,
         | 
| 210 | 
            +
                    weight1_origin,
         | 
| 211 | 
            +
                    weight1,
         | 
| 212 | 
            +
                    weight1_t,
         | 
| 213 | 
            +
                    weight1_s,
         | 
| 214 | 
            +
                    group_size,
         | 
| 215 | 
            +
                    fwobits,
         | 
| 216 | 
            +
                    layer_id,
         | 
| 217 | 
            +
                    config,
         | 
| 218 | 
            +
                    qargs,
         | 
| 219 | 
            +
                    eps=1e-5,
         | 
| 220 | 
            +
                ):
         | 
| 221 | 
            +
                    # for autograd
         | 
| 222 | 
            +
                    if fwobits["fabit"] == "E4M3":
         | 
| 223 | 
            +
                        # in_x = in_x.to(torch.float8_e4m3fn)
         | 
| 224 | 
            +
                        in_x = in_x.view(torch.float8_e4m3fn)
         | 
| 225 | 
            +
                    else:
         | 
| 226 | 
            +
                        raise ValueError("fabit should be E4M3")
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    # LayerNorm
         | 
| 229 | 
            +
                    ln_x, ln_s, ln_x_t, ln_utils = fp8_layernorm_noparam_forward(
         | 
| 230 | 
            +
                        in_x, in_s, group_size, eps, transpose_output_2d=True
         | 
| 231 | 
            +
                    )
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    # Linear Layer QKV Projection
         | 
| 234 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 235 | 
            +
                        assert weight1 is None  # memory efficient
         | 
| 236 | 
            +
                        weight1, weight1_s = fp8_division(weight1_origin, qargs.group_size, fwobits["fwbit"], weight1_s)
         | 
| 237 | 
            +
                    fc1_x = fp8_linear_forward(ln_x, ln_s, weight1, weight1_s, False, group_size)
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    # ==================== save for backward ====================
         | 
| 240 | 
            +
                    ctx.save_for_backward(in_x, in_s, ln_x_t, ln_s)
         | 
| 241 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 242 | 
            +
                        assert weight1_t is None
         | 
| 243 | 
            +
                        ctx.weight = weight1_origin, weight1_s
         | 
| 244 | 
            +
                    else:
         | 
| 245 | 
            +
                        ctx.weight = weight1_t, weight1_s
         | 
| 246 | 
            +
                    ctx.group_size = group_size
         | 
| 247 | 
            +
                    ctx.ln_utils = ln_utils
         | 
| 248 | 
            +
                    ctx.utils = fwobits, layer_id, config, qargs
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    return re_x, fc1_x
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                @staticmethod
         | 
| 253 | 
            +
                def backward(ctx, fp_grad, flash_g):
         | 
| 254 | 
            +
                    in_x, in_s, ln_x_t, ln_s = ctx.saved_tensors
         | 
| 255 | 
            +
                    weight1_t, weight1_s = ctx.weight
         | 
| 256 | 
            +
                    group_size = ctx.group_size
         | 
| 257 | 
            +
                    mean, rstd, num_warps = ctx.ln_utils
         | 
| 258 | 
            +
                    fwobits, layer_id, config, qargs = ctx.utils
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    # ==================== Begin backward ====================
         | 
| 261 | 
            +
                    # Quantize the RoPE and FlashAttention Output. grad_input and grad_weight requires different data layout.
         | 
| 262 | 
            +
                    flash_g, flash_gs, flash_g_t = fp8_quantize_pertensor_transpose(
         | 
| 263 | 
            +
                        flash_g, group_size, fwobits["babit"], transpose_output_2d=True, stochastic=False
         | 
| 264 | 
            +
                    )
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    # Linear Layer QKV Projection
         | 
| 267 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 268 | 
            +
                        weight1_t, weight1_s = fp8_division_transpose(
         | 
| 269 | 
            +
                            weight1_t, qargs.group_size, fwobits["fwbit"], weight1_s, only_transposed=True
         | 
| 270 | 
            +
                        )
         | 
| 271 | 
            +
                    fc1_g, att_proj_wg = fp8_linear_backward(
         | 
| 272 | 
            +
                        ln_x_t, ln_s, flash_g, flash_gs, flash_g_t, weight1_t, weight1_s, group_size
         | 
| 273 | 
            +
                    )
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    # LayerNorm
         | 
| 276 | 
            +
                    in_g = fp8_layernorm_noparam_backward(in_x, in_s, fc1_g, group_size, mean, rstd, num_warps)
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    # Add the gradient together, and prepare the input of the next layer.
         | 
| 279 | 
            +
                    re_g, (in_g, in_sg, in_sg_g16) = fp8_add_Ifp_Ifp_Ofp_Opt(
         | 
| 280 | 
            +
                        fp_grad, in_g, group_size, fwobits["babit"], stochastic=False
         | 
| 281 | 
            +
                    )
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    # for autograd. forward's data type should be the same of backward tensor. this will not change the actual binary representation.
         | 
| 284 | 
            +
                    in_g = in_g.view(torch.float8_e4m3fn)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                    # Although the next operator is a linear layer in MLPResidual module, we return in_sg_g16 to make the size compatible with the forward. Otherwise it will not pass autograd.
         | 
| 287 | 
            +
                    return re_g, in_g, in_sg_g16, att_proj_wg, None, None, None, None, None, None, None, None, None
         | 
| 288 | 
            +
             | 
| 289 | 
            +
             | 
| 290 | 
            +
            class CoatOLMoAfterAttentionResidual(FP8CacheWeightModule):
         | 
| 291 | 
            +
                """
         | 
| 292 | 
            +
                This is a typical transformer attention module that contains (1) Residual (2) 1 * Linear layers
         | 
| 293 | 
            +
                """
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                def __init__(self, config: ModelConfig, qargs: QuantActivationConfig, layer_id):
         | 
| 296 | 
            +
                    super().__init__(config, qargs, layer_id)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    self.qargs = qargs
         | 
| 299 | 
            +
                    self.fwobits = {
         | 
| 300 | 
            +
                        "fabit": self.qargs.fabit,
         | 
| 301 | 
            +
                        "fwbit": self.qargs.fwbit,
         | 
| 302 | 
            +
                        "fobit": self.qargs.fobit,
         | 
| 303 | 
            +
                        "babit": self.qargs.babit,
         | 
| 304 | 
            +
                        "bwbit": self.qargs.bwbit,
         | 
| 305 | 
            +
                        "bobit": self.qargs.bobit,
         | 
| 306 | 
            +
                    }
         | 
| 307 | 
            +
                    self.attn_out = nn.Linear(config.d_model, config.d_model, bias=config.include_bias, device=config.init_device)
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                def forward(self, re_x, in_x):
         | 
| 310 | 
            +
                    if self.training:
         | 
| 311 | 
            +
                        if self.qargs.weight_memory_efficient:
         | 
| 312 | 
            +
                            # prepare for the weight
         | 
| 313 | 
            +
                            with torch.no_grad():
         | 
| 314 | 
            +
                                weight2_s = self.prepare_weight(self.attn_out.weight, "attn_out", FP8Manager.is_first_microbatch)
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                            return _CoatOLMoAfterAttentionResidual.apply(
         | 
| 317 | 
            +
                                re_x,
         | 
| 318 | 
            +
                                in_x,
         | 
| 319 | 
            +
                                self.attn_out.weight,
         | 
| 320 | 
            +
                                None,
         | 
| 321 | 
            +
                                None,
         | 
| 322 | 
            +
                                weight2_s,
         | 
| 323 | 
            +
                                self.qargs.group_size,
         | 
| 324 | 
            +
                                self.fwobits,
         | 
| 325 | 
            +
                                self.layer_id,
         | 
| 326 | 
            +
                                self.config,
         | 
| 327 | 
            +
                                self.qargs,
         | 
| 328 | 
            +
                            )
         | 
| 329 | 
            +
                        else:
         | 
| 330 | 
            +
                            # prepare for the weight
         | 
| 331 | 
            +
                            with torch.no_grad():
         | 
| 332 | 
            +
                                weight2, weight2_t, weight2_s = self.prepare_weight(
         | 
| 333 | 
            +
                                    self.attn_out.weight, "attn_out", FP8Manager.is_first_microbatch
         | 
| 334 | 
            +
                                )
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                            return _CoatOLMoAfterAttentionResidual.apply(
         | 
| 337 | 
            +
                                re_x,
         | 
| 338 | 
            +
                                in_x,
         | 
| 339 | 
            +
                                self.attn_out.weight,
         | 
| 340 | 
            +
                                weight2,
         | 
| 341 | 
            +
                                weight2_t,
         | 
| 342 | 
            +
                                weight2_s,
         | 
| 343 | 
            +
                                self.qargs.group_size,
         | 
| 344 | 
            +
                                self.fwobits,
         | 
| 345 | 
            +
                                self.layer_id,
         | 
| 346 | 
            +
                                self.config,
         | 
| 347 | 
            +
                                self.qargs,
         | 
| 348 | 
            +
                            )
         | 
| 349 | 
            +
                    else:
         | 
| 350 | 
            +
                        return re_x + self.attn_out(in_x), None, None
         | 
| 351 | 
            +
             | 
| 352 | 
            +
             | 
| 353 | 
            +
            class _CoatOLMoAfterAttentionResidual(torch.autograd.Function):
         | 
| 354 | 
            +
                @staticmethod
         | 
| 355 | 
            +
                def forward(
         | 
| 356 | 
            +
                    ctx, re_x, flash_x, weight2_origin, weight2, weight2_t, weight2_s, group_size, fwobits, layer_id, config, qargs
         | 
| 357 | 
            +
                ):
         | 
| 358 | 
            +
                    # Quantize the FlashAttention Output
         | 
| 359 | 
            +
                    flash_qx, flash_s, _ = fp8_quantize_pertensor(
         | 
| 360 | 
            +
                        flash_x, group_size, fwobits["fabit"]
         | 
| 361 | 
            +
                    )  # Modified to make it memory efficient
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    # # Attention Projection Linear Layer
         | 
| 364 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 365 | 
            +
                        assert weight2 is None  # memory efficient
         | 
| 366 | 
            +
                        weight2, weight2_s = fp8_division(weight2_origin, qargs.group_size, fwobits["fwbit"], weight2_s)
         | 
| 367 | 
            +
                    fc2_x = fp8_linear_forward(flash_qx, flash_s, weight2, weight2_s, False, group_size)  #
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                    # import IPython
         | 
| 370 | 
            +
                    # IPython.embed()
         | 
| 371 | 
            +
                    # Add the activations together
         | 
| 372 | 
            +
                    fp_x, (out_x, out_s) = fp8_add_Ifp_Ifp_Ofp_Og16(re_x, fc2_x, flash_qx.dtype, group_size)
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                    # ==================== save for backward ====================
         | 
| 375 | 
            +
                    ctx.save_for_backward(flash_x, flash_s)
         | 
| 376 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 377 | 
            +
                        assert weight2_t is None
         | 
| 378 | 
            +
                        ctx.weight = weight2_origin, weight2_s
         | 
| 379 | 
            +
                    else:
         | 
| 380 | 
            +
                        ctx.weight = weight2_t, weight2_s
         | 
| 381 | 
            +
                    ctx.group_size = group_size
         | 
| 382 | 
            +
                    ctx.fwobits = fwobits
         | 
| 383 | 
            +
                    ctx.utils = fwobits, layer_id, config, qargs
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                    # For autograd
         | 
| 386 | 
            +
                    out_x = out_x.view(torch.float8_e4m3fn)
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                    return fp_x, out_x, out_s
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                @staticmethod
         | 
| 391 | 
            +
                def backward(ctx, fp_grad, out_g, out_gs):
         | 
| 392 | 
            +
                    flash_x, flash_s = ctx.saved_tensors
         | 
| 393 | 
            +
                    weight2_t, weight2_s = ctx.weight
         | 
| 394 | 
            +
                    group_size = ctx.group_size
         | 
| 395 | 
            +
                    fwobits = ctx.fwobits
         | 
| 396 | 
            +
                    fwobits, layer_id, config, qargs = ctx.utils
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                    # for autograd
         | 
| 399 | 
            +
                    if fwobits["babit"] == "E5M2":
         | 
| 400 | 
            +
                        # out_g = out_g.to(torch.float8_e5m2)
         | 
| 401 | 
            +
                        out_g = out_g.view(torch.float8_e5m2)
         | 
| 402 | 
            +
                    else:
         | 
| 403 | 
            +
                        raise ValueError("babit should be E5M2")
         | 
| 404 | 
            +
                    out_gs_max = out_gs.max()
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                    # ==================== Begin backward ====================
         | 
| 407 | 
            +
                    # Output Projection
         | 
| 408 | 
            +
                    out_g_t = fp8_transpose(out_g, transpose_output_2d=True)
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                    # We do not save an extra flash_x to save the memory usage
         | 
| 411 | 
            +
                    flash_x_t, flash_s = fp8_division_transpose(
         | 
| 412 | 
            +
                        flash_x, group_size, fwobits["fabit"], flash_s, stochastic=False, only_transposed=True
         | 
| 413 | 
            +
                    )
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 416 | 
            +
                        weight2_t, weight2_s = fp8_division_transpose(
         | 
| 417 | 
            +
                            weight2_t, qargs.group_size, fwobits["fwbit"], weight2_s, only_transposed=True
         | 
| 418 | 
            +
                        )
         | 
| 419 | 
            +
                    fc2_g, attn_out_wg = fp8_linear_backward(
         | 
| 420 | 
            +
                        flash_x_t, flash_s, out_g, out_gs_max, out_g_t, weight2_t, weight2_s, group_size
         | 
| 421 | 
            +
                    )
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    return fp_grad, fc2_g, attn_out_wg, None, None, None, None, None, None, None, None
         | 
| 424 | 
            +
             | 
| 425 | 
            +
             | 
| 426 | 
            +
            class CoatOLMoMLPResidual(FP8CacheWeightModule):
         | 
| 427 | 
            +
                """
         | 
| 428 | 
            +
                This is a typical transformer attention module that contains (1) Residual (2) LayerNorm / RMSNorm (3) 2 / 3 * Linear layers
         | 
| 429 | 
            +
                (4) GELU / Silu Activation
         | 
| 430 | 
            +
                """
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                def __init__(self, config: ModelConfig, qargs: QuantActivationConfig, layer_id, hidden_size: int):
         | 
| 433 | 
            +
                    super().__init__(config, qargs, layer_id)
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    self.qargs = qargs
         | 
| 436 | 
            +
                    self.fwobits = {
         | 
| 437 | 
            +
                        "fabit": self.qargs.fabit,
         | 
| 438 | 
            +
                        "fwbit": self.qargs.fwbit,
         | 
| 439 | 
            +
                        "fobit": self.qargs.fobit,
         | 
| 440 | 
            +
                        "babit": self.qargs.babit,
         | 
| 441 | 
            +
                        "bwbit": self.qargs.bwbit,
         | 
| 442 | 
            +
                        "bobit": self.qargs.bobit,
         | 
| 443 | 
            +
                    }
         | 
| 444 | 
            +
                    self.ln_normalized_shape = config.d_model
         | 
| 445 | 
            +
                    self.act_output_multiplier = 0.5 if config.activation_type == ActivationType.swiglu else 1
         | 
| 446 | 
            +
                    self.ff_proj = nn.Linear(config.d_model, hidden_size, bias=config.include_bias, device=config.init_device)
         | 
| 447 | 
            +
                    self.ff_out = nn.Linear(
         | 
| 448 | 
            +
                        int(self.act_output_multiplier * hidden_size),
         | 
| 449 | 
            +
                        config.d_model,
         | 
| 450 | 
            +
                        bias=config.include_bias,
         | 
| 451 | 
            +
                        device=config.init_device,
         | 
| 452 | 
            +
                    )
         | 
| 453 | 
            +
                    self.training = True
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                    # below is only used when training = False
         | 
| 456 | 
            +
                    self.ff_norm = LayerNorm.build(config)
         | 
| 457 | 
            +
                    self.act = Activation.build(config)
         | 
| 458 | 
            +
                    assert (self.act.output_multiplier * hidden_size) % 1 == 0
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                def forward(self, re_x, x, s):
         | 
| 461 | 
            +
                    if self.training:
         | 
| 462 | 
            +
                        if self.qargs.weight_memory_efficient:  # prepare for the weight
         | 
| 463 | 
            +
                            with torch.no_grad():
         | 
| 464 | 
            +
                                weight1_s = self.prepare_weight(self.ff_proj.weight, "ff_proj", FP8Manager.is_first_microbatch)
         | 
| 465 | 
            +
                                weight2_s = self.prepare_weight(self.ff_out.weight, "ff_out", FP8Manager.is_first_microbatch)
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                            return _CoatOLMoMLPResidual.apply(
         | 
| 468 | 
            +
                                re_x,
         | 
| 469 | 
            +
                                x,
         | 
| 470 | 
            +
                                s,
         | 
| 471 | 
            +
                                self.ff_proj.weight,
         | 
| 472 | 
            +
                                None,
         | 
| 473 | 
            +
                                None,
         | 
| 474 | 
            +
                                weight1_s,
         | 
| 475 | 
            +
                                self.ff_out.weight,
         | 
| 476 | 
            +
                                None,
         | 
| 477 | 
            +
                                None,
         | 
| 478 | 
            +
                                weight2_s,
         | 
| 479 | 
            +
                                self.qargs.group_size,
         | 
| 480 | 
            +
                                self.fwobits,
         | 
| 481 | 
            +
                                self.layer_id,
         | 
| 482 | 
            +
                                self.config,
         | 
| 483 | 
            +
                                self.qargs,
         | 
| 484 | 
            +
                            )
         | 
| 485 | 
            +
                        else:
         | 
| 486 | 
            +
                            # prepare for the weight
         | 
| 487 | 
            +
                            with torch.no_grad():
         | 
| 488 | 
            +
                                weight1, weight1_t, weight1_s = self.prepare_weight(
         | 
| 489 | 
            +
                                    self.ff_proj.weight, "ff_proj", FP8Manager.is_first_microbatch
         | 
| 490 | 
            +
                                )
         | 
| 491 | 
            +
                                weight2, weight2_t, weight2_s = self.prepare_weight(
         | 
| 492 | 
            +
                                    self.ff_out.weight, "ff_out", FP8Manager.is_first_microbatch
         | 
| 493 | 
            +
                                )
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                            return _CoatOLMoMLPResidual.apply(
         | 
| 496 | 
            +
                                re_x,
         | 
| 497 | 
            +
                                x,
         | 
| 498 | 
            +
                                s,
         | 
| 499 | 
            +
                                self.ff_proj.weight,
         | 
| 500 | 
            +
                                weight1,
         | 
| 501 | 
            +
                                weight1_t,
         | 
| 502 | 
            +
                                weight1_s,
         | 
| 503 | 
            +
                                self.ff_out.weight,
         | 
| 504 | 
            +
                                weight2,
         | 
| 505 | 
            +
                                weight2_t,
         | 
| 506 | 
            +
                                weight2_s,
         | 
| 507 | 
            +
                                self.qargs.group_size,
         | 
| 508 | 
            +
                                self.fwobits,
         | 
| 509 | 
            +
                                self.layer_id,
         | 
| 510 | 
            +
                                self.config,
         | 
| 511 | 
            +
                                self.qargs,
         | 
| 512 | 
            +
                            )
         | 
| 513 | 
            +
                    else:
         | 
| 514 | 
            +
                        og_x = re_x
         | 
| 515 | 
            +
                        re_x = self.ff_norm(re_x)
         | 
| 516 | 
            +
                        re_x = self.ff_proj(re_x)
         | 
| 517 | 
            +
                        re_x = self.act(re_x)
         | 
| 518 | 
            +
                        re_x = self.ff_out(re_x)
         | 
| 519 | 
            +
                        re_x = og_x + re_x
         | 
| 520 | 
            +
                        return re_x, None, None
         | 
| 521 | 
            +
             | 
| 522 | 
            +
             | 
| 523 | 
            +
            class _CoatOLMoMLPResidual(torch.autograd.Function):
         | 
| 524 | 
            +
                @staticmethod
         | 
| 525 | 
            +
                def forward(
         | 
| 526 | 
            +
                    ctx,
         | 
| 527 | 
            +
                    re_x,
         | 
| 528 | 
            +
                    in_x,
         | 
| 529 | 
            +
                    in_s,
         | 
| 530 | 
            +
                    weight1_origin,
         | 
| 531 | 
            +
                    weight1,
         | 
| 532 | 
            +
                    weight1_t,
         | 
| 533 | 
            +
                    weight1_s,
         | 
| 534 | 
            +
                    weight2_origin,
         | 
| 535 | 
            +
                    weight2,
         | 
| 536 | 
            +
                    weight2_t,
         | 
| 537 | 
            +
                    weight2_s,
         | 
| 538 | 
            +
                    group_size,
         | 
| 539 | 
            +
                    fwobits,
         | 
| 540 | 
            +
                    layer_id,
         | 
| 541 | 
            +
                    config,
         | 
| 542 | 
            +
                    qargs,
         | 
| 543 | 
            +
                    eps=1e-5,
         | 
| 544 | 
            +
                ):
         | 
| 545 | 
            +
                    # For autograd
         | 
| 546 | 
            +
                    if fwobits["fabit"] == "E4M3":
         | 
| 547 | 
            +
                        # in_x = in_x.to(torch.float8_e4m3fn)
         | 
| 548 | 
            +
                        in_x = in_x.view(torch.float8_e4m3fn)
         | 
| 549 | 
            +
                    else:
         | 
| 550 | 
            +
                        raise ValueError("fabit should be E4M3")
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                    # LayerNorm
         | 
| 553 | 
            +
                    ln_x, ln_s, ln_x_t, ln_utils = fp8_layernorm_noparam_forward(
         | 
| 554 | 
            +
                        in_x, in_s, group_size, eps, transpose_output_2d=True
         | 
| 555 | 
            +
                    )
         | 
| 556 | 
            +
             | 
| 557 | 
            +
                    # Linear Layer of Up Projection and Gate Projection. They are fused as one linear layer.
         | 
| 558 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 559 | 
            +
                        assert weight1 is None  # memory efficient
         | 
| 560 | 
            +
                        weight1, weight1_s = fp8_division(weight1_origin, qargs.group_size, fwobits["fwbit"], weight1_s)
         | 
| 561 | 
            +
                    fc1_x, fc1_s = fp8_linear_forward(ln_x, ln_s, weight1, weight1_s, True, group_size)
         | 
| 562 | 
            +
             | 
| 563 | 
            +
                    # NOTE: Becareful of the order
         | 
| 564 | 
            +
                    up_x, gate_x = fc1_x.chunk(2, dim=-1)
         | 
| 565 | 
            +
                    up_s, gate_s = fc1_s.chunk(2, dim=-1)
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                    # silu Activation
         | 
| 568 | 
            +
                    silu_x, silu_s = fp8_silu_forward(gate_x, gate_s, group_size)
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                    # Element-wise Multiplication
         | 
| 571 | 
            +
                    mul_x, mul_s, mul_x_t = fp8_mul_forward(silu_x, silu_s, up_x, up_s, group_size, transpose_output_2d=True)
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                    # Output Projection
         | 
| 574 | 
            +
                    if weight2 is None:  # memory efficient
         | 
| 575 | 
            +
                        weight2, weight2_s = fp8_division(weight2_origin, qargs.group_size, fwobits["fwbit"], weight2_s)
         | 
| 576 | 
            +
                    fc2_x = fp8_linear_forward(mul_x, mul_s, weight2, weight2_s, False, group_size)
         | 
| 577 | 
            +
             | 
| 578 | 
            +
                    # Add the activation together
         | 
| 579 | 
            +
                    fp_x, (out_x, out_s) = fp8_add_Ifp_Ifp_Ofp_Og16(re_x, fc2_x, mul_x.dtype, group_size)
         | 
| 580 | 
            +
             | 
| 581 | 
            +
                    # ==================== save for backward ====================
         | 
| 582 | 
            +
                    ctx.save_for_backward(in_x, in_s, ln_x_t, ln_s, gate_x, gate_s, up_x, up_s, silu_x, silu_s, mul_x_t, mul_s)
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                    ctx.weight = (weight1_t, weight1_s, weight2_t, weight2_s)
         | 
| 585 | 
            +
                    if (
         | 
| 586 | 
            +
                        qargs.weight_memory_efficient
         | 
| 587 | 
            +
                    ):  # Weight_1/2_origin will not be saved twice, so it will be more memory efficient.
         | 
| 588 | 
            +
                        assert weight1_t is None
         | 
| 589 | 
            +
                        ctx.weight = (weight1_origin, weight1_s, weight2_origin, weight2_s)
         | 
| 590 | 
            +
                    else:  # Weight1/2_t is different from the origin weight, so saving it will consumes additional memory footprint.
         | 
| 591 | 
            +
                        ctx.weight = (weight1_t, weight1_s, weight2_t, weight2_s)
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                    ctx.group_size = group_size
         | 
| 594 | 
            +
                    ctx.ln_utils = ln_utils
         | 
| 595 | 
            +
                    ctx.utils = fwobits, layer_id, config, qargs
         | 
| 596 | 
            +
             | 
| 597 | 
            +
                    out_x = out_x.view(torch.float8_e4m3fn)
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    return fp_x, out_x, out_s
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                @staticmethod
         | 
| 602 | 
            +
                def backward(ctx, fp_grad, out_g, out_gs):
         | 
| 603 | 
            +
                    fwobits, layer_id, config, qargs = ctx.utils
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                    in_x, in_s, ln_x_t, ln_s, gate_x, gate_s, up_x, up_s, silu_x, silu_s, mul_x_t, mul_s = ctx.saved_tensors
         | 
| 606 | 
            +
             | 
| 607 | 
            +
                    (weight1_t, weight1_s, weight2_t, weight2_s) = ctx.weight
         | 
| 608 | 
            +
                    group_size = ctx.group_size
         | 
| 609 | 
            +
                    mean, rstd, num_warps = ctx.ln_utils
         | 
| 610 | 
            +
                    fwobits, layer_id, config, qargs = ctx.utils
         | 
| 611 | 
            +
             | 
| 612 | 
            +
                    # For autograd
         | 
| 613 | 
            +
                    if fwobits["babit"] == "E5M2":
         | 
| 614 | 
            +
                        # out_g = out_g.to(torch.float8_e5m2)
         | 
| 615 | 
            +
                        out_g = out_g.view(torch.float8_e5m2)
         | 
| 616 | 
            +
                    else:
         | 
| 617 | 
            +
                        raise ValueError("babit should be E5M2")
         | 
| 618 | 
            +
                    out_gs_max = out_gs.max()
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    # ==================== Begin backward ====================
         | 
| 621 | 
            +
                    # Output Projection
         | 
| 622 | 
            +
                    out_gs = out_gs.max()
         | 
| 623 | 
            +
                    out_g_t = fp8_transpose(out_g, transpose_output_2d=True)
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 626 | 
            +
                        weight2_t, weight2_s = fp8_division_transpose(
         | 
| 627 | 
            +
                            weight2_t, qargs.group_size, fwobits["fwbit"], weight2_s, only_transposed=True
         | 
| 628 | 
            +
                        )
         | 
| 629 | 
            +
                    fc2_g, weight2_grad = fp8_linear_backward(
         | 
| 630 | 
            +
                        mul_x_t, mul_s, out_g, out_gs_max, out_g_t, weight2_t, weight2_s, group_size
         | 
| 631 | 
            +
                    )
         | 
| 632 | 
            +
             | 
| 633 | 
            +
                    # [MEM TEST]
         | 
| 634 | 
            +
                    del out_g, out_g_t, weight2_t
         | 
| 635 | 
            +
             | 
| 636 | 
            +
                    # Element-wise Multiplication, 1 means gate, 2 means up
         | 
| 637 | 
            +
                    mul_g1, (mul_g2, mul_gs2) = fp8_mul_backward(silu_x, silu_s, up_x, up_s, fc2_g, group_size, fwobits["babit"])
         | 
| 638 | 
            +
             | 
| 639 | 
            +
                    # Silu activation
         | 
| 640 | 
            +
                    silu_g, silu_gs = fp8_silu_backward(gate_x, gate_s, mul_g1, group_size, fwobits["babit"])
         | 
| 641 | 
            +
             | 
| 642 | 
            +
                    # Prepare the input of Linear Layer. NOTE: Becareful of the order
         | 
| 643 | 
            +
                    gateup_g = torch.cat([mul_g2, silu_g], dim=-1)
         | 
| 644 | 
            +
                    gateup_gs = torch.cat([mul_gs2, silu_gs])
         | 
| 645 | 
            +
                    gateup_gs = torch.max(gateup_gs)
         | 
| 646 | 
            +
             | 
| 647 | 
            +
                    gateup_g, gateup_gs, gateup_g_t = fp8_division_transpose(
         | 
| 648 | 
            +
                        gateup_g, group_size, fwobits["babit"], gateup_gs, stochastic=False
         | 
| 649 | 
            +
                    )
         | 
| 650 | 
            +
             | 
| 651 | 
            +
                    # Linear Layer of Up and Gate Projection
         | 
| 652 | 
            +
                    if qargs.weight_memory_efficient:
         | 
| 653 | 
            +
                        weight1_t, weight1_s = fp8_division_transpose(
         | 
| 654 | 
            +
                            weight1_t, group_size, fwobits["fwbit"], weight1_s, only_transposed=True
         | 
| 655 | 
            +
                        )
         | 
| 656 | 
            +
                    fc1_g, weight1_grad = fp8_linear_backward(
         | 
| 657 | 
            +
                        ln_x_t, ln_s, gateup_g, gateup_gs, gateup_g_t, weight1_t, weight1_s, group_size
         | 
| 658 | 
            +
                    )
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                    # layerNorm
         | 
| 661 | 
            +
                    in_g = fp8_layernorm_noparam_backward(in_x, in_s, fc1_g, group_size, mean, rstd, num_warps)
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                    # Add the gradient together
         | 
| 664 | 
            +
                    re_g, (in_g, in_sg, in_sg_g16) = fp8_add_Ifp_Ifp_Ofp_Opt(
         | 
| 665 | 
            +
                        fp_grad, in_g, group_size, fwobits["babit"], stochastic=False
         | 
| 666 | 
            +
                    )
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                    in_g = in_g.view(torch.float8_e4m3fn)
         | 
| 669 | 
            +
             | 
| 670 | 
            +
                    return (
         | 
| 671 | 
            +
                        re_g,
         | 
| 672 | 
            +
                        in_g,
         | 
| 673 | 
            +
                        in_sg_g16,
         | 
| 674 | 
            +
                        weight1_grad,
         | 
| 675 | 
            +
                        None,
         | 
| 676 | 
            +
                        None,
         | 
| 677 | 
            +
                        None,
         | 
| 678 | 
            +
                        weight2_grad,
         | 
| 679 | 
            +
                        None,
         | 
| 680 | 
            +
                        None,
         | 
| 681 | 
            +
                        None,
         | 
| 682 | 
            +
                        None,
         | 
| 683 | 
            +
                        None,
         | 
| 684 | 
            +
                        None,
         | 
| 685 | 
            +
                        None,
         | 
| 686 | 
            +
                        None,
         | 
| 687 | 
            +
                        None,
         | 
| 688 | 
            +
                    )
         | 
| 689 | 
            +
             | 
| 690 | 
            +
             | 
| 691 | 
            +
            class CoatOLMoBlock(nn.Module):
         | 
| 692 | 
            +
                """
         | 
| 693 | 
            +
                A base class for transformer block implementations.
         | 
| 694 | 
            +
                """
         | 
| 695 | 
            +
             | 
| 696 | 
            +
                def __init__(self, layer_id: int, config: ModelConfig, qargs: QuantActivationConfig, cache: BufferCache):
         | 
| 697 | 
            +
                    super().__init__()
         | 
| 698 | 
            +
                    self.layer_id = layer_id
         | 
| 699 | 
            +
                    self.config = config
         | 
| 700 | 
            +
                    self.qargs = qargs
         | 
| 701 | 
            +
                    self.hidden_size = (
         | 
| 702 | 
            +
                        config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
         | 
| 703 | 
            +
                    )
         | 
| 704 | 
            +
                    self.__cache = cache
         | 
| 705 | 
            +
                    assert config.d_model % config.n_heads == 0
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                    self._activation_checkpoint_fn: Callable | None = None
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                    # Dropout.
         | 
| 710 | 
            +
                    self.dropout = Dropout(config.residual_dropout)
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                    # Layer norms.
         | 
| 713 | 
            +
                    self.k_norm: LayerNormBase | None = None
         | 
| 714 | 
            +
                    self.q_norm: LayerNormBase | None = None
         | 
| 715 | 
            +
                    if config.attention_layer_norm:
         | 
| 716 | 
            +
                        assert config.effective_n_kv_heads is not None
         | 
| 717 | 
            +
                        self.k_norm = LayerNormBase.build(
         | 
| 718 | 
            +
                            config,
         | 
| 719 | 
            +
                            size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
         | 
| 720 | 
            +
                            elementwise_affine=config.attention_layer_norm_with_affine,
         | 
| 721 | 
            +
                        )
         | 
| 722 | 
            +
                        self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
         | 
| 723 | 
            +
             | 
| 724 | 
            +
                    # Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
         | 
| 725 | 
            +
                    if config.clip_qkv is not None:
         | 
| 726 | 
            +
                        assert config.clip_qkv > 0
         | 
| 727 | 
            +
             | 
| 728 | 
            +
                    # Activation function.
         | 
| 729 | 
            +
                    self.act = Activation.build(config)
         | 
| 730 | 
            +
                    assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
         | 
| 731 | 
            +
             | 
| 732 | 
            +
                    if not self.qargs.use_quantize_model:
         | 
| 733 | 
            +
                        # Attention output projection.
         | 
| 734 | 
            +
                        self.attn_out = nn.Linear(
         | 
| 735 | 
            +
                            config.d_model, config.d_model, bias=config.include_bias, device=config.init_device
         | 
| 736 | 
            +
                        )
         | 
| 737 | 
            +
             | 
| 738 | 
            +
                        # Feed-forward output projection.
         | 
| 739 | 
            +
                        self.ff_out = nn.Linear(
         | 
| 740 | 
            +
                            int(self.act.output_multiplier * self.hidden_size),
         | 
| 741 | 
            +
                            config.d_model,
         | 
| 742 | 
            +
                            bias=config.include_bias,
         | 
| 743 | 
            +
                            device=config.init_device,
         | 
| 744 | 
            +
                        )
         | 
| 745 | 
            +
                        self.ff_out._is_residual = True  # type: ignore
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                    # Rotary embeddings.
         | 
| 748 | 
            +
                    if self.config.rope:
         | 
| 749 | 
            +
                        self.rotary_emb = RotaryEmbedding(config, self.__cache)
         | 
| 750 | 
            +
             | 
| 751 | 
            +
                    self.flash_attn_func = None
         | 
| 752 | 
            +
                    self.flash_attn_varlen_func = None
         | 
| 753 | 
            +
                    if config.flash_attention:
         | 
| 754 | 
            +
                        try:
         | 
| 755 | 
            +
                            from flash_attn import flash_attn_func, flash_attn_varlen_func  # type: ignore
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                            self.flash_attn_func = flash_attn_func
         | 
| 758 | 
            +
                            self.flash_attn_varlen_func = flash_attn_varlen_func
         | 
| 759 | 
            +
                        except ModuleNotFoundError:
         | 
| 760 | 
            +
                            pass
         | 
| 761 | 
            +
             | 
| 762 | 
            +
                def reset_parameters(self):
         | 
| 763 | 
            +
                    if self.k_norm is not None:
         | 
| 764 | 
            +
                        self.k_norm.reset_parameters()
         | 
| 765 | 
            +
                    if self.q_norm is not None:
         | 
| 766 | 
            +
                        self.q_norm.reset_parameters()
         | 
| 767 | 
            +
             | 
| 768 | 
            +
                    if not self.qargs.use_quantize_model:
         | 
| 769 | 
            +
                        if self.config.init_fn == InitFnType.normal:
         | 
| 770 | 
            +
                            attn_out_std = ff_out_std = self.config.init_std
         | 
| 771 | 
            +
                            cutoff_factor = self.config.init_cutoff_factor
         | 
| 772 | 
            +
             | 
| 773 | 
            +
                        elif self.config.init_fn == InitFnType.mitchell:
         | 
| 774 | 
            +
                            attn_out_std = 1 / (math.sqrt(2 * self.config.d_model * (self.layer_id + 1)))
         | 
| 775 | 
            +
                            ff_out_std = 1 / (math.sqrt(2 * self.ff_out.in_features * (self.layer_id + 1)))
         | 
| 776 | 
            +
                            cutoff_factor = self.config.init_cutoff_factor or 3.0
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                        elif self.config.init_fn == InitFnType.full_megatron:
         | 
| 779 | 
            +
                            attn_out_std = ff_out_std = self.config.init_std / math.sqrt(2.0 * self.config.n_layers)
         | 
| 780 | 
            +
                            cutoff_factor = self.config.init_cutoff_factor or 3.0
         | 
| 781 | 
            +
             | 
| 782 | 
            +
                        else:
         | 
| 783 | 
            +
                            raise NotImplementedError(self.config.init_fn)
         | 
| 784 | 
            +
             | 
| 785 | 
            +
                        init_normal(self.attn_out, std=attn_out_std, init_cutoff_factor=cutoff_factor)
         | 
| 786 | 
            +
                        init_normal(self.ff_out, std=ff_out_std, init_cutoff_factor=cutoff_factor)
         | 
| 787 | 
            +
             | 
| 788 | 
            +
                def set_activation_checkpointing(
         | 
| 789 | 
            +
                    self, strategy: ActivationCheckpointingStrategy | None, checkpoint_func: Callable | None = None
         | 
| 790 | 
            +
                ):
         | 
| 791 | 
            +
                    if strategy == ActivationCheckpointingStrategy.fine_grained:
         | 
| 792 | 
            +
                        self._activation_checkpoint_fn = checkpoint_func or activation_checkpoint_function(self.config)
         | 
| 793 | 
            +
                    else:
         | 
| 794 | 
            +
                        self._activation_checkpoint_fn = None
         | 
| 795 | 
            +
             | 
| 796 | 
            +
                @classmethod
         | 
| 797 | 
            +
                def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
         | 
| 798 | 
            +
                    target_dtype = input_dtype
         | 
| 799 | 
            +
                    # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
         | 
| 800 | 
            +
                    # `is_autocast_cpu_enabled()` for CPU autocast.
         | 
| 801 | 
            +
                    # See https://github.com/pytorch/pytorch/issues/110966.
         | 
| 802 | 
            +
                    if bias.device.type == "cuda" and torch.is_autocast_enabled():
         | 
| 803 | 
            +
                        target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 804 | 
            +
                    elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
         | 
| 805 | 
            +
                        target_dtype = torch.get_autocast_cpu_dtype()
         | 
| 806 | 
            +
                    if bias.dtype != target_dtype:
         | 
| 807 | 
            +
                        bias = bias.to(target_dtype)
         | 
| 808 | 
            +
                        ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
         | 
| 809 | 
            +
                    return bias
         | 
| 810 | 
            +
             | 
| 811 | 
            +
                def _scaled_dot_product_attention(
         | 
| 812 | 
            +
                    self,
         | 
| 813 | 
            +
                    q: torch.Tensor,
         | 
| 814 | 
            +
                    k: torch.Tensor,
         | 
| 815 | 
            +
                    v: torch.Tensor,
         | 
| 816 | 
            +
                    attn_mask: torch.Tensor | None = None,
         | 
| 817 | 
            +
                    dropout_p: float = 0.0,
         | 
| 818 | 
            +
                    is_causal: bool = False,
         | 
| 819 | 
            +
                    max_doc_len: int | None = None,
         | 
| 820 | 
            +
                    cu_doc_lens: torch.Tensor | None = None,
         | 
| 821 | 
            +
                ) -> torch.Tensor:
         | 
| 822 | 
            +
                    """
         | 
| 823 | 
            +
                    Computes scaled dot product attention on query, key and value tensors, using an optional
         | 
| 824 | 
            +
                    attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
         | 
| 825 | 
            +
                    """
         | 
| 826 | 
            +
                    if max_doc_len is not None and cu_doc_lens is not None:
         | 
| 827 | 
            +
                        assert self.flash_attn_varlen_func is not None, "flash-attn is required for document masking"
         | 
| 828 | 
            +
                        assert attn_mask is None, "attn-mask is currently not supported with document masking"
         | 
| 829 | 
            +
                        B, T, D = q.size(0), q.size(2), q.size(3)
         | 
| 830 | 
            +
                        r = self.flash_attn_varlen_func(
         | 
| 831 | 
            +
                            q.transpose(1, 2).view(B * T, -1, D),
         | 
| 832 | 
            +
                            k.transpose(1, 2).view(B * T, -1, D),
         | 
| 833 | 
            +
                            v.transpose(1, 2).view(B * T, -1, D),
         | 
| 834 | 
            +
                            cu_doc_lens,
         | 
| 835 | 
            +
                            cu_doc_lens,
         | 
| 836 | 
            +
                            max_doc_len,
         | 
| 837 | 
            +
                            max_doc_len,
         | 
| 838 | 
            +
                            dropout_p=dropout_p,
         | 
| 839 | 
            +
                            causal=is_causal,
         | 
| 840 | 
            +
                        )
         | 
| 841 | 
            +
                        return r.view(B, T, -1, D).transpose(1, 2)
         | 
| 842 | 
            +
                    elif self.flash_attn_func is not None and attn_mask is None:
         | 
| 843 | 
            +
                        r = self.flash_attn_func(
         | 
| 844 | 
            +
                            q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal
         | 
| 845 | 
            +
                        )
         | 
| 846 | 
            +
                        return r.transpose(1, 2)
         | 
| 847 | 
            +
                    else:
         | 
| 848 | 
            +
                        # torch's sdpa doesn't support GQA, so we're doing this
         | 
| 849 | 
            +
                        assert k.size(1) == v.size(1)
         | 
| 850 | 
            +
                        num_kv_heads = k.size(1)
         | 
| 851 | 
            +
                        num_q_heads = q.size(1)
         | 
| 852 | 
            +
                        if num_q_heads != num_kv_heads:
         | 
| 853 | 
            +
                            assert num_q_heads % num_kv_heads == 0
         | 
| 854 | 
            +
                            k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
         | 
| 855 | 
            +
                            v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
         | 
| 856 | 
            +
             | 
| 857 | 
            +
                        return F.scaled_dot_product_attention(
         | 
| 858 | 
            +
                            q,
         | 
| 859 | 
            +
                            k,
         | 
| 860 | 
            +
                            v,
         | 
| 861 | 
            +
                            attn_mask=attn_mask,
         | 
| 862 | 
            +
                            dropout_p=dropout_p,
         | 
| 863 | 
            +
                            is_causal=is_causal,
         | 
| 864 | 
            +
                        )
         | 
| 865 | 
            +
             | 
| 866 | 
            +
                def attention(
         | 
| 867 | 
            +
                    self,
         | 
| 868 | 
            +
                    q: torch.Tensor,
         | 
| 869 | 
            +
                    k: torch.Tensor,
         | 
| 870 | 
            +
                    v: torch.Tensor,
         | 
| 871 | 
            +
                    attention_bias: torch.Tensor | None = None,
         | 
| 872 | 
            +
                    layer_past: tuple[torch.Tensor, torch.Tensor] | None = None,
         | 
| 873 | 
            +
                    use_cache: bool = False,
         | 
| 874 | 
            +
                    max_doc_len: int | None = None,
         | 
| 875 | 
            +
                    cu_doc_lens: torch.Tensor | None = None,
         | 
| 876 | 
            +
                ) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
         | 
| 877 | 
            +
                    B, T, C = q.size()  # batch size, sequence length, d_model
         | 
| 878 | 
            +
                    dtype = k.dtype
         | 
| 879 | 
            +
             | 
| 880 | 
            +
                    # Optionally apply layer norm to keys and queries.
         | 
| 881 | 
            +
                    if self.q_norm is not None and self.k_norm is not None:
         | 
| 882 | 
            +
                        q = self.q_norm(q).to(dtype=dtype)
         | 
| 883 | 
            +
                        k = self.k_norm(k).to(dtype=dtype)
         | 
| 884 | 
            +
             | 
| 885 | 
            +
                    # Move head forward to be next to the batch dim.
         | 
| 886 | 
            +
                    # shape: (B, nh, T, hs)
         | 
| 887 | 
            +
                    q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
         | 
| 888 | 
            +
                    # shape: (B, n_kv_h, T, hs)
         | 
| 889 | 
            +
                    k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
         | 
| 890 | 
            +
                    # shape: (B, n_kv_h, T, hs)
         | 
| 891 | 
            +
                    v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
         | 
| 892 | 
            +
             | 
| 893 | 
            +
                    if layer_past is not None:
         | 
| 894 | 
            +
                        past_key, past_value = layer_past
         | 
| 895 | 
            +
                        k = torch.cat((past_key, k), dim=-2)
         | 
| 896 | 
            +
                        v = torch.cat((past_value, v), dim=-2)
         | 
| 897 | 
            +
             | 
| 898 | 
            +
                    present = (k, v) if use_cache else None
         | 
| 899 | 
            +
                    query_len, key_len = q.shape[-2], k.shape[-2]  # could be different if layer_past not None
         | 
| 900 | 
            +
             | 
| 901 | 
            +
                    if self.config.rope:
         | 
| 902 | 
            +
                        # Apply rotary embeddings.
         | 
| 903 | 
            +
                        q, k = self.rotary_emb(q, k)
         | 
| 904 | 
            +
             | 
| 905 | 
            +
                    if attention_bias is not None:
         | 
| 906 | 
            +
                        # Resize and cast attention bias.
         | 
| 907 | 
            +
                        # The current dtype of the attention bias might not match the dtype that the SDP attn function will
         | 
| 908 | 
            +
                        # run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
         | 
| 909 | 
            +
                        # as down-casting the attention bias to the autocast precision will result in -infs, which will
         | 
| 910 | 
            +
                        # cause the SDP attn function to produce NaNs.
         | 
| 911 | 
            +
                        attention_bias = self._cast_attn_bias(attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype)
         | 
| 912 | 
            +
             | 
| 913 | 
            +
                    # Get the attention scores.
         | 
| 914 | 
            +
                    # shape: (B, nh, T, hs)
         | 
| 915 | 
            +
                    att = self._scaled_dot_product_attention(
         | 
| 916 | 
            +
                        q,
         | 
| 917 | 
            +
                        k,
         | 
| 918 | 
            +
                        v,
         | 
| 919 | 
            +
                        attn_mask=attention_bias,
         | 
| 920 | 
            +
                        dropout_p=0.0 if not self.training else self.config.attention_dropout,
         | 
| 921 | 
            +
                        is_causal=attention_bias is None,
         | 
| 922 | 
            +
                        max_doc_len=max_doc_len,
         | 
| 923 | 
            +
                        cu_doc_lens=cu_doc_lens,
         | 
| 924 | 
            +
                    )
         | 
| 925 | 
            +
             | 
| 926 | 
            +
                    # Re-assemble all head outputs side-by-side.
         | 
| 927 | 
            +
                    att = att.transpose(1, 2).contiguous().view(B, T, C)
         | 
| 928 | 
            +
             | 
| 929 | 
            +
                    # Apply output projection. NOTE: We move the attn output outside of this attention function
         | 
| 930 | 
            +
                    return att, present
         | 
| 931 | 
            +
             | 
| 932 | 
            +
                @abstractmethod
         | 
| 933 | 
            +
                def forward(
         | 
| 934 | 
            +
                    self,
         | 
| 935 | 
            +
                    x: torch.Tensor,
         | 
| 936 | 
            +
                    attention_bias: torch.FloatTensor | None = None,
         | 
| 937 | 
            +
                    layer_past: tuple[torch.Tensor, torch.Tensor] | None = None,
         | 
| 938 | 
            +
                    use_cache: bool = False,
         | 
| 939 | 
            +
                    max_doc_len: int | None = None,
         | 
| 940 | 
            +
                    cu_doc_lens: torch.Tensor | None = None,
         | 
| 941 | 
            +
                ) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
         | 
| 942 | 
            +
                    raise NotImplementedError
         | 
| 943 | 
            +
             | 
| 944 | 
            +
                @classmethod
         | 
| 945 | 
            +
                def build(cls, layer_id: int, config: ModelConfig, qargs: QuantActivationConfig, cache: BufferCache) -> OLMoBlock:
         | 
| 946 | 
            +
                    if config.block_type == BlockType.sequential:
         | 
| 947 | 
            +
                        return CoatOLMoSequentialBlock(layer_id, config, qargs, cache)
         | 
| 948 | 
            +
                    elif config.block_type == BlockType.llama:
         | 
| 949 | 
            +
                        return CoatOLMoLlamaBlock(layer_id, config, qargs, cache)
         | 
| 950 | 
            +
                    else:
         | 
| 951 | 
            +
                        raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
         | 
| 952 | 
            +
             | 
| 953 | 
            +
             | 
| 954 | 
            +
            class CoatOLMoSequentialBlock(CoatOLMoBlock):
         | 
| 955 | 
            +
                """
         | 
| 956 | 
            +
                This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
         | 
| 957 | 
            +
                (plus another skip connection). To compute it as ``LN(MLP(x + LN(Attention(x))))``,
         | 
| 958 | 
            +
                use the flag `norm_after`.
         | 
| 959 | 
            +
                """
         | 
| 960 | 
            +
             | 
| 961 | 
            +
                def __init__(self, layer_id: int, config: ModelConfig, qargs: QuantActivationConfig, cache: BufferCache):
         | 
| 962 | 
            +
                    super().__init__(layer_id, config, qargs, cache)
         | 
| 963 | 
            +
                    # Attention input projection. Projects x -> (q, k, v)
         | 
| 964 | 
            +
             | 
| 965 | 
            +
                    assert not self.config.norm_after, "COAT currently does not support PostNorm"
         | 
| 966 | 
            +
             | 
| 967 | 
            +
                    head_dim = config.d_model // config.n_heads
         | 
| 968 | 
            +
                    self.fused_dims = (
         | 
| 969 | 
            +
                        config.d_model,
         | 
| 970 | 
            +
                        config.effective_n_kv_heads * head_dim,
         | 
| 971 | 
            +
                        config.effective_n_kv_heads * head_dim,
         | 
| 972 | 
            +
                    )
         | 
| 973 | 
            +
             | 
| 974 | 
            +
                    if self.qargs.use_quantize_model:
         | 
| 975 | 
            +
                        self.BeforeAttention = CoatOLMoBeforeAttentionResidual(config, qargs, self.layer_id, self.fused_dims)
         | 
| 976 | 
            +
                        self.AfterAttention = CoatOLMoAfterAttentionResidual(config, qargs, self.layer_id)
         | 
| 977 | 
            +
                        self.MLPResidual = CoatOLMoMLPResidual(config, qargs, self.layer_id, self.hidden_size)
         | 
| 978 | 
            +
                    else:
         | 
| 979 | 
            +
                        self.att_proj = nn.Linear(
         | 
| 980 | 
            +
                            config.d_model, sum(self.fused_dims), bias=config.include_bias, device=config.init_device
         | 
| 981 | 
            +
                        )
         | 
| 982 | 
            +
                        # Feed-forward input projection.
         | 
| 983 | 
            +
                        self.ff_proj = nn.Linear(
         | 
| 984 | 
            +
                            config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
         | 
| 985 | 
            +
                        )
         | 
| 986 | 
            +
             | 
| 987 | 
            +
                    # Layer norms.
         | 
| 988 | 
            +
                    self.attn_norm = LayerNorm.build(config, size=config.d_model)
         | 
| 989 | 
            +
                    self.ff_norm = LayerNorm.build(config, size=config.d_model)
         | 
| 990 | 
            +
             | 
| 991 | 
            +
                def reset_parameters(self):
         | 
| 992 | 
            +
                    super().reset_parameters()
         | 
| 993 | 
            +
                    self.attn_norm.reset_parameters()
         | 
| 994 | 
            +
                    self.ff_norm.reset_parameters()
         | 
| 995 | 
            +
                    # NOTE: the standard deviation for these weights does not depend on the layer.
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                    if self.qargs.use_quantize_model:  # The initialization appears here, not in CoatOLMoBlock's reset_parameters
         | 
| 998 | 
            +
                        if self.config.init_fn == InitFnType.normal:
         | 
| 999 | 
            +
                            attn_out_std = ff_out_std = self.config.init_std
         | 
| 1000 | 
            +
                            cutoff_factor = self.config.init_cutoff_factor
         | 
| 1001 | 
            +
             | 
| 1002 | 
            +
                        elif self.config.init_fn == InitFnType.mitchell:
         | 
| 1003 | 
            +
                            attn_out_std = 1 / (math.sqrt(2 * self.config.d_model * (self.layer_id + 1)))
         | 
| 1004 | 
            +
                            ff_out_std = 1 / (math.sqrt(2 * self.MLPResidual.ff_out.in_features * (self.layer_id + 1)))
         | 
| 1005 | 
            +
                            cutoff_factor = self.config.init_cutoff_factor or 3.0
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                        elif self.config.init_fn == InitFnType.full_megatron:
         | 
| 1008 | 
            +
                            attn_out_std = ff_out_std = self.config.init_std / math.sqrt(2.0 * self.config.n_layers)
         | 
| 1009 | 
            +
                            cutoff_factor = self.config.init_cutoff_factor or 3.0
         | 
| 1010 | 
            +
             | 
| 1011 | 
            +
                        else:
         | 
| 1012 | 
            +
                            raise NotImplementedError(self.config.init_fn)
         | 
| 1013 | 
            +
             | 
| 1014 | 
            +
                        init_normal(self.AfterAttention.attn_out, std=attn_out_std, init_cutoff_factor=cutoff_factor)
         | 
| 1015 | 
            +
                        init_normal(self.MLPResidual.ff_out, std=ff_out_std, init_cutoff_factor=cutoff_factor)
         | 
| 1016 | 
            +
             | 
| 1017 | 
            +
                    if self.config.init_fn == InitFnType.normal:
         | 
| 1018 | 
            +
                        std = self.config.init_std
         | 
| 1019 | 
            +
                        cutoff_factor = self.config.init_cutoff_factor
         | 
| 1020 | 
            +
                    elif self.config.init_fn == InitFnType.mitchell:
         | 
| 1021 | 
            +
                        std = 1 / math.sqrt(self.config.d_model)
         | 
| 1022 | 
            +
                        cutoff_factor = self.config.init_cutoff_factor or 3.0
         | 
| 1023 | 
            +
                    elif self.config.init_fn == InitFnType.full_megatron:
         | 
| 1024 | 
            +
                        std = self.config.init_std
         | 
| 1025 | 
            +
                        cutoff_factor = self.config.init_cutoff_factor or 3.0
         | 
| 1026 | 
            +
                    else:
         | 
| 1027 | 
            +
                        raise NotImplementedError(self.config.init_fn)
         | 
| 1028 | 
            +
             | 
| 1029 | 
            +
                    if not self.qargs.use_quantize_model:
         | 
| 1030 | 
            +
                        init_normal(self.att_proj, std, cutoff_factor)
         | 
| 1031 | 
            +
                        init_normal(self.ff_proj, std, cutoff_factor)
         | 
| 1032 | 
            +
                    else:
         | 
| 1033 | 
            +
                        init_normal(self.BeforeAttention.att_proj, std, cutoff_factor)
         | 
| 1034 | 
            +
                        init_normal(self.MLPResidual.ff_proj, std, cutoff_factor)
         | 
| 1035 | 
            +
             | 
| 1036 | 
            +
                def forward(
         | 
| 1037 | 
            +
                    self,
         | 
| 1038 | 
            +
                    x: torch.Tensor,
         | 
| 1039 | 
            +
                    qx: torch.Tensor,
         | 
| 1040 | 
            +
                    sx: torch.Tensor,
         | 
| 1041 | 
            +
                    attention_bias: torch.Tensor | None = None,
         | 
| 1042 | 
            +
                    layer_past: tuple[torch.Tensor, torch.Tensor] | None = None,
         | 
| 1043 | 
            +
                    use_cache: bool = False,
         | 
| 1044 | 
            +
                    max_doc_len: int | None = None,
         | 
| 1045 | 
            +
                    cu_doc_lens: torch.Tensor | None = None,
         | 
| 1046 | 
            +
                ) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
         | 
| 1047 | 
            +
                    # Get query, key, value projections.
         | 
| 1048 | 
            +
                    # shape:
         | 
| 1049 | 
            +
                    #  - for regular attn q, k, v: (batch_size, seq_len, d_model)
         | 
| 1050 | 
            +
                    #  - for multi-query attn q: (batch_size, seq_len, d_model)
         | 
| 1051 | 
            +
                    #                      k, v: (batch_size, seq_len, d_model // n_heads)
         | 
| 1052 | 
            +
                    #  - for group query attn q: (batch_size, seq_len, d_model)
         | 
| 1053 | 
            +
                    #                      k, v: (batch_size, seq_len, d_model // n_kv_heads)
         | 
| 1054 | 
            +
             | 
| 1055 | 
            +
                    # import IPython
         | 
| 1056 | 
            +
                    # IPython.embed()
         | 
| 1057 | 
            +
             | 
| 1058 | 
            +
                    if self.qargs.use_quantize_model:
         | 
| 1059 | 
            +
                        # if False:
         | 
| 1060 | 
            +
                        x, qkv = self.BeforeAttention(x, qx, sx)
         | 
| 1061 | 
            +
                    else:
         | 
| 1062 | 
            +
                        # apply norm before
         | 
| 1063 | 
            +
                        h = self.attn_norm(x)
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
                        qkv = self.BeforeAttention.att_proj(h)
         | 
| 1066 | 
            +
             | 
| 1067 | 
            +
                    if self.config.clip_qkv is not None:
         | 
| 1068 | 
            +
                        qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 1069 | 
            +
             | 
| 1070 | 
            +
                    q, k, v = qkv.split(self.fused_dims, dim=-1)
         | 
| 1071 | 
            +
             | 
| 1072 | 
            +
                    # Get attention scores.
         | 
| 1073 | 
            +
                    att, cache = self.attention(
         | 
| 1074 | 
            +
                        q,
         | 
| 1075 | 
            +
                        k,
         | 
| 1076 | 
            +
                        v,
         | 
| 1077 | 
            +
                        attention_bias,
         | 
| 1078 | 
            +
                        layer_past=layer_past,
         | 
| 1079 | 
            +
                        use_cache=use_cache,
         | 
| 1080 | 
            +
                        max_doc_len=max_doc_len,
         | 
| 1081 | 
            +
                        cu_doc_lens=cu_doc_lens,
         | 
| 1082 | 
            +
                    )
         | 
| 1083 | 
            +
             | 
| 1084 | 
            +
                    # import IPython
         | 
| 1085 | 
            +
                    # IPython.embed()
         | 
| 1086 | 
            +
                    if self.qargs.use_quantize_model:
         | 
| 1087 | 
            +
                        # if False:
         | 
| 1088 | 
            +
                        x, qx, sx = self.AfterAttention(x, att)
         | 
| 1089 | 
            +
                    else:
         | 
| 1090 | 
            +
                        att = self.AfterAttention.attn_out(att)
         | 
| 1091 | 
            +
             | 
| 1092 | 
            +
                        # Add attention scores.
         | 
| 1093 | 
            +
                        # shape: (B, T, C)
         | 
| 1094 | 
            +
                        x = x + self.dropout(att)
         | 
| 1095 | 
            +
             | 
| 1096 | 
            +
                    if self.qargs.use_quantize_model:
         | 
| 1097 | 
            +
                        # if False:
         | 
| 1098 | 
            +
                        x, qx, sx = self.MLPResidual(x, qx, sx)
         | 
| 1099 | 
            +
                    else:
         | 
| 1100 | 
            +
                        # Add feed-forward projection.
         | 
| 1101 | 
            +
                        # shape: (batch_size, seq_len, d_model)
         | 
| 1102 | 
            +
                        og_x = x
         | 
| 1103 | 
            +
             | 
| 1104 | 
            +
                        x = self.ff_norm(x)
         | 
| 1105 | 
            +
             | 
| 1106 | 
            +
                        x = self.MLPResidual.ff_proj(x)
         | 
| 1107 | 
            +
             | 
| 1108 | 
            +
                        if self._activation_checkpoint_fn is not None:
         | 
| 1109 | 
            +
                            x = self._activation_checkpoint_fn(self.act, x)  # type: ignore
         | 
| 1110 | 
            +
                        else:
         | 
| 1111 | 
            +
                            x = self.act(x)
         | 
| 1112 | 
            +
                        x = self.MLPResidual.ff_out(x)
         | 
| 1113 | 
            +
             | 
| 1114 | 
            +
                        x = self.dropout(x)
         | 
| 1115 | 
            +
                        x = og_x + x
         | 
| 1116 | 
            +
             | 
| 1117 | 
            +
                    # import IPython
         | 
| 1118 | 
            +
                    # IPython.embed()
         | 
| 1119 | 
            +
             | 
| 1120 | 
            +
                    return x, qx, sx, cache
         | 
| 1121 | 
            +
             | 
| 1122 | 
            +
             | 
| 1123 | 
            +
            class CoatOLMoLlamaBlock(OLMoBlock):
         | 
| 1124 | 
            +
                """
         | 
| 1125 | 
            +
                This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
         | 
| 1126 | 
            +
                (plus another skip connection). This block is similar to `OLMoSequentialBlock`
         | 
| 1127 | 
            +
                but some operations have slightly different implementations to imitate the
         | 
| 1128 | 
            +
                behavior of Llama.
         | 
| 1129 | 
            +
                """
         | 
| 1130 | 
            +
             | 
| 1131 | 
            +
                def __init__(self, layer_id: int, config: ModelConfig, qargs: QuantActivationConfig, cache: BufferCache):
         | 
| 1132 | 
            +
                    super().__init__(layer_id, config, qargs, cache)
         | 
| 1133 | 
            +
                    # Layer norms.
         | 
| 1134 | 
            +
                    self.attn_norm = LayerNorm.build(config)
         | 
| 1135 | 
            +
                    self.ff_norm = LayerNorm.build(config)
         | 
| 1136 | 
            +
                    self.__cache = cache
         | 
| 1137 | 
            +
             | 
| 1138 | 
            +
                    # Attention input projection. Projects x -> (q, k, v)
         | 
| 1139 | 
            +
                    if config.multi_query_attention:
         | 
| 1140 | 
            +
                        q_proj_out_dim = config.d_model
         | 
| 1141 | 
            +
                        k_proj_out_dim = config.d_model // config.n_heads
         | 
| 1142 | 
            +
                        v_proj_out_dim = config.d_model // config.n_heads
         | 
| 1143 | 
            +
                    else:
         | 
| 1144 | 
            +
                        q_proj_out_dim = config.d_model
         | 
| 1145 | 
            +
                        k_proj_out_dim = config.d_model
         | 
| 1146 | 
            +
                        v_proj_out_dim = config.d_model
         | 
| 1147 | 
            +
                    self.q_proj = nn.Linear(config.d_model, q_proj_out_dim, bias=config.include_bias, device=config.init_device)
         | 
| 1148 | 
            +
                    self.k_proj = nn.Linear(config.d_model, k_proj_out_dim, bias=config.include_bias, device=config.init_device)
         | 
| 1149 | 
            +
                    self.v_proj = nn.Linear(config.d_model, v_proj_out_dim, bias=config.include_bias, device=config.init_device)
         | 
| 1150 | 
            +
             | 
| 1151 | 
            +
                    # Feed-forward input projection.
         | 
| 1152 | 
            +
                    self.ff_proj = nn.Linear(config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device)
         | 
| 1153 | 
            +
             | 
| 1154 | 
            +
                def reset_parameters(self):
         | 
| 1155 | 
            +
                    super().reset_parameters()
         | 
| 1156 | 
            +
                    self.attn_norm.reset_parameters()
         | 
| 1157 | 
            +
                    self.ff_norm.reset_parameters()
         | 
| 1158 | 
            +
                    # NOTE: the standard deviation for these weights does not depend on the layer.
         | 
| 1159 | 
            +
             | 
| 1160 | 
            +
                    if self.config.init_fn == InitFnType.normal:
         | 
| 1161 | 
            +
                        std = self.config.init_std
         | 
| 1162 | 
            +
                        cutoff_factor = self.config.init_cutoff_factor
         | 
| 1163 | 
            +
                    elif self.config.init_fn == InitFnType.mitchell:
         | 
| 1164 | 
            +
                        std = 1 / math.sqrt(self.config.d_model)
         | 
| 1165 | 
            +
                        cutoff_factor = self.config.init_cutoff_factor or 3.0
         | 
| 1166 | 
            +
                    elif self.config.init_fn == InitFnType.full_megatron:
         | 
| 1167 | 
            +
                        std = self.config.init_std
         | 
| 1168 | 
            +
                        cutoff_factor = self.config.init_cutoff_factor or 3.0
         | 
| 1169 | 
            +
                    else:
         | 
| 1170 | 
            +
                        raise NotImplementedError(self.config.init_fn)
         | 
| 1171 | 
            +
             | 
| 1172 | 
            +
                    init_normal(self.q_proj, std, cutoff_factor)
         | 
| 1173 | 
            +
                    init_normal(self.k_proj, std, cutoff_factor)
         | 
| 1174 | 
            +
                    init_normal(self.v_proj, std, cutoff_factor)
         | 
| 1175 | 
            +
                    init_normal(self.ff_proj, std, cutoff_factor)
         | 
| 1176 | 
            +
             | 
| 1177 | 
            +
                def _scaled_dot_product_attention(
         | 
| 1178 | 
            +
                    self,
         | 
| 1179 | 
            +
                    q: torch.Tensor,
         | 
| 1180 | 
            +
                    k: torch.Tensor,
         | 
| 1181 | 
            +
                    v: torch.Tensor,
         | 
| 1182 | 
            +
                    attn_mask: torch.Tensor | None = None,
         | 
| 1183 | 
            +
                    dropout_p: float = 0.0,
         | 
| 1184 | 
            +
                    is_causal: bool = False,
         | 
| 1185 | 
            +
                    max_doc_len: int | None = None,
         | 
| 1186 | 
            +
                    cu_doc_lens: torch.Tensor | None = None,
         | 
| 1187 | 
            +
                ) -> torch.Tensor:
         | 
| 1188 | 
            +
                    if max_doc_len is not None or cu_doc_lens is not None:
         | 
| 1189 | 
            +
                        raise NotImplementedError(f"attention document masking is not implemented for {self.__class__.__name__}")
         | 
| 1190 | 
            +
             | 
| 1191 | 
            +
                    attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.size(-1))
         | 
| 1192 | 
            +
             | 
| 1193 | 
            +
                    if is_causal:
         | 
| 1194 | 
            +
                        assert attn_mask is None
         | 
| 1195 | 
            +
             | 
| 1196 | 
            +
                        query_len, key_len = q.shape[-2], k.shape[-2]  # could be different if layer_past not None
         | 
| 1197 | 
            +
                        attn_bias = get_causal_attention_bias(self.__cache, key_len, q.device)[:, :, :query_len, :key_len]
         | 
| 1198 | 
            +
                    elif attn_mask is not None:
         | 
| 1199 | 
            +
                        attn_bias = attn_mask.to(q.dtype)
         | 
| 1200 | 
            +
                    else:
         | 
| 1201 | 
            +
                        attn_bias = torch.zeros_like(attn_weights)
         | 
| 1202 | 
            +
             | 
| 1203 | 
            +
                    attn_weights += attn_bias
         | 
| 1204 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(q.dtype)
         | 
| 1205 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=dropout_p)
         | 
| 1206 | 
            +
                    return torch.matmul(attn_weights, v)
         | 
| 1207 | 
            +
             | 
| 1208 | 
            +
                def forward(
         | 
| 1209 | 
            +
                    self,
         | 
| 1210 | 
            +
                    x: torch.Tensor,
         | 
| 1211 | 
            +
                    qx: torch.Tensor,
         | 
| 1212 | 
            +
                    sx: torch.Tensor,
         | 
| 1213 | 
            +
                    attention_bias: torch.Tensor | None = None,
         | 
| 1214 | 
            +
                    layer_past: tuple[torch.Tensor, torch.Tensor] | None = None,
         | 
| 1215 | 
            +
                    use_cache: bool = False,
         | 
| 1216 | 
            +
                    max_doc_len: int | None = None,
         | 
| 1217 | 
            +
                    cu_doc_lens: torch.Tensor | None = None,
         | 
| 1218 | 
            +
                ) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
         | 
| 1219 | 
            +
                    # Get query, key, value projections.
         | 
| 1220 | 
            +
                    # shape:
         | 
| 1221 | 
            +
                    #  - for regular attn q, k, v: (batch_size, seq_len, d_model)
         | 
| 1222 | 
            +
                    #  - for multi-query attn q: (batch_size, seq_len, d_model)
         | 
| 1223 | 
            +
                    #                      k, v: (batch_size, seq_len, d_model // n_heads)
         | 
| 1224 | 
            +
                    x_normed = self.attn_norm(x)
         | 
| 1225 | 
            +
                    q = self.q_proj(x_normed)
         | 
| 1226 | 
            +
                    k = self.k_proj(x_normed)
         | 
| 1227 | 
            +
                    v = self.v_proj(x_normed)
         | 
| 1228 | 
            +
             | 
| 1229 | 
            +
                    if self.config.clip_qkv is not None:
         | 
| 1230 | 
            +
                        q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 1231 | 
            +
                        k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 1232 | 
            +
                        v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 1233 | 
            +
             | 
| 1234 | 
            +
                    # Get attention scores.
         | 
| 1235 | 
            +
                    att, cache = self.attention(
         | 
| 1236 | 
            +
                        q,
         | 
| 1237 | 
            +
                        k,
         | 
| 1238 | 
            +
                        v,
         | 
| 1239 | 
            +
                        attention_bias,
         | 
| 1240 | 
            +
                        layer_past=layer_past,
         | 
| 1241 | 
            +
                        use_cache=use_cache,
         | 
| 1242 | 
            +
                        max_doc_len=max_doc_len,
         | 
| 1243 | 
            +
                        cu_doc_lens=cu_doc_lens,
         | 
| 1244 | 
            +
                    )
         | 
| 1245 | 
            +
             | 
| 1246 | 
            +
                    att = self.attn_out(att)  # NOTE: we move the attn_out outside the self.attention module
         | 
| 1247 | 
            +
             | 
| 1248 | 
            +
                    # Add attention scores.
         | 
| 1249 | 
            +
                    # shape: (B, T, C)
         | 
| 1250 | 
            +
                    x = x + self.dropout(att)
         | 
| 1251 | 
            +
             | 
| 1252 | 
            +
                    # Add feed-forward projection.
         | 
| 1253 | 
            +
                    # shape: (batch_size, seq_len, d_model)
         | 
| 1254 | 
            +
                    og_x = x
         | 
| 1255 | 
            +
                    if self._activation_checkpoint_fn is not None:
         | 
| 1256 | 
            +
                        x = self._activation_checkpoint_fn(self.ff_norm, x)  # type: ignore
         | 
| 1257 | 
            +
                    else:
         | 
| 1258 | 
            +
                        x = self.ff_norm(x)
         | 
| 1259 | 
            +
                    x = self.ff_proj(x)
         | 
| 1260 | 
            +
                    if self._activation_checkpoint_fn is not None:
         | 
| 1261 | 
            +
                        x = self._activation_checkpoint_fn(self.act, x)  # type: ignore
         | 
| 1262 | 
            +
                    else:
         | 
| 1263 | 
            +
                        x = self.act(x)
         | 
| 1264 | 
            +
                    x = self.ff_out(x)
         | 
| 1265 | 
            +
                    x = self.dropout(x)
         | 
| 1266 | 
            +
                    x = og_x + x
         | 
| 1267 | 
            +
             | 
| 1268 | 
            +
                    return x, cache
         | 
| 1269 | 
            +
             | 
| 1270 | 
            +
             | 
| 1271 | 
            +
            class CoatOLMoBlockGroup(nn.ModuleList):
         | 
| 1272 | 
            +
                def __init__(self, config: ModelConfig, layer_offset: int, modules: Iterable[nn.Module] | None = None):
         | 
| 1273 | 
            +
                    super().__init__(modules)
         | 
| 1274 | 
            +
                    self.config = config
         | 
| 1275 | 
            +
                    self.layer_offset = layer_offset
         | 
| 1276 | 
            +
                    self.activation_checkpointing_strategy: ActivationCheckpointingStrategy | None = None
         | 
| 1277 | 
            +
                    self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
         | 
| 1278 | 
            +
             | 
| 1279 | 
            +
                def forward(
         | 
| 1280 | 
            +
                    self,
         | 
| 1281 | 
            +
                    x: torch.Tensor,
         | 
| 1282 | 
            +
                    attention_bias: torch.FloatTensor | None = None,
         | 
| 1283 | 
            +
                    layers_past: list[tuple[torch.Tensor, torch.Tensor]] | None = None,
         | 
| 1284 | 
            +
                    use_cache: bool = False,
         | 
| 1285 | 
            +
                    max_doc_len: int | None = None,
         | 
| 1286 | 
            +
                    cu_doc_lens: torch.Tensor | None = None,
         | 
| 1287 | 
            +
                ) -> tuple[torch.Tensor, list[tuple[torch.Tensor, torch.Tensor]] | None]:
         | 
| 1288 | 
            +
                    attn_key_values: list[tuple[torch.Tensor, torch.Tensor]] | None = [] if use_cache else None
         | 
| 1289 | 
            +
                    for block_idx, block in enumerate(self):
         | 
| 1290 | 
            +
                        layer_past = None if layers_past is None else layers_past[block_idx]
         | 
| 1291 | 
            +
                        block_idx += self.layer_offset
         | 
| 1292 | 
            +
                        if should_checkpoint_block(self.activation_checkpointing_strategy, block_idx):
         | 
| 1293 | 
            +
                            # shape: (batch_size, seq_len, d_model)
         | 
| 1294 | 
            +
                            x, cache = self._activation_checkpoint_fn(  # type: ignore
         | 
| 1295 | 
            +
                                block,
         | 
| 1296 | 
            +
                                x,
         | 
| 1297 | 
            +
                                attention_bias=attention_bias,
         | 
| 1298 | 
            +
                                layer_past=layer_past,
         | 
| 1299 | 
            +
                                use_cache=use_cache,
         | 
| 1300 | 
            +
                                max_doc_len=max_doc_len,
         | 
| 1301 | 
            +
                                cu_doc_lens=cu_doc_lens,
         | 
| 1302 | 
            +
                            )
         | 
| 1303 | 
            +
                        else:
         | 
| 1304 | 
            +
                            # shape: (batch_size, seq_len, d_model)
         | 
| 1305 | 
            +
                            x, cache = block(
         | 
| 1306 | 
            +
                                x,
         | 
| 1307 | 
            +
                                attention_bias=attention_bias,
         | 
| 1308 | 
            +
                                layer_past=layer_past,
         | 
| 1309 | 
            +
                                use_cache=use_cache,
         | 
| 1310 | 
            +
                                max_doc_len=max_doc_len,
         | 
| 1311 | 
            +
                                cu_doc_lens=cu_doc_lens,
         | 
| 1312 | 
            +
                            )
         | 
| 1313 | 
            +
                        if attn_key_values is not None:
         | 
| 1314 | 
            +
                            assert cache is not None
         | 
| 1315 | 
            +
                            attn_key_values.append(cache)
         | 
| 1316 | 
            +
                    return x, attn_key_values
         | 
| 1317 | 
            +
             | 
| 1318 | 
            +
                def reset_parameters(self):
         | 
| 1319 | 
            +
                    for block in self:
         | 
| 1320 | 
            +
                        block.reset_parameters()
         | 
| 1321 | 
            +
             | 
| 1322 | 
            +
                def set_activation_checkpointing(
         | 
| 1323 | 
            +
                    self, strategy: ActivationCheckpointingStrategy | None, checkpoint_func: Callable | None = None
         | 
| 1324 | 
            +
                ):
         | 
| 1325 | 
            +
                    self.activation_checkpointing_strategy = strategy
         | 
| 1326 | 
            +
                    for block in self:
         | 
| 1327 | 
            +
                        block.set_activation_checkpointing(strategy, checkpoint_func=checkpoint_func)
         | 
| 1328 | 
            +
             | 
| 1329 | 
            +
             | 
| 1330 | 
            +
            class CoatOLMo(nn.Module):
         | 
| 1331 | 
            +
                def __init__(self, config: ModelConfig, qargs: QuantActivationConfig, init_params: bool = True):
         | 
| 1332 | 
            +
                    super().__init__()
         | 
| 1333 | 
            +
                    self.config = config
         | 
| 1334 | 
            +
                    self.qargs = qargs
         | 
| 1335 | 
            +
                    self.__cache = BufferCache()
         | 
| 1336 | 
            +
             | 
| 1337 | 
            +
                    # Validate config.
         | 
| 1338 | 
            +
                    if self.config.alibi and self.config.flash_attention:
         | 
| 1339 | 
            +
                        raise OLMoConfigurationError("ALiBi is currently not supported with FlashAttention")
         | 
| 1340 | 
            +
             | 
| 1341 | 
            +
                    if self.config.alibi and self.config.rope:
         | 
| 1342 | 
            +
                        raise OLMoConfigurationError("ALiBi and RoPE are mutually exclusive")
         | 
| 1343 | 
            +
             | 
| 1344 | 
            +
                    if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
         | 
| 1345 | 
            +
                        if self.config.embedding_size < self.config.vocab_size:
         | 
| 1346 | 
            +
                            raise OLMoConfigurationError("embedding size should be at least as big as vocab size")
         | 
| 1347 | 
            +
                        elif self.config.embedding_size % 128 != 0:
         | 
| 1348 | 
            +
                            import warnings
         | 
| 1349 | 
            +
             | 
| 1350 | 
            +
                            warnings.warn(
         | 
| 1351 | 
            +
                                "Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
         | 
| 1352 | 
            +
                            )
         | 
| 1353 | 
            +
             | 
| 1354 | 
            +
                    self.activation_checkpointing_strategy: ActivationCheckpointingStrategy | None = None
         | 
| 1355 | 
            +
                    self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config)
         | 
| 1356 | 
            +
             | 
| 1357 | 
            +
                    if not (
         | 
| 1358 | 
            +
                        0 < self.config.block_group_size <= self.config.n_layers
         | 
| 1359 | 
            +
                        and self.config.n_layers % self.config.block_group_size == 0
         | 
| 1360 | 
            +
                    ):
         | 
| 1361 | 
            +
                        raise OLMoConfigurationError("n layers must be divisible by block group size")
         | 
| 1362 | 
            +
             | 
| 1363 | 
            +
                    torch.backends.cuda.enable_flash_sdp(True)
         | 
| 1364 | 
            +
                    torch.backends.cuda.enable_mem_efficient_sdp(False)  # this is super slow so make sure torch won't use it
         | 
| 1365 | 
            +
             | 
| 1366 | 
            +
                    self.transformer = nn.ModuleDict(
         | 
| 1367 | 
            +
                        dict(
         | 
| 1368 | 
            +
                            wte=nn.Embedding(config.embedding_size or config.vocab_size, config.d_model, device=config.init_device),
         | 
| 1369 | 
            +
                            emb_drop=Dropout(config.embedding_dropout),
         | 
| 1370 | 
            +
                            ln_f=LayerNorm.build(config),
         | 
| 1371 | 
            +
                        )
         | 
| 1372 | 
            +
                    )
         | 
| 1373 | 
            +
             | 
| 1374 | 
            +
                    blocks = [CoatOLMoBlock.build(i, config, qargs, self.__cache) for i in range(config.n_layers)]
         | 
| 1375 | 
            +
                    if self.config.block_group_size > 1:
         | 
| 1376 | 
            +
                        block_groups = [
         | 
| 1377 | 
            +
                            CoatOLMoBlockGroup(config, i, blocks[i : i + config.block_group_size])
         | 
| 1378 | 
            +
                            for i in range(0, config.n_layers, config.block_group_size)
         | 
| 1379 | 
            +
                        ]
         | 
| 1380 | 
            +
                        self.transformer.update({"block_groups": nn.ModuleList(block_groups)})
         | 
| 1381 | 
            +
                    else:
         | 
| 1382 | 
            +
                        self.transformer.update({"blocks": nn.ModuleList(blocks)})
         | 
| 1383 | 
            +
             | 
| 1384 | 
            +
                    if not (self.config.alibi or self.config.rope):
         | 
| 1385 | 
            +
                        self.transformer.update(
         | 
| 1386 | 
            +
                            {"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
         | 
| 1387 | 
            +
                        )
         | 
| 1388 | 
            +
                    if not config.weight_tying:
         | 
| 1389 | 
            +
                        self.transformer.update(
         | 
| 1390 | 
            +
                            {
         | 
| 1391 | 
            +
                                "ff_out": nn.Linear(
         | 
| 1392 | 
            +
                                    config.d_model,
         | 
| 1393 | 
            +
                                    config.embedding_size or config.vocab_size,
         | 
| 1394 | 
            +
                                    bias=config.include_bias,
         | 
| 1395 | 
            +
                                    device=config.init_device,
         | 
| 1396 | 
            +
                                )
         | 
| 1397 | 
            +
                            }
         | 
| 1398 | 
            +
                        )
         | 
| 1399 | 
            +
                    if config.embedding_layer_norm:
         | 
| 1400 | 
            +
                        self.transformer.update({"emb_norm": LayerNorm.build(config)})
         | 
| 1401 | 
            +
             | 
| 1402 | 
            +
                    # When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights.
         | 
| 1403 | 
            +
                    if init_params and self.config.init_device != "meta":
         | 
| 1404 | 
            +
                        self.reset_parameters()
         | 
| 1405 | 
            +
                    self.__num_fwd_flops: int | None = None
         | 
| 1406 | 
            +
                    self.__num_bck_flops: int | None = None
         | 
| 1407 | 
            +
             | 
| 1408 | 
            +
                    # Warm up cache.
         | 
| 1409 | 
            +
                    if self.config.alibi:
         | 
| 1410 | 
            +
                        get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config))
         | 
| 1411 | 
            +
                        self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config))
         | 
| 1412 | 
            +
             | 
| 1413 | 
            +
                    # Quantize
         | 
| 1414 | 
            +
                    self.quantize_input_before_block = Coat_quantize_bgn(qargs)
         | 
| 1415 | 
            +
                    self.quantize_output_after_block = Coat_quantize_end(qargs)
         | 
| 1416 | 
            +
             | 
| 1417 | 
            +
                set_activation_checkpointing = OLMo.set_activation_checkpointing
         | 
| 1418 | 
            +
                device = OLMo.device
         | 
| 1419 | 
            +
                reset_parameters = OLMo.reset_parameters
         | 
| 1420 | 
            +
                get_alibi_attention_bias = OLMo.get_alibi_attention_bias
         | 
| 1421 | 
            +
             | 
| 1422 | 
            +
                def forward(
         | 
| 1423 | 
            +
                    self,
         | 
| 1424 | 
            +
                    input_ids: torch.LongTensor,
         | 
| 1425 | 
            +
                    input_embeddings: torch.FloatTensor | None = None,
         | 
| 1426 | 
            +
                    attention_mask: torch.Tensor | None = None,
         | 
| 1427 | 
            +
                    attention_bias: torch.Tensor | None = None,
         | 
| 1428 | 
            +
                    past_key_values: Sequence[tuple[torch.Tensor, torch.Tensor]] | None = None,
         | 
| 1429 | 
            +
                    use_cache: bool = False,
         | 
| 1430 | 
            +
                    last_logits_only: bool = False,
         | 
| 1431 | 
            +
                    output_hidden_states: bool | None = None,
         | 
| 1432 | 
            +
                    doc_lens: torch.Tensor | None = None,
         | 
| 1433 | 
            +
                    max_doc_lens: Sequence[int] | None = None,
         | 
| 1434 | 
            +
                ) -> OLMoOutput:
         | 
| 1435 | 
            +
                    """
         | 
| 1436 | 
            +
                    :param input_ids: A tensor of shape `(batch_size, seq_len)`.
         | 
| 1437 | 
            +
                    :param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
         | 
| 1438 | 
            +
                        embeddings. When provided, it is treated as the output of the input embedding layer.
         | 
| 1439 | 
            +
                    :param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
         | 
| 1440 | 
            +
                        which input IDs are masked. A `1` value in the mask means that
         | 
| 1441 | 
            +
                        the corresponding input ID should *not* be ignored. A `0` means
         | 
| 1442 | 
            +
                        that the corresponding input ID is masked.
         | 
| 1443 | 
            +
             | 
| 1444 | 
            +
                        This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
         | 
| 1445 | 
            +
                        library.
         | 
| 1446 | 
            +
                    :param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
         | 
| 1447 | 
            +
                        `(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
         | 
| 1448 | 
            +
                        to introduce causal or other biases.
         | 
| 1449 | 
            +
             | 
| 1450 | 
            +
                        If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
         | 
| 1451 | 
            +
                        indicates that the i-th element in the sequence is allowed to attend to the j-th
         | 
| 1452 | 
            +
                        element in the sequence.
         | 
| 1453 | 
            +
             | 
| 1454 | 
            +
                        If the tensor is a float tensor, it will just be added to the attention
         | 
| 1455 | 
            +
                        scores before the softmax.
         | 
| 1456 | 
            +
             | 
| 1457 | 
            +
                        The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
         | 
| 1458 | 
            +
                    :param past_key_values: Pre-computed keys and values for each attention block.
         | 
| 1459 | 
            +
                        Can be used to speed up sequential decoding. The `input_ids` which have
         | 
| 1460 | 
            +
                        their past given to this model should not be passed as `input_ids` as they have already been computed.
         | 
| 1461 | 
            +
                    :param use_cache: If `True`, return key and value tensors for each block.
         | 
| 1462 | 
            +
                    :param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
         | 
| 1463 | 
            +
                        This can speed up decoding when you only care about the next token.
         | 
| 1464 | 
            +
                    :param doc_lens: Document lengths to use in attention for intra-document masking.
         | 
| 1465 | 
            +
                        Shape `(batch_size, max_docs)`.
         | 
| 1466 | 
            +
                    :param max_doc_lens: Maximum document length for each instance in the batch.
         | 
| 1467 | 
            +
                    """
         | 
| 1468 | 
            +
                    output_hidden_states = output_hidden_states if output_hidden_states is not None else False
         | 
| 1469 | 
            +
             | 
| 1470 | 
            +
                    if past_key_values:
         | 
| 1471 | 
            +
                        assert len(past_key_values) == self.config.n_layers
         | 
| 1472 | 
            +
             | 
| 1473 | 
            +
                    batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
         | 
| 1474 | 
            +
                    if past_key_values is None:
         | 
| 1475 | 
            +
                        past_length = 0
         | 
| 1476 | 
            +
                    else:
         | 
| 1477 | 
            +
                        past_length = past_key_values[0][0].size(-2)
         | 
| 1478 | 
            +
             | 
| 1479 | 
            +
                    max_doc_len: int | None = None
         | 
| 1480 | 
            +
                    cu_doc_lens: torch.Tensor | None = None
         | 
| 1481 | 
            +
                    if doc_lens is not None and max_doc_lens is not None:
         | 
| 1482 | 
            +
                        max_doc_len = max(max_doc_lens)
         | 
| 1483 | 
            +
                        cu_doc_lens = get_cumulative_document_lengths(doc_lens)
         | 
| 1484 | 
            +
             | 
| 1485 | 
            +
                    # Get embeddings of input.
         | 
| 1486 | 
            +
                    # shape: (batch_size, seq_len, d_model)
         | 
| 1487 | 
            +
                    x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings  # type: ignore
         | 
| 1488 | 
            +
             | 
| 1489 | 
            +
                    # Apply embedding layer norm.
         | 
| 1490 | 
            +
                    if self.config.embedding_layer_norm:
         | 
| 1491 | 
            +
                        x = self.transformer.emb_norm(x)
         | 
| 1492 | 
            +
             | 
| 1493 | 
            +
                    if not (self.config.alibi or self.config.rope):
         | 
| 1494 | 
            +
                        # Get positional embeddings.
         | 
| 1495 | 
            +
                        # shape: (1, seq_len)
         | 
| 1496 | 
            +
                        pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
         | 
| 1497 | 
            +
                        # shape: (1, seq_len, d_model)
         | 
| 1498 | 
            +
                        pos_emb = self.transformer.wpe(pos)  # type: ignore
         | 
| 1499 | 
            +
                        x = pos_emb + x
         | 
| 1500 | 
            +
             | 
| 1501 | 
            +
                    # Apply dropout.
         | 
| 1502 | 
            +
                    # shape: (batch_size, seq_len, d_model)
         | 
| 1503 | 
            +
                    x = self.transformer.emb_drop(x)  # type: ignore
         | 
| 1504 | 
            +
             | 
| 1505 | 
            +
                    # Transform the attention mask into what the blocks expect.
         | 
| 1506 | 
            +
                    if attention_mask is not None:
         | 
| 1507 | 
            +
                        # shape: (batch_size, 1, 1, seq_len)
         | 
| 1508 | 
            +
                        attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
         | 
| 1509 | 
            +
                        attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
         | 
| 1510 | 
            +
             | 
| 1511 | 
            +
                    # Merge attention mask with attention bias.
         | 
| 1512 | 
            +
                    if (
         | 
| 1513 | 
            +
                        attention_bias is not None
         | 
| 1514 | 
            +
                        or attention_mask is not None
         | 
| 1515 | 
            +
                        or self.config.alibi
         | 
| 1516 | 
            +
                        # NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
         | 
| 1517 | 
            +
                        # with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
         | 
| 1518 | 
            +
                        # scores correctly.
         | 
| 1519 | 
            +
                        or past_key_values is not None
         | 
| 1520 | 
            +
                    ):
         | 
| 1521 | 
            +
                        if attention_bias is None and self.config.alibi:
         | 
| 1522 | 
            +
                            attention_bias = get_causal_attention_bias(
         | 
| 1523 | 
            +
                                self.__cache, past_length + seq_len, x.device
         | 
| 1524 | 
            +
                            ) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
         | 
| 1525 | 
            +
                        elif attention_bias is None:
         | 
| 1526 | 
            +
                            attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
         | 
| 1527 | 
            +
                        elif attention_bias.dtype in (torch.int8, torch.bool):
         | 
| 1528 | 
            +
                            attention_bias = attention_bias.to(dtype=torch.float)
         | 
| 1529 | 
            +
                            attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
         | 
| 1530 | 
            +
             | 
| 1531 | 
            +
                        # Transform to the right shape and data type.
         | 
| 1532 | 
            +
                        mask_len = seq_len
         | 
| 1533 | 
            +
                        if attention_mask is not None:
         | 
| 1534 | 
            +
                            mask_len = attention_mask.shape[-1]
         | 
| 1535 | 
            +
                        elif past_key_values is not None:
         | 
| 1536 | 
            +
                            mask_len = past_key_values[0][0].shape[-2] + seq_len
         | 
| 1537 | 
            +
                        attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
         | 
| 1538 | 
            +
             | 
| 1539 | 
            +
                        # Add in the masking bias.
         | 
| 1540 | 
            +
                        if attention_mask is not None:
         | 
| 1541 | 
            +
                            attention_bias = attention_bias + attention_mask
         | 
| 1542 | 
            +
                            # Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
         | 
| 1543 | 
            +
                            # `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
         | 
| 1544 | 
            +
                            # it can produce NaNs.
         | 
| 1545 | 
            +
                            ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
         | 
| 1546 | 
            +
             | 
| 1547 | 
            +
                    attn_key_values: list[tuple[torch.Tensor, torch.Tensor]] | None = [] if use_cache else None
         | 
| 1548 | 
            +
             | 
| 1549 | 
            +
                    # decoder layers
         | 
| 1550 | 
            +
                    all_hidden_states = []
         | 
| 1551 | 
            +
             | 
| 1552 | 
            +
                    # Prepare the input for COAT decoderlayer
         | 
| 1553 | 
            +
                    x, qx, sx = self.quantize_input_before_block(x)
         | 
| 1554 | 
            +
             | 
| 1555 | 
            +
                    # Apply blocks one-by-one.
         | 
| 1556 | 
            +
                    if self.config.block_group_size == 1:
         | 
| 1557 | 
            +
                        for block_idx, block in enumerate(self.transformer.blocks):
         | 
| 1558 | 
            +
                            if output_hidden_states:
         | 
| 1559 | 
            +
                                # add hidden states
         | 
| 1560 | 
            +
                                all_hidden_states.append(x)
         | 
| 1561 | 
            +
             | 
| 1562 | 
            +
                            layer_past = None if past_key_values is None else past_key_values[block_idx]
         | 
| 1563 | 
            +
                            if should_checkpoint_block(self.activation_checkpointing_strategy, block_idx):
         | 
| 1564 | 
            +
                                # shape: (batch_size, seq_len, d_model)
         | 
| 1565 | 
            +
                                x, qx, sx, cache = self._activation_checkpoint_fn(
         | 
| 1566 | 
            +
                                    block,
         | 
| 1567 | 
            +
                                    x,
         | 
| 1568 | 
            +
                                    qx,
         | 
| 1569 | 
            +
                                    sx,
         | 
| 1570 | 
            +
                                    attention_bias=attention_bias,
         | 
| 1571 | 
            +
                                    layer_past=layer_past,
         | 
| 1572 | 
            +
                                    use_cache=use_cache,
         | 
| 1573 | 
            +
                                    max_doc_len=max_doc_len,
         | 
| 1574 | 
            +
                                    cu_doc_lens=cu_doc_lens,
         | 
| 1575 | 
            +
                                )
         | 
| 1576 | 
            +
                            else:
         | 
| 1577 | 
            +
                                # shape: (batch_size, seq_len, d_model)
         | 
| 1578 | 
            +
                                x, qx, sx, cache = block(
         | 
| 1579 | 
            +
                                    x,
         | 
| 1580 | 
            +
                                    qx,
         | 
| 1581 | 
            +
                                    sx,
         | 
| 1582 | 
            +
                                    attention_bias=attention_bias,
         | 
| 1583 | 
            +
                                    layer_past=layer_past,
         | 
| 1584 | 
            +
                                    use_cache=use_cache,
         | 
| 1585 | 
            +
                                    max_doc_len=max_doc_len,
         | 
| 1586 | 
            +
                                    cu_doc_lens=cu_doc_lens,
         | 
| 1587 | 
            +
                                )
         | 
| 1588 | 
            +
             | 
| 1589 | 
            +
                            if attn_key_values is not None:
         | 
| 1590 | 
            +
                                assert cache is not None
         | 
| 1591 | 
            +
                                attn_key_values.append(cache)
         | 
| 1592 | 
            +
                    else:
         | 
| 1593 | 
            +
                        for group_idx, block_group in enumerate(self.transformer.block_groups):
         | 
| 1594 | 
            +
                            if output_hidden_states:
         | 
| 1595 | 
            +
                                # add hidden states
         | 
| 1596 | 
            +
                                all_hidden_states.append(x)
         | 
| 1597 | 
            +
             | 
| 1598 | 
            +
                            layers_past = (
         | 
| 1599 | 
            +
                                None
         | 
| 1600 | 
            +
                                if past_key_values is None
         | 
| 1601 | 
            +
                                else past_key_values[
         | 
| 1602 | 
            +
                                    group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
         | 
| 1603 | 
            +
                                ]
         | 
| 1604 | 
            +
                            )
         | 
| 1605 | 
            +
                            x, cache = block_group(
         | 
| 1606 | 
            +
                                x,
         | 
| 1607 | 
            +
                                attention_bias=attention_bias,
         | 
| 1608 | 
            +
                                layers_past=layers_past,
         | 
| 1609 | 
            +
                                use_cache=use_cache,
         | 
| 1610 | 
            +
                                max_doc_len=max_doc_len,
         | 
| 1611 | 
            +
                                cu_doc_lens=cu_doc_lens,
         | 
| 1612 | 
            +
                            )
         | 
| 1613 | 
            +
                            if attn_key_values is not None:
         | 
| 1614 | 
            +
                                assert cache is not None
         | 
| 1615 | 
            +
                                attn_key_values.extend(cache)
         | 
| 1616 | 
            +
             | 
| 1617 | 
            +
                    # Summarize the output of the Decoder Layer
         | 
| 1618 | 
            +
                    x = self.quantize_output_after_block(x, qx, sx)
         | 
| 1619 | 
            +
             | 
| 1620 | 
            +
                    if last_logits_only:
         | 
| 1621 | 
            +
                        # shape: (batch_size, 1, d_model)
         | 
| 1622 | 
            +
                        x = x[:, -1, :].unsqueeze(1)
         | 
| 1623 | 
            +
             | 
| 1624 | 
            +
                    # Apply final layer norm.
         | 
| 1625 | 
            +
                    # shape: (batch_size, seq_len or 1, d_model)
         | 
| 1626 | 
            +
                    x = self.transformer.ln_f(x)  # type: ignore
         | 
| 1627 | 
            +
                    if output_hidden_states:
         | 
| 1628 | 
            +
                        # add final hidden state post-final-layernorm, following HuggingFace's convention
         | 
| 1629 | 
            +
                        all_hidden_states.append(x)
         | 
| 1630 | 
            +
             | 
| 1631 | 
            +
                    # Get logits.
         | 
| 1632 | 
            +
                    # shape: (batch_size, seq_len or 1, vocab_size)
         | 
| 1633 | 
            +
                    if self.config.weight_tying:
         | 
| 1634 | 
            +
                        logits = F.linear(x, self.transformer.wte.weight, None)  # type: ignore
         | 
| 1635 | 
            +
                    else:
         | 
| 1636 | 
            +
                        logits = self.transformer.ff_out(x)  # type: ignore
         | 
| 1637 | 
            +
                    if self.config.scale_logits:
         | 
| 1638 | 
            +
                        logits.mul_(1 / math.sqrt(self.config.d_model))
         | 
| 1639 | 
            +
             | 
| 1640 | 
            +
                    return OLMoOutput(
         | 
| 1641 | 
            +
                        logits=logits,
         | 
| 1642 | 
            +
                        attn_key_values=attn_key_values,
         | 
| 1643 | 
            +
                        hidden_states=tuple(all_hidden_states) if output_hidden_states else None,
         | 
| 1644 | 
            +
                    )
         | 
| 1645 | 
            +
             | 
| 1646 | 
            +
                def get_fsdp_wrap_policy(self, wrap_strategy: FSDPWrapStrategy | None = None):
         | 
| 1647 | 
            +
                    if wrap_strategy is None:
         | 
| 1648 | 
            +
                        return None
         | 
| 1649 | 
            +
             | 
| 1650 | 
            +
                    # The 'recurse' mode for the wrap function does not behave like you'd expect.
         | 
| 1651 | 
            +
                    # Even if we return False, it may still recurse because PyTorch does what it wants,
         | 
| 1652 | 
            +
                    # not what you want. This causes issues when, for example, we want to wrap 'ff_out' (a linear layer)
         | 
| 1653 | 
            +
                    # but not other linear layers within a block.
         | 
| 1654 | 
            +
                    # So we have to explicitly tell PyTorch which linear layers to wrap, and we also just
         | 
| 1655 | 
            +
                    # return True in 'recurse' mode for simplicity.
         | 
| 1656 | 
            +
                    size_based_module_to_wrap = {self.transformer.wte}
         | 
| 1657 | 
            +
                    if hasattr(self.transformer, "ff_out"):
         | 
| 1658 | 
            +
                        size_based_module_to_wrap.add(self.transformer.ff_out)
         | 
| 1659 | 
            +
             | 
| 1660 | 
            +
                    if wrap_strategy == FSDPWrapStrategy.by_block:
         | 
| 1661 | 
            +
             | 
| 1662 | 
            +
                        def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
         | 
| 1663 | 
            +
                            del nonwrapped_numel
         | 
| 1664 | 
            +
                            wrap = isinstance(module, CoatOLMoBlock)
         | 
| 1665 | 
            +
                            if recurse:
         | 
| 1666 | 
            +
                                return True
         | 
| 1667 | 
            +
                            else:
         | 
| 1668 | 
            +
                                return wrap
         | 
| 1669 | 
            +
             | 
| 1670 | 
            +
                        return fsdp_wrap_fn
         | 
| 1671 | 
            +
                    elif wrap_strategy == FSDPWrapStrategy.by_block_and_size:
         | 
| 1672 | 
            +
             | 
| 1673 | 
            +
                        def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
         | 
| 1674 | 
            +
                            del nonwrapped_numel
         | 
| 1675 | 
            +
                            wrap = isinstance(module, (CoatOLMoBlock,)) or module in size_based_module_to_wrap
         | 
| 1676 | 
            +
                            if recurse:
         | 
| 1677 | 
            +
                                return True
         | 
| 1678 | 
            +
                            else:
         | 
| 1679 | 
            +
                                return wrap
         | 
| 1680 | 
            +
             | 
| 1681 | 
            +
                        return fsdp_wrap_fn
         | 
| 1682 | 
            +
                    elif wrap_strategy == FSDPWrapStrategy.by_block_group:
         | 
| 1683 | 
            +
                        if self.config.block_group_size <= 1:
         | 
| 1684 | 
            +
                            raise OLMoConfigurationError(
         | 
| 1685 | 
            +
                                "'by_block_group' FSDP wrapping strategy requires block group size greater than 1"
         | 
| 1686 | 
            +
                            )
         | 
| 1687 | 
            +
             | 
| 1688 | 
            +
                        def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
         | 
| 1689 | 
            +
                            del nonwrapped_numel
         | 
| 1690 | 
            +
                            wrap = isinstance(module, CoatOLMoBlockGroup)
         | 
| 1691 | 
            +
                            if recurse:
         | 
| 1692 | 
            +
                                return True
         | 
| 1693 | 
            +
                            else:
         | 
| 1694 | 
            +
                                return wrap
         | 
| 1695 | 
            +
             | 
| 1696 | 
            +
                        return fsdp_wrap_fn
         | 
| 1697 | 
            +
                    elif wrap_strategy == FSDPWrapStrategy.by_block_group_and_size:
         | 
| 1698 | 
            +
                        if self.config.block_group_size <= 1:
         | 
| 1699 | 
            +
                            raise OLMoConfigurationError(
         | 
| 1700 | 
            +
                                "'by_block_group_and_size' FSDP wrapping strategy requires block group size greater than 1"
         | 
| 1701 | 
            +
                            )
         | 
| 1702 | 
            +
             | 
| 1703 | 
            +
                        def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
         | 
| 1704 | 
            +
                            del nonwrapped_numel
         | 
| 1705 | 
            +
                            wrap = isinstance(module, (CoatOLMoBlockGroup,)) or module in size_based_module_to_wrap
         | 
| 1706 | 
            +
                            if recurse:
         | 
| 1707 | 
            +
                                return True
         | 
| 1708 | 
            +
                            else:
         | 
| 1709 | 
            +
                                return wrap
         | 
| 1710 | 
            +
             | 
| 1711 | 
            +
                        return fsdp_wrap_fn
         | 
| 1712 | 
            +
                    elif wrap_strategy == FSDPWrapStrategy.size_based:
         | 
| 1713 | 
            +
                        from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
         | 
| 1714 | 
            +
             | 
| 1715 | 
            +
                        return size_based_auto_wrap_policy
         | 
| 1716 | 
            +
                    elif wrap_strategy in {
         | 
| 1717 | 
            +
                        FSDPWrapStrategy.one_in_two,
         | 
| 1718 | 
            +
                        FSDPWrapStrategy.one_in_three,
         | 
| 1719 | 
            +
                        FSDPWrapStrategy.one_in_four,
         | 
| 1720 | 
            +
                        FSDPWrapStrategy.one_in_five,
         | 
| 1721 | 
            +
                    }:
         | 
| 1722 | 
            +
                        c = {
         | 
| 1723 | 
            +
                            FSDPWrapStrategy.one_in_two: 2,
         | 
| 1724 | 
            +
                            FSDPWrapStrategy.one_in_three: 3,
         | 
| 1725 | 
            +
                            FSDPWrapStrategy.one_in_four: 4,
         | 
| 1726 | 
            +
                            FSDPWrapStrategy.one_in_five: 5,
         | 
| 1727 | 
            +
                        }[wrap_strategy]
         | 
| 1728 | 
            +
             | 
| 1729 | 
            +
                        def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
         | 
| 1730 | 
            +
                            del nonwrapped_numel
         | 
| 1731 | 
            +
                            wrap = isinstance(module, CoatOLMoBlock) and module.layer_id % c == 0
         | 
| 1732 | 
            +
                            if recurse:
         | 
| 1733 | 
            +
                                return True
         | 
| 1734 | 
            +
                            else:
         | 
| 1735 | 
            +
                                return wrap
         | 
| 1736 | 
            +
             | 
| 1737 | 
            +
                        return fsdp_wrap_fn
         | 
| 1738 | 
            +
                    else:
         | 
| 1739 | 
            +
                        raise NotImplementedError(wrap_strategy)
         | 
| 1740 | 
            +
             | 
| 1741 | 
            +
                num_params = OLMo.num_params
         | 
| 1742 | 
            +
             | 
| 1743 | 
            +
                @property
         | 
| 1744 | 
            +
                def num_fwd_flops(self):
         | 
| 1745 | 
            +
                    if self.__num_fwd_flops:
         | 
| 1746 | 
            +
                        return self.__num_fwd_flops
         | 
| 1747 | 
            +
             | 
| 1748 | 
            +
                    # embedding table is just a lookup in the forward pass
         | 
| 1749 | 
            +
                    n_params = self.num_params(include_embedding=False)
         | 
| 1750 | 
            +
                    # the number of parameters is approximately the number of multiply-accumulates (MAC) in the network
         | 
| 1751 | 
            +
                    # each MAC has 2 FLOPs - we multiply by 2 ie 2 * n_param
         | 
| 1752 | 
            +
                    # this gets us FLOPs / token
         | 
| 1753 | 
            +
                    params_flops_per_token = 2 * n_params
         | 
| 1754 | 
            +
                    # there are 2 FLOPS per mac; there is A=Q*K^T and out=A*V ops (ie mult by 2)
         | 
| 1755 | 
            +
                    attn_flops_per_token = self.config.n_layers * 2 * 2 * (self.config.d_model * self.config.max_sequence_length)
         | 
| 1756 | 
            +
                    self.__num_fwd_flops = params_flops_per_token + attn_flops_per_token
         | 
| 1757 | 
            +
                    return self.__num_fwd_flops
         | 
| 1758 | 
            +
             | 
| 1759 | 
            +
                @property
         | 
| 1760 | 
            +
                def num_bck_flops(self):
         | 
| 1761 | 
            +
                    if self.__num_bck_flops:
         | 
| 1762 | 
            +
                        return self.__num_bck_flops
         | 
| 1763 | 
            +
             | 
| 1764 | 
            +
                    n_params = self.num_params()
         | 
| 1765 | 
            +
                    params_flops_per_token = 4 * n_params
         | 
| 1766 | 
            +
                    attn_flops_per_token = self.config.n_layers * 8 * (self.config.d_model * self.config.max_sequence_length)
         | 
| 1767 | 
            +
                    self.__num_bck_flops = params_flops_per_token + attn_flops_per_token
         | 
| 1768 | 
            +
                    return self.__num_bck_flops
         | 
| 1769 | 
            +
             | 
| 1770 | 
            +
                generate = OLMo.generate
         | 
| 1771 | 
            +
             | 
| 1772 | 
            +
                @classmethod
         | 
| 1773 | 
            +
                def from_checkpoint(
         | 
| 1774 | 
            +
                    cls, checkpoint_dir: PathOrStr, device: str = "cpu", checkpoint_type: CheckpointType | None = None
         | 
| 1775 | 
            +
                ) -> CoatOLMo:
         | 
| 1776 | 
            +
                    """
         | 
| 1777 | 
            +
                    Load an OLMo model from a checkpoint.
         | 
| 1778 | 
            +
                    """
         | 
| 1779 | 
            +
                    from olmo.util import resource_path
         | 
| 1780 | 
            +
             | 
| 1781 | 
            +
                    # Guess checkpoint type.
         | 
| 1782 | 
            +
                    if checkpoint_type is None:
         | 
| 1783 | 
            +
                        try:
         | 
| 1784 | 
            +
                            if resource_path(checkpoint_dir, "model.pt").is_file():
         | 
| 1785 | 
            +
                                checkpoint_type = CheckpointType.unsharded
         | 
| 1786 | 
            +
                            else:
         | 
| 1787 | 
            +
                                checkpoint_type = CheckpointType.sharded
         | 
| 1788 | 
            +
                        except FileNotFoundError:
         | 
| 1789 | 
            +
                            checkpoint_type = CheckpointType.sharded
         | 
| 1790 | 
            +
             | 
| 1791 | 
            +
                    # Load config.
         | 
| 1792 | 
            +
                    config_path = resource_path(checkpoint_dir, "config.yaml")
         | 
| 1793 | 
            +
                    model_config = ModelConfig.load(config_path, key="model", validate_paths=False)
         | 
| 1794 | 
            +
             | 
| 1795 | 
            +
                    if checkpoint_type == CheckpointType.unsharded:
         | 
| 1796 | 
            +
                        # Initialize model (always on CPU to start with so we don't run out of GPU memory).
         | 
| 1797 | 
            +
                        model_config.init_device = "cpu"
         | 
| 1798 | 
            +
                        model = CoatOLMo(model_config)
         | 
| 1799 | 
            +
             | 
| 1800 | 
            +
                        # Load state dict directly to target device.
         | 
| 1801 | 
            +
                        state_dict_path = resource_path(checkpoint_dir, "model.pt")
         | 
| 1802 | 
            +
                        state_dict = torch.load(state_dict_path, map_location="cpu")
         | 
| 1803 | 
            +
                        model.load_state_dict(model._make_state_dict_compatible(state_dict)[0])
         | 
| 1804 | 
            +
                        model = model.to(torch.device(device))
         | 
| 1805 | 
            +
                    else:
         | 
| 1806 | 
            +
                        train_config = TrainConfig.load(config_path)
         | 
| 1807 | 
            +
                        if train_config.sharded_checkpointer == ShardedCheckpointerType.olmo_core:
         | 
| 1808 | 
            +
                            from olmo_core.distributed.checkpoint import load_model_and_optim_state  # type: ignore
         | 
| 1809 | 
            +
             | 
| 1810 | 
            +
                            model_config.init_device = device
         | 
| 1811 | 
            +
                            model = CoatOLMo(model_config)
         | 
| 1812 | 
            +
                            load_model_and_optim_state(checkpoint_dir, model)
         | 
| 1813 | 
            +
                        else:
         | 
| 1814 | 
            +
                            # train_config.sharded_checkpointer == ShardedCheckpointerType.torch_new
         | 
| 1815 | 
            +
                            from olmo.checkpoint import load_model_state
         | 
| 1816 | 
            +
             | 
| 1817 | 
            +
                            # Initialize model on target device. In this case the state dict is loaded in-place
         | 
| 1818 | 
            +
                            # so it's not necessary to start on CPU if the target device is a GPU.
         | 
| 1819 | 
            +
                            model_config.init_device = device
         | 
| 1820 | 
            +
                            model = CoatOLMo(model_config)
         | 
| 1821 | 
            +
             | 
| 1822 | 
            +
                            # Load state dict in place.
         | 
| 1823 | 
            +
                            load_model_state(checkpoint_dir, model)
         | 
| 1824 | 
            +
             | 
| 1825 | 
            +
                    return model.eval()
         | 
| 1826 | 
            +
             | 
| 1827 | 
            +
                def _make_state_dict_compatible(
         | 
| 1828 | 
            +
                    self, state_dict: dict[str, torch.Tensor]
         | 
| 1829 | 
            +
                ) -> tuple[dict[str, torch.Tensor], dict[str, set[str]]]:
         | 
| 1830 | 
            +
                    """
         | 
| 1831 | 
            +
                    Handles some cases where the state dict is valid yet may need to be transformed in order to
         | 
| 1832 | 
            +
                    be loaded.
         | 
| 1833 | 
            +
             | 
| 1834 | 
            +
                    This modifies the state dict in-place and also returns it, along with a mapping of original key
         | 
| 1835 | 
            +
                    names to new key names in cases where the keys were simply renamed. That mapping can be used
         | 
| 1836 | 
            +
                    to make a corresponding optimizer state dict compatible as well.
         | 
| 1837 | 
            +
                    """
         | 
| 1838 | 
            +
                    import re
         | 
| 1839 | 
            +
                    from fnmatch import fnmatch
         | 
| 1840 | 
            +
             | 
| 1841 | 
            +
                    new_keys_to_og_keys: dict[str, str] = {}
         | 
| 1842 | 
            +
             | 
| 1843 | 
            +
                    # Remove "_fsdp_wrapped_module." prefix from all keys. We don't want this prefix when the model is
         | 
| 1844 | 
            +
                    # not wrapped in FSDP. And when the model is wrapped in FSDP, loading this state dict will still work
         | 
| 1845 | 
            +
                    # fine without the prefixes. This also simplifies the other steps below.
         | 
| 1846 | 
            +
                    for key in list(state_dict.keys()):
         | 
| 1847 | 
            +
                        state_dict[(new_key := key.replace("_fsdp_wrapped_module.", ""))] = state_dict.pop(key)
         | 
| 1848 | 
            +
                        new_keys_to_og_keys[new_key] = key
         | 
| 1849 | 
            +
             | 
| 1850 | 
            +
                    # For backwards compatibility prior to fixing https://github.com/allenai/LLM/issues/222
         | 
| 1851 | 
            +
                    if self.config.block_type == BlockType.sequential:
         | 
| 1852 | 
            +
                        for key in list(state_dict.keys()):
         | 
| 1853 | 
            +
                            if fnmatch(key, "transformer.*.norm.weight"):
         | 
| 1854 | 
            +
                                tensor = state_dict.pop(key)
         | 
| 1855 | 
            +
                                state_dict[(new_key := key.replace("norm.weight", "attn_norm.weight"))] = tensor
         | 
| 1856 | 
            +
                                new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
         | 
| 1857 | 
            +
                                state_dict[(new_key := key.replace("norm.weight", "ff_norm.weight"))] = tensor.clone()
         | 
| 1858 | 
            +
                                new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
         | 
| 1859 | 
            +
                                del new_keys_to_og_keys[key]
         | 
| 1860 | 
            +
                            elif fnmatch(key, "transformer.*.norm.bias"):
         | 
| 1861 | 
            +
                                tensor = state_dict.pop(key)
         | 
| 1862 | 
            +
                                state_dict[(new_key := key.replace("norm.bias", "attn_norm.bias"))] = tensor
         | 
| 1863 | 
            +
                                new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
         | 
| 1864 | 
            +
                                state_dict[(new_key := key.replace("norm.bias", "ff_norm.bias"))] = tensor.clone()
         | 
| 1865 | 
            +
                                new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
         | 
| 1866 | 
            +
                                del new_keys_to_og_keys[key]
         | 
| 1867 | 
            +
             | 
| 1868 | 
            +
                    # Realquantization will change the place the linear layers happen
         | 
| 1869 | 
            +
                    if self.qargs.use_quantize_model == "coat_real":
         | 
| 1870 | 
            +
                        for key in list(state_dict.keys()):
         | 
| 1871 | 
            +
                            if fnmatch(key, "transformer.blocks.*.att_proj.weight") and "BeforeAttention" not in key:
         | 
| 1872 | 
            +
                                tensor = state_dict.pop(key)
         | 
| 1873 | 
            +
                                state_dict[(new_key := key.replace("att_proj.weight", "BeforeAttention.att_proj.weight"))] = tensor
         | 
| 1874 | 
            +
                                new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
         | 
| 1875 | 
            +
                                del new_keys_to_og_keys[key]
         | 
| 1876 | 
            +
                            elif fnmatch(key, "transformer.blocks.*.attn_out.weight") and "AfterAttention" not in key:
         | 
| 1877 | 
            +
                                tensor = state_dict.pop(key)
         | 
| 1878 | 
            +
                                state_dict[(new_key := key.replace("attn_out.weight", "AfterAttention.attn_out.weight"))] = tensor
         | 
| 1879 | 
            +
                                new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
         | 
| 1880 | 
            +
                                del new_keys_to_og_keys[key]
         | 
| 1881 | 
            +
                            elif fnmatch(key, "transformer.blocks.*.ff_proj.weight") and "MLPResidual" not in key:
         | 
| 1882 | 
            +
                                tensor = state_dict.pop(key)
         | 
| 1883 | 
            +
                                state_dict[(new_key := key.replace("ff_proj.weight", "MLPResidual.ff_proj.weight"))] = tensor
         | 
| 1884 | 
            +
                                new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
         | 
| 1885 | 
            +
                                del new_keys_to_og_keys[key]
         | 
| 1886 | 
            +
                            elif fnmatch(key, "transformer.blocks.*.ff_out.weight") and "MLPResidual" not in key:
         | 
| 1887 | 
            +
                                tensor = state_dict.pop(key)
         | 
| 1888 | 
            +
                                state_dict[(new_key := key.replace("ff_out.weight", "MLPResidual.ff_out.weight"))] = tensor
         | 
| 1889 | 
            +
                                new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
         | 
| 1890 | 
            +
                                del new_keys_to_og_keys[key]
         | 
| 1891 | 
            +
             | 
| 1892 | 
            +
                    # For loading a state dict that was saved with a different `block_group_size`.
         | 
| 1893 | 
            +
                    if "transformer.block_groups.0.0.attn_out.weight" in state_dict.keys():
         | 
| 1894 | 
            +
                        state_dict_block_group_size = len(
         | 
| 1895 | 
            +
                            [k for k in state_dict.keys() if fnmatch(k, "transformer.block_groups.0.*.attn_out.weight")]
         | 
| 1896 | 
            +
                        )
         | 
| 1897 | 
            +
                    else:
         | 
| 1898 | 
            +
                        state_dict_block_group_size = 1
         | 
| 1899 | 
            +
                    if self.config.block_group_size != state_dict_block_group_size:
         | 
| 1900 | 
            +
                        log.info(
         | 
| 1901 | 
            +
                            f"Regrouping state dict blocks from group size {state_dict_block_group_size} to "
         | 
| 1902 | 
            +
                            f"group size {self.config.block_group_size}"
         | 
| 1903 | 
            +
                        )
         | 
| 1904 | 
            +
                        # For simplicity we're first going to flatten out the block groups in the state dict (if necessary)
         | 
| 1905 | 
            +
                        # and then (re-)group them into the right block sizes.
         | 
| 1906 | 
            +
                        if state_dict_block_group_size > 1:
         | 
| 1907 | 
            +
                            for key in list(state_dict.keys()):
         | 
| 1908 | 
            +
                                if (m := re.match(r"transformer.block_groups\.(\d+)\.(\d+)\..*", key)) is not None:
         | 
| 1909 | 
            +
                                    group_idx, group_block_idx = int(m.group(1)), int(m.group(2))
         | 
| 1910 | 
            +
                                    block_idx = (group_idx * state_dict_block_group_size) + group_block_idx
         | 
| 1911 | 
            +
                                    state_dict[
         | 
| 1912 | 
            +
                                        (
         | 
| 1913 | 
            +
                                            new_key := key.replace(
         | 
| 1914 | 
            +
                                                f"block_groups.{group_idx}.{group_block_idx}.", f"blocks.{block_idx}."
         | 
| 1915 | 
            +
                                            )
         | 
| 1916 | 
            +
                                        )
         | 
| 1917 | 
            +
                                    ] = state_dict.pop(key)
         | 
| 1918 | 
            +
                                    new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
         | 
| 1919 | 
            +
             | 
| 1920 | 
            +
                        if self.config.block_group_size > 1:
         | 
| 1921 | 
            +
                            # Group the state dict blocks into the right block size.
         | 
| 1922 | 
            +
                            for key in list(state_dict.keys()):
         | 
| 1923 | 
            +
                                if (m := re.match(r"transformer.blocks\.(\d+)\..*", key)) is not None:
         | 
| 1924 | 
            +
                                    block_idx = int(m.group(1))
         | 
| 1925 | 
            +
                                    group_idx, group_block_idx = (
         | 
| 1926 | 
            +
                                        block_idx // self.config.block_group_size,
         | 
| 1927 | 
            +
                                        block_idx % self.config.block_group_size,
         | 
| 1928 | 
            +
                                    )
         | 
| 1929 | 
            +
                                    state_dict[
         | 
| 1930 | 
            +
                                        (
         | 
| 1931 | 
            +
                                            new_key := key.replace(
         | 
| 1932 | 
            +
                                                f"blocks.{block_idx}.", f"block_groups.{group_idx}.{group_block_idx}."
         | 
| 1933 | 
            +
                                            )
         | 
| 1934 | 
            +
                                        )
         | 
| 1935 | 
            +
                                    ] = state_dict.pop(key)
         | 
| 1936 | 
            +
                                    new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
         | 
| 1937 | 
            +
             | 
| 1938 | 
            +
                    og_keys_to_new: dict[str, set[str]] = defaultdict(set)
         | 
| 1939 | 
            +
                    for new_key, og_key in new_keys_to_og_keys.items():
         | 
| 1940 | 
            +
                        og_keys_to_new[og_key].add(new_key)
         | 
| 1941 | 
            +
             | 
| 1942 | 
            +
                    return state_dict, og_keys_to_new
         | 
    	
        llava/model/coat/activation/real_quantization/__init__.py
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Activation
         | 
| 8 | 
            +
            # Utils
         | 
| 9 | 
            +
            from ._dequantize import fp8_dequantize
         | 
| 10 | 
            +
            from ._division import fp8_division
         | 
| 11 | 
            +
            from ._division_transpose import fp8_division_transpose
         | 
| 12 | 
            +
            from ._quantize import fp8_quantize
         | 
| 13 | 
            +
            from ._quantize_pertensor import fp8_quantize_pertensor
         | 
| 14 | 
            +
            from ._quantize_pertensor_transpose import fp8_quantize_pertensor_transpose
         | 
| 15 | 
            +
            from ._transpose import fp8_transpose
         | 
| 16 | 
            +
            from .add_bwd import fp8_add_Ifp_Ifp_Ofp_Opt
         | 
| 17 | 
            +
            from .add_fwd import fp8_add_Ifp_Ifp_Ofp_Og16
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            # Normalization
         | 
| 20 | 
            +
            from .func_layernorm_noparam import fp8_layernorm_noparam_backward, fp8_layernorm_noparam_forward
         | 
| 21 | 
            +
            from .func_quantize import Coat_quantize_bgn, Coat_quantize_end
         | 
| 22 | 
            +
            from .func_rmsnorm import fp8_rmsnorm_backward, fp8_rmsnorm_forward
         | 
| 23 | 
            +
            from .gelu_bwd import fp8_gelu_backward
         | 
| 24 | 
            +
            from .gelu_fwd import fp8_gelu_forward
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            # linear and add
         | 
| 27 | 
            +
            from .linear import fp8_linear_backward, fp8_linear_forward
         | 
| 28 | 
            +
            from .mul_bwd import fp8_mul_backward
         | 
| 29 | 
            +
            from .mul_fwd import fp8_mul_forward
         | 
| 30 | 
            +
            from .silu_bwd import fp8_silu_backward
         | 
| 31 | 
            +
            from .silu_fwd import fp8_silu_forward
         | 
    	
        llava/model/coat/activation/real_quantization/_dequantize.py
    ADDED
    
    | @@ -0,0 +1,162 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # 4 block
         | 
| 26 | 
            +
            import triton
         | 
| 27 | 
            +
            import triton.language as tl
         | 
| 28 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, get_configs_io_block
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            """Quantize Operator"""
         | 
| 33 | 
            +
            """Input uses 1 * 16 group quantization"""
         | 
| 34 | 
            +
            """Output uses 1 * 16 group quantization"""
         | 
| 35 | 
            +
            """The input can be 2D or 3D, but the calculation is performed in 2D"""
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            @triton.autotune(
         | 
| 39 | 
            +
                configs=[] + get_configs_io_block(),
         | 
| 40 | 
            +
                key=[
         | 
| 41 | 
            +
                    "N",
         | 
| 42 | 
            +
                ],
         | 
| 43 | 
            +
            )
         | 
| 44 | 
            +
            @triton.heuristics(
         | 
| 45 | 
            +
                {
         | 
| 46 | 
            +
                    "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
         | 
| 47 | 
            +
                }
         | 
| 48 | 
            +
            )
         | 
| 49 | 
            +
            @triton.jit
         | 
| 50 | 
            +
            def _fp8_dequantize_kernel(
         | 
| 51 | 
            +
                output_ptr,  # output
         | 
| 52 | 
            +
                input_ptr,
         | 
| 53 | 
            +
                input_scale_ptr,  # input
         | 
| 54 | 
            +
                M,
         | 
| 55 | 
            +
                N,
         | 
| 56 | 
            +
                SN,
         | 
| 57 | 
            +
                QB: tl.constexpr,  # shape
         | 
| 58 | 
            +
                input_stride_0,
         | 
| 59 | 
            +
                input_stride_1,  # input stride
         | 
| 60 | 
            +
                s_input_stride_0,
         | 
| 61 | 
            +
                s_input_stride_1,  # scale of output stride
         | 
| 62 | 
            +
                output_stride_0,
         | 
| 63 | 
            +
                output_stride_1,  # output stride
         | 
| 64 | 
            +
                BLOCK_M: tl.constexpr,
         | 
| 65 | 
            +
                BLOCK_N: tl.constexpr,
         | 
| 66 | 
            +
                BLOCK_SN: tl.constexpr,
         | 
| 67 | 
            +
            ):  # CUDA block size
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                # Block PID
         | 
| 70 | 
            +
                pid = tl.program_id(0)
         | 
| 71 | 
            +
                NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
         | 
| 72 | 
            +
                pid_dim0 = pid // NUM_BLOCK_N
         | 
| 73 | 
            +
                pid_dim1 = pid % NUM_BLOCK_N
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                # pointers
         | 
| 76 | 
            +
                input_block_ptr = tl.make_block_ptr(
         | 
| 77 | 
            +
                    base=input_ptr,
         | 
| 78 | 
            +
                    shape=(M, N),
         | 
| 79 | 
            +
                    strides=(input_stride_0, input_stride_1),
         | 
| 80 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 81 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 82 | 
            +
                    order=(1, 0),
         | 
| 83 | 
            +
                )
         | 
| 84 | 
            +
                # input ptr
         | 
| 85 | 
            +
                scale_input_ptr = tl.make_block_ptr(
         | 
| 86 | 
            +
                    base=input_scale_ptr,
         | 
| 87 | 
            +
                    shape=(M, SN),
         | 
| 88 | 
            +
                    strides=(s_input_stride_0, s_input_stride_1),
         | 
| 89 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
         | 
| 90 | 
            +
                    block_shape=(BLOCK_M, BLOCK_SN),
         | 
| 91 | 
            +
                    order=(1, 0),
         | 
| 92 | 
            +
                )
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                input = tl.load(input_block_ptr)
         | 
| 95 | 
            +
                scale_input = tl.load(scale_input_ptr)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                input = input.to(tl.float32)
         | 
| 98 | 
            +
                scale_input = scale_input.to(tl.float32)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                # Dequantize and gelu calculation
         | 
| 101 | 
            +
                scale_input = tl.reshape(scale_input, (BLOCK_M, BLOCK_SN, 1))
         | 
| 102 | 
            +
                input = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
         | 
| 103 | 
            +
                output = input * scale_input
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                output = tl.reshape(output, (BLOCK_M, BLOCK_N))
         | 
| 106 | 
            +
                output = output.to(output_ptr.dtype.element_ty)
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                # debug
         | 
| 109 | 
            +
                # gelu_output = input
         | 
| 110 | 
            +
                # scale_output = scale_input
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                # pointers
         | 
| 113 | 
            +
                output_block_ptr = tl.make_block_ptr(
         | 
| 114 | 
            +
                    base=output_ptr,
         | 
| 115 | 
            +
                    shape=(M, N),
         | 
| 116 | 
            +
                    strides=(output_stride_0, output_stride_1),
         | 
| 117 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 118 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 119 | 
            +
                    order=(1, 0),
         | 
| 120 | 
            +
                )
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                tl.store(output_block_ptr, output, boundary_check=(0, 1))
         | 
| 123 | 
            +
             | 
| 124 | 
            +
             | 
| 125 | 
            +
            def fp8_dequantize(x, s_x, QB):
         | 
| 126 | 
            +
                # Change batched 3D input to 2D
         | 
| 127 | 
            +
                batched = False
         | 
| 128 | 
            +
                if len(x.shape) == 3:
         | 
| 129 | 
            +
                    batched = True
         | 
| 130 | 
            +
                    BS = x.shape[0]
         | 
| 131 | 
            +
                    x = x.reshape(-1, x.shape[-1])
         | 
| 132 | 
            +
                    s_x = s_x.reshape(-1, s_x.shape[-1])
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                # defining the input and output tensor
         | 
| 135 | 
            +
                M, N = x.shape
         | 
| 136 | 
            +
                SN = N // QB
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                y = torch.empty_like(x, dtype=torch.bfloat16)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                _fp8_dequantize_kernel[grid](
         | 
| 143 | 
            +
                    y,
         | 
| 144 | 
            +
                    x,
         | 
| 145 | 
            +
                    s_x,
         | 
| 146 | 
            +
                    M,
         | 
| 147 | 
            +
                    N,
         | 
| 148 | 
            +
                    SN,
         | 
| 149 | 
            +
                    QB,
         | 
| 150 | 
            +
                    x.stride(0),
         | 
| 151 | 
            +
                    x.stride(1),
         | 
| 152 | 
            +
                    s_x.stride(0),
         | 
| 153 | 
            +
                    s_x.stride(1),
         | 
| 154 | 
            +
                    y.stride(0),
         | 
| 155 | 
            +
                    y.stride(1),
         | 
| 156 | 
            +
                )
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                # Recover 2D to 3D
         | 
| 159 | 
            +
                if batched:
         | 
| 160 | 
            +
                    y = y.reshape(BS, -1, y.shape[-1])
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                return y
         | 
    	
        llava/model/coat/activation/real_quantization/_division.py
    ADDED
    
    | @@ -0,0 +1,212 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # 4 block
         | 
| 26 | 
            +
            import triton
         | 
| 27 | 
            +
            import triton.language as tl
         | 
| 28 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8, get_configs_io_block
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            """Quantize and Transpose Operator"""
         | 
| 33 | 
            +
            """Input uses 1 * 16 group quantization"""
         | 
| 34 | 
            +
            """Output uses 1 * 16 group quantization"""
         | 
| 35 | 
            +
            """The input can be 2D or 3D, but the calculation is performed in 2D"""
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            @triton.autotune(
         | 
| 39 | 
            +
                configs=[] + get_configs_io_block(),
         | 
| 40 | 
            +
                key=[
         | 
| 41 | 
            +
                    "N",
         | 
| 42 | 
            +
                ],
         | 
| 43 | 
            +
            )
         | 
| 44 | 
            +
            @triton.heuristics(
         | 
| 45 | 
            +
                {
         | 
| 46 | 
            +
                    "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
         | 
| 47 | 
            +
                }
         | 
| 48 | 
            +
            )
         | 
| 49 | 
            +
            @triton.jit
         | 
| 50 | 
            +
            def _fp8_division_kernel(
         | 
| 51 | 
            +
                output_ptr,  # output
         | 
| 52 | 
            +
                input_ptr,
         | 
| 53 | 
            +
                input_scale_ptr,  # input
         | 
| 54 | 
            +
                noise_ptr,  # noise for stochastic
         | 
| 55 | 
            +
                M,
         | 
| 56 | 
            +
                N,
         | 
| 57 | 
            +
                SN,
         | 
| 58 | 
            +
                QB: tl.constexpr,
         | 
| 59 | 
            +
                fp8_max,
         | 
| 60 | 
            +
                e_bit: tl.constexpr,
         | 
| 61 | 
            +
                m_bit: tl.constexpr,  # shape
         | 
| 62 | 
            +
                input_stride_0,
         | 
| 63 | 
            +
                input_stride_1,  # input stride
         | 
| 64 | 
            +
                output_stride_0,
         | 
| 65 | 
            +
                output_stride_1,  # output stride
         | 
| 66 | 
            +
                SCALE_MIN_THRES: tl.constexpr,  # We do not use it since we believe SCALE_MIN_THRES should be used in previous kernel when calculating scaling factor
         | 
| 67 | 
            +
                STOCHASTIC: tl.constexpr,
         | 
| 68 | 
            +
                BLOCK_M: tl.constexpr,
         | 
| 69 | 
            +
                BLOCK_N: tl.constexpr,
         | 
| 70 | 
            +
                BLOCK_SN: tl.constexpr,
         | 
| 71 | 
            +
            ):  # CUDA block size
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                # Block PID
         | 
| 74 | 
            +
                pid = tl.program_id(0)
         | 
| 75 | 
            +
                NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
         | 
| 76 | 
            +
                pid_dim0 = pid // NUM_BLOCK_N
         | 
| 77 | 
            +
                pid_dim1 = pid % NUM_BLOCK_N
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                # pointers
         | 
| 80 | 
            +
                input_block_ptr = tl.make_block_ptr(
         | 
| 81 | 
            +
                    base=input_ptr,
         | 
| 82 | 
            +
                    shape=(M, N),
         | 
| 83 | 
            +
                    strides=(input_stride_0, input_stride_1),
         | 
| 84 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 85 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 86 | 
            +
                    order=(1, 0),
         | 
| 87 | 
            +
                )
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                input = tl.load(input_block_ptr)
         | 
| 90 | 
            +
                input = input.to(tl.float32)
         | 
| 91 | 
            +
                scale_output = tl.load(input_scale_ptr)
         | 
| 92 | 
            +
                scale_output = scale_output.to(tl.float32)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                # Quantize Scale calculation
         | 
| 97 | 
            +
                # Quantize
         | 
| 98 | 
            +
                output = tl.fdiv(output, scale_output)
         | 
| 99 | 
            +
                output = tl.reshape(output, (BLOCK_M, BLOCK_N))
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                if STOCHASTIC:
         | 
| 102 | 
            +
                    # noise_block_ptr = tl.make_block_ptr(
         | 
| 103 | 
            +
                    #     base=noise_ptr,
         | 
| 104 | 
            +
                    #     shape=(M, N),
         | 
| 105 | 
            +
                    #     strides=(input_stride_0, input_stride_1),
         | 
| 106 | 
            +
                    #     offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 107 | 
            +
                    #     block_shape=(BLOCK_M, BLOCK_N),
         | 
| 108 | 
            +
                    #     order=(1, 0)
         | 
| 109 | 
            +
                    # )
         | 
| 110 | 
            +
                    # noise = tl.load(noise_block_ptr)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    offs_m = pid_dim0 * BLOCK_M + tl.arange(0, BLOCK_M)
         | 
| 113 | 
            +
                    offs_n = pid_dim1 * BLOCK_N + tl.arange(0, BLOCK_N)
         | 
| 114 | 
            +
                    noise_offset = offs_m[:, None] * input_stride_0 + offs_n[None, :] * input_stride_1
         | 
| 115 | 
            +
                    noise = tl.rand(0, noise_offset)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    output = _stochastic_rounding(output, noise, e_bit, m_bit)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                output = output.to(output_ptr.type.element_ty)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                # pointers
         | 
| 122 | 
            +
                output_block_ptr = tl.make_block_ptr(
         | 
| 123 | 
            +
                    base=output_ptr,
         | 
| 124 | 
            +
                    shape=(M, N),
         | 
| 125 | 
            +
                    strides=(output_stride_0, output_stride_1),
         | 
| 126 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 127 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 128 | 
            +
                    order=(1, 0),
         | 
| 129 | 
            +
                )
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                tl.store(output_block_ptr, output, boundary_check=(0, 1))
         | 
| 132 | 
            +
             | 
| 133 | 
            +
             | 
| 134 | 
            +
            @triton.jit
         | 
| 135 | 
            +
            def _stochastic_rounding(output, noise, e_bit: tl.constexpr, m_bit: tl.constexpr):
         | 
| 136 | 
            +
                subnormal_min = tl.exp2(2 - tl.exp2(e_bit - 1) - m_bit)
         | 
| 137 | 
            +
                # subnormal_should_be = tl.exp2(2 - tl.exp2(e_bit) - 1)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                output_int32 = tl.cast(output, tl.int32, bitcast=True)
         | 
| 140 | 
            +
                output_int32 = output_int32 & 0x7F800000
         | 
| 141 | 
            +
                output_float32 = tl.cast(output_int32, tl.float32, bitcast=True)
         | 
| 142 | 
            +
                output_exp = tl.maximum(output_float32, subnormal_min)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                noise_rescale = tl.exp2(m_bit) + (output_exp == subnormal_min) * (
         | 
| 145 | 
            +
                    1 - tl.exp2(m_bit)
         | 
| 146 | 
            +
                )  # 2^m_bit for normal, 1 for subnormal
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                noise = output_exp * noise / noise_rescale
         | 
| 149 | 
            +
                sign = 1 - 2 * libdevice.signbit(output)
         | 
| 150 | 
            +
                output = tl.abs(output) + noise
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                minmax_ratio = 2 + (output_exp == subnormal_min) * (tl.exp2(m_bit) - 2)  # 2 for normal, and 2^M for subnormal
         | 
| 153 | 
            +
                output = sign * tl.clamp(output, min=output_exp, max=minmax_ratio * output_exp)
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                return output
         | 
| 156 | 
            +
             | 
| 157 | 
            +
             | 
| 158 | 
            +
            def fp8_division(x, QB, fp8type, s_y=None, stochastic=False):
         | 
| 159 | 
            +
                # Change batched 3D input to 2D
         | 
| 160 | 
            +
                batched = False
         | 
| 161 | 
            +
                if len(x.shape) == 3:
         | 
| 162 | 
            +
                    batched = True
         | 
| 163 | 
            +
                    BS = x.shape[0]
         | 
| 164 | 
            +
                    x = x.reshape(-1, x.shape[-1])
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                if stochastic:
         | 
| 167 | 
            +
                    # noise = torch.zeros_like(x, dtype=torch.float32).uniform_(-0.5, 0.5)
         | 
| 168 | 
            +
                    noise = None
         | 
| 169 | 
            +
                else:
         | 
| 170 | 
            +
                    noise = None
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                # defining the input and output tensor
         | 
| 173 | 
            +
                M, N = x.shape
         | 
| 174 | 
            +
                SN = N // QB
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                if isinstance(fp8type, str):
         | 
| 177 | 
            +
                    fp8type = convert_str_to_fp8[fp8type]
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                y = torch.empty_like(x, dtype=fp8type)
         | 
| 180 | 
            +
                fp8MaxValue = FP8_MAX_VALUE[fp8type]  # E4M3 and E5M2 have different max value
         | 
| 181 | 
            +
                e_bit, m_bit = convert_fp8_to_embit[fp8type]
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                if s_y is None:
         | 
| 184 | 
            +
                    s_y = (x.abs().max() + SCALE_MIN_THRES) / fp8MaxValue
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                _fp8_division_kernel[grid](
         | 
| 189 | 
            +
                    y,
         | 
| 190 | 
            +
                    x,
         | 
| 191 | 
            +
                    s_y,
         | 
| 192 | 
            +
                    noise,
         | 
| 193 | 
            +
                    M,
         | 
| 194 | 
            +
                    N,
         | 
| 195 | 
            +
                    SN,
         | 
| 196 | 
            +
                    QB,
         | 
| 197 | 
            +
                    fp8MaxValue,
         | 
| 198 | 
            +
                    e_bit,
         | 
| 199 | 
            +
                    m_bit,
         | 
| 200 | 
            +
                    x.stride(0),
         | 
| 201 | 
            +
                    x.stride(1),
         | 
| 202 | 
            +
                    y.stride(0),
         | 
| 203 | 
            +
                    y.stride(1),
         | 
| 204 | 
            +
                    SCALE_MIN_THRES=SCALE_MIN_THRES,
         | 
| 205 | 
            +
                    STOCHASTIC=stochastic,
         | 
| 206 | 
            +
                )
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                # Recover 2D to 3D
         | 
| 209 | 
            +
                if batched:
         | 
| 210 | 
            +
                    y = y.reshape(BS, -1, y.shape[-1])
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                return y, s_y  # y_t is expected to be 2D tensor
         | 
    	
        llava/model/coat/activation/real_quantization/_division_transpose.py
    ADDED
    
    | @@ -0,0 +1,215 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # 4 block
         | 
| 26 | 
            +
            import triton
         | 
| 27 | 
            +
            import triton.language as tl
         | 
| 28 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from ._division import _stochastic_rounding
         | 
| 31 | 
            +
            from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8, get_configs_io_block
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            """Division and Transpose Operator"""
         | 
| 34 | 
            +
            """Input uses full-precision/BF16"""
         | 
| 35 | 
            +
            """Output uses per tensor quantization"""
         | 
| 36 | 
            +
            """Output_t uses per tensor quantization and is transposed, but is flattened to 2D"""
         | 
| 37 | 
            +
            """The input can be 2D or 3D, but the calculation is performed in 2D"""
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            @triton.autotune(
         | 
| 41 | 
            +
                configs=[] + get_configs_io_block(),  # triton.Config({'BLOCK_M': 1, 'BLOCK_N': 16}, num_stages=4, num_warps=1,)
         | 
| 42 | 
            +
                # configs=[triton.Config({'BLOCK_M': 1, 'BLOCK_N': 16}, num_stages=4, num_warps=1,)], #
         | 
| 43 | 
            +
                key=[
         | 
| 44 | 
            +
                    "N",
         | 
| 45 | 
            +
                ],
         | 
| 46 | 
            +
            )
         | 
| 47 | 
            +
            @triton.heuristics(
         | 
| 48 | 
            +
                {
         | 
| 49 | 
            +
                    "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
         | 
| 50 | 
            +
                }
         | 
| 51 | 
            +
            )
         | 
| 52 | 
            +
            @triton.jit
         | 
| 53 | 
            +
            def _fp8_division_transpose_kernel(
         | 
| 54 | 
            +
                output_ptr,
         | 
| 55 | 
            +
                output_t_ptr,  # output
         | 
| 56 | 
            +
                input_ptr,
         | 
| 57 | 
            +
                input_scale_ptr,  # input
         | 
| 58 | 
            +
                noise_ptr,  # noise for stochastic
         | 
| 59 | 
            +
                M,
         | 
| 60 | 
            +
                N,
         | 
| 61 | 
            +
                SN,
         | 
| 62 | 
            +
                QB: tl.constexpr,
         | 
| 63 | 
            +
                fp8_max,
         | 
| 64 | 
            +
                e_bit,
         | 
| 65 | 
            +
                m_bit,  # shape
         | 
| 66 | 
            +
                input_stride_0,
         | 
| 67 | 
            +
                input_stride_1,  # input stride
         | 
| 68 | 
            +
                output_stride_0,
         | 
| 69 | 
            +
                output_stride_1,  # output stride
         | 
| 70 | 
            +
                output_t_stride_0,
         | 
| 71 | 
            +
                output_t_stride_1,  # output stride
         | 
| 72 | 
            +
                SCALE_MIN_THRES: tl.constexpr,  # We do not use it since we believe SCALE_MIN_THRES should be used in previous kernel when calculating scaling factor
         | 
| 73 | 
            +
                STOCHASTIC: tl.constexpr,
         | 
| 74 | 
            +
                ONLY_TRANSPOSED: tl.constexpr,
         | 
| 75 | 
            +
                BLOCK_M: tl.constexpr,
         | 
| 76 | 
            +
                BLOCK_N: tl.constexpr,
         | 
| 77 | 
            +
                BLOCK_SN: tl.constexpr,
         | 
| 78 | 
            +
            ):  # CUDA block size
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                # Block PID
         | 
| 81 | 
            +
                pid = tl.program_id(0)
         | 
| 82 | 
            +
                NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
         | 
| 83 | 
            +
                pid_dim0 = pid // NUM_BLOCK_N
         | 
| 84 | 
            +
                pid_dim1 = pid % NUM_BLOCK_N
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                # pointers
         | 
| 87 | 
            +
                input_block_ptr = tl.make_block_ptr(
         | 
| 88 | 
            +
                    base=input_ptr,
         | 
| 89 | 
            +
                    shape=(M, N),
         | 
| 90 | 
            +
                    strides=(input_stride_0, input_stride_1),
         | 
| 91 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 92 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 93 | 
            +
                    order=(1, 0),
         | 
| 94 | 
            +
                )
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                input = tl.load(input_block_ptr)
         | 
| 97 | 
            +
                input = input.to(tl.float32)
         | 
| 98 | 
            +
                scale_output = tl.load(input_scale_ptr)
         | 
| 99 | 
            +
                scale_output = scale_output.to(tl.float32)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                # Quantize Scale calculation
         | 
| 104 | 
            +
                # Quantize
         | 
| 105 | 
            +
                output = tl.fdiv(output, scale_output)
         | 
| 106 | 
            +
                output = tl.reshape(output, (BLOCK_M, BLOCK_N))
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                if STOCHASTIC:
         | 
| 109 | 
            +
                    # noise_block_ptr = tl.make_block_ptr(
         | 
| 110 | 
            +
                    #     base=noise_ptr,
         | 
| 111 | 
            +
                    #     shape=(M, N),
         | 
| 112 | 
            +
                    #     strides=(input_stride_0, input_stride_1),
         | 
| 113 | 
            +
                    #     offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 114 | 
            +
                    #     block_shape=(BLOCK_M, BLOCK_N),
         | 
| 115 | 
            +
                    #     order=(1, 0)
         | 
| 116 | 
            +
                    # )
         | 
| 117 | 
            +
                    # noise = tl.load(noise_block_ptr)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    offs_m = pid_dim0 * BLOCK_M + tl.arange(0, BLOCK_M)
         | 
| 120 | 
            +
                    offs_n = pid_dim1 * BLOCK_N + tl.arange(0, BLOCK_N)
         | 
| 121 | 
            +
                    noise_offset = offs_m[:, None] * input_stride_0 + offs_n[None, :] * input_stride_1
         | 
| 122 | 
            +
                    noise = tl.rand(0, noise_offset)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    output = _stochastic_rounding(output, noise, e_bit, m_bit)
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                output = output.to(output_ptr.type.element_ty)
         | 
| 127 | 
            +
                # tl.device_print("3: ", output)
         | 
| 128 | 
            +
                output_t = tl.trans(output)
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                # pointers
         | 
| 131 | 
            +
                output_block_ptr = tl.make_block_ptr(
         | 
| 132 | 
            +
                    base=output_ptr,
         | 
| 133 | 
            +
                    shape=(M, N),
         | 
| 134 | 
            +
                    strides=(output_stride_0, output_stride_1),
         | 
| 135 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 136 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 137 | 
            +
                    order=(1, 0),
         | 
| 138 | 
            +
                )
         | 
| 139 | 
            +
                output_t_block_ptr = tl.make_block_ptr(
         | 
| 140 | 
            +
                    base=output_t_ptr,
         | 
| 141 | 
            +
                    shape=(N, M),
         | 
| 142 | 
            +
                    strides=(output_t_stride_0, output_t_stride_1),
         | 
| 143 | 
            +
                    offsets=(pid_dim1 * BLOCK_N, pid_dim0 * BLOCK_M),
         | 
| 144 | 
            +
                    block_shape=(BLOCK_N, BLOCK_M),
         | 
| 145 | 
            +
                    order=(1, 0),
         | 
| 146 | 
            +
                )
         | 
| 147 | 
            +
                if not ONLY_TRANSPOSED:
         | 
| 148 | 
            +
                    tl.store(output_block_ptr, output, boundary_check=(0, 1))
         | 
| 149 | 
            +
                tl.store(output_t_block_ptr, output_t, boundary_check=(0, 1))
         | 
| 150 | 
            +
             | 
| 151 | 
            +
             | 
| 152 | 
            +
            def fp8_division_transpose(x, QB, fp8type, s_y=None, stochastic=False, only_transposed=False):
         | 
| 153 | 
            +
                # Change batched 3D input to 2D
         | 
| 154 | 
            +
                batched = False
         | 
| 155 | 
            +
                if len(x.shape) == 3:
         | 
| 156 | 
            +
                    batched = True
         | 
| 157 | 
            +
                    BS = x.shape[0]
         | 
| 158 | 
            +
                    x = x.reshape(-1, x.shape[-1])
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                if stochastic:
         | 
| 161 | 
            +
                    # noise = torch.empty_like(x, dtype=torch.float32).uniform_(-0.5, 0.5)
         | 
| 162 | 
            +
                    noise = None
         | 
| 163 | 
            +
                else:
         | 
| 164 | 
            +
                    noise = None
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                # defining the input and output tensor
         | 
| 167 | 
            +
                M, N = x.shape
         | 
| 168 | 
            +
                SN = N // QB
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                if isinstance(fp8type, str):
         | 
| 171 | 
            +
                    fp8type = convert_str_to_fp8[fp8type]
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                y = torch.empty_like(x, dtype=fp8type)
         | 
| 174 | 
            +
                y_t = torch.empty((N, M), dtype=fp8type, device=x.device)
         | 
| 175 | 
            +
                fp8MaxValue = FP8_MAX_VALUE[fp8type]  # E4M3 and E5M2 have different max value
         | 
| 176 | 
            +
                e_bit, m_bit = convert_fp8_to_embit[fp8type]
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                if s_y is None:
         | 
| 179 | 
            +
                    # print("Warning: do not specify s_y in fp8_division_transpose")
         | 
| 180 | 
            +
                    s_y = (x.abs().max() + SCALE_MIN_THRES) / fp8MaxValue
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                _fp8_division_transpose_kernel[grid](
         | 
| 185 | 
            +
                    y,
         | 
| 186 | 
            +
                    y_t,
         | 
| 187 | 
            +
                    x,
         | 
| 188 | 
            +
                    s_y,
         | 
| 189 | 
            +
                    noise,
         | 
| 190 | 
            +
                    M,
         | 
| 191 | 
            +
                    N,
         | 
| 192 | 
            +
                    SN,
         | 
| 193 | 
            +
                    QB,
         | 
| 194 | 
            +
                    fp8MaxValue,
         | 
| 195 | 
            +
                    e_bit,
         | 
| 196 | 
            +
                    m_bit,
         | 
| 197 | 
            +
                    x.stride(0),
         | 
| 198 | 
            +
                    x.stride(1),
         | 
| 199 | 
            +
                    y.stride(0),
         | 
| 200 | 
            +
                    y.stride(1),
         | 
| 201 | 
            +
                    y_t.stride(0),
         | 
| 202 | 
            +
                    y_t.stride(1),
         | 
| 203 | 
            +
                    SCALE_MIN_THRES=SCALE_MIN_THRES,
         | 
| 204 | 
            +
                    STOCHASTIC=stochastic,
         | 
| 205 | 
            +
                    ONLY_TRANSPOSED=only_transposed,
         | 
| 206 | 
            +
                )
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                if not only_transposed:
         | 
| 209 | 
            +
                    # Recover 2D to 3D
         | 
| 210 | 
            +
                    if batched:
         | 
| 211 | 
            +
                        y = y.reshape(BS, -1, y.shape[-1])
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    return y, s_y, y_t  # y_t is expected to be 2D tensor
         | 
| 214 | 
            +
                else:
         | 
| 215 | 
            +
                    return y_t, s_y
         | 
    	
        llava/model/coat/activation/real_quantization/_memory_io.py
    ADDED
    
    | @@ -0,0 +1,180 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # 4 block
         | 
| 26 | 
            +
            import triton
         | 
| 27 | 
            +
            import triton.language as tl
         | 
| 28 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            CONST_BLOCK = 32
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            # The kernel with 1 load operation and 4 store operation
         | 
| 33 | 
            +
            def get_configs_io_block():
         | 
| 34 | 
            +
                configs = []
         | 
| 35 | 
            +
                for nstages in [3, 4, 5, 6]:
         | 
| 36 | 
            +
                    for block_m in [32, 64, 128]:
         | 
| 37 | 
            +
                        for block_n in [32, 64, 128]:
         | 
| 38 | 
            +
                            for nwarps in [4, 8, 16, 32]:
         | 
| 39 | 
            +
                                configs.append(
         | 
| 40 | 
            +
                                    triton.Config(
         | 
| 41 | 
            +
                                        {"BLOCK_M": block_m, "BLOCK_N": block_n},
         | 
| 42 | 
            +
                                        num_stages=nstages,
         | 
| 43 | 
            +
                                        num_warps=nwarps,
         | 
| 44 | 
            +
                                    )
         | 
| 45 | 
            +
                                )
         | 
| 46 | 
            +
                return configs
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            @triton.autotune(
         | 
| 50 | 
            +
                configs=[] + get_configs_io_block(),
         | 
| 51 | 
            +
                key=[
         | 
| 52 | 
            +
                    "N",
         | 
| 53 | 
            +
                ],
         | 
| 54 | 
            +
            )
         | 
| 55 | 
            +
            @triton.jit
         | 
| 56 | 
            +
            def bench_memory_io_kernel_forward(
         | 
| 57 | 
            +
                output_ptr,
         | 
| 58 | 
            +
                input_ptr,
         | 
| 59 | 
            +
                M,
         | 
| 60 | 
            +
                N,
         | 
| 61 | 
            +
                B: tl.constexpr,
         | 
| 62 | 
            +
                input_stride_0,
         | 
| 63 | 
            +
                input_stride_1,
         | 
| 64 | 
            +
                output_stride_0,
         | 
| 65 | 
            +
                output_stride_1,
         | 
| 66 | 
            +
                BLOCK_M: tl.constexpr,
         | 
| 67 | 
            +
                BLOCK_N: tl.constexpr,
         | 
| 68 | 
            +
            ):
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                # Block PID
         | 
| 71 | 
            +
                pid = tl.program_id(0)
         | 
| 72 | 
            +
                NUM_BLOCK_M = tl.cdiv(M, BLOCK_M)
         | 
| 73 | 
            +
                NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
         | 
| 74 | 
            +
                pid_dim0 = pid // NUM_BLOCK_N
         | 
| 75 | 
            +
                pid_dim1 = pid % NUM_BLOCK_N
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                # pointers
         | 
| 78 | 
            +
                input_block_ptr = tl.make_block_ptr(
         | 
| 79 | 
            +
                    base=input_ptr,
         | 
| 80 | 
            +
                    shape=(M, N),
         | 
| 81 | 
            +
                    strides=(input_stride_0, input_stride_1),
         | 
| 82 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 83 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 84 | 
            +
                    order=(1, 0),
         | 
| 85 | 
            +
                )
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                input = tl.load(input_block_ptr)
         | 
| 88 | 
            +
                input = input.to(tl.float32)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                output = input * 2
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                # pointers
         | 
| 93 | 
            +
                output_block_ptr = tl.make_block_ptr(
         | 
| 94 | 
            +
                    base=output_ptr,
         | 
| 95 | 
            +
                    shape=(M, N),
         | 
| 96 | 
            +
                    strides=(output_stride_0, output_stride_1),
         | 
| 97 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 98 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 99 | 
            +
                    order=(1, 0),
         | 
| 100 | 
            +
                )
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                output = output.to(output_ptr.type.element_ty)
         | 
| 103 | 
            +
                tl.store(output_block_ptr, output, boundary_check=(0, 1))
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            def bench_memory_io_forward(x, B):
         | 
| 107 | 
            +
                # defining the input and output tensor
         | 
| 108 | 
            +
                M, N = x.shape
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                y = torch.empty_like(x, dtype=x.dtype)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                bench_memory_io_kernel_forward[grid](
         | 
| 115 | 
            +
                    y,
         | 
| 116 | 
            +
                    x,
         | 
| 117 | 
            +
                    M,
         | 
| 118 | 
            +
                    N,
         | 
| 119 | 
            +
                    B,
         | 
| 120 | 
            +
                    x.stride(0),
         | 
| 121 | 
            +
                    x.stride(1),
         | 
| 122 | 
            +
                    y.stride(0),
         | 
| 123 | 
            +
                    y.stride(1),
         | 
| 124 | 
            +
                )
         | 
| 125 | 
            +
                return y
         | 
| 126 | 
            +
             | 
| 127 | 
            +
             | 
| 128 | 
            +
            configs = []
         | 
| 129 | 
            +
            for SL in [8192]:
         | 
| 130 | 
            +
                configs.append(
         | 
| 131 | 
            +
                    triton.testing.Benchmark(  # test different matrix size influence
         | 
| 132 | 
            +
                        x_names=["CDIM"],
         | 
| 133 | 
            +
                        x_vals=[1024, 2048, 4096, 8192],
         | 
| 134 | 
            +
                        line_arg="dtype",
         | 
| 135 | 
            +
                        line_vals=[torch.int8, torch.float16, torch.float32],
         | 
| 136 | 
            +
                        line_names=["float8", "float16", "float32"],
         | 
| 137 | 
            +
                        styles=[("blue", "-"), ("green", "-"), ("red", "-")],
         | 
| 138 | 
            +
                        ylabel="time-cost",
         | 
| 139 | 
            +
                        plot_name=f"INT8GELU<BLSZ={CONST_BLOCK}><SL={SL}>",
         | 
| 140 | 
            +
                        args={"SL": SL, "B": CONST_BLOCK, "provider": "triton", "mode": "time-consuming"},
         | 
| 141 | 
            +
                    )
         | 
| 142 | 
            +
                )
         | 
| 143 | 
            +
             | 
| 144 | 
            +
             | 
| 145 | 
            +
            @triton.testing.perf_report(configs)
         | 
| 146 | 
            +
            def bench_load_store(
         | 
| 147 | 
            +
                SL, CDIM, B, provider, dtype, mode="forward"
         | 
| 148 | 
            +
            ):  # I only use triton as the provider, and mode when benchmarking
         | 
| 149 | 
            +
                # create data
         | 
| 150 | 
            +
                x = torch.randn(SL, CDIM, dtype=torch.float32).cuda()
         | 
| 151 | 
            +
                x = x.to(dtype)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                quantiles = [0.5, 0.2, 0.8]
         | 
| 154 | 
            +
                # utility functions
         | 
| 155 | 
            +
                if provider == "triton":
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    def y_fwd():
         | 
| 158 | 
            +
                        bench_memory_io_forward(x, B)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                if provider == "torch":
         | 
| 161 | 
            +
                    torch_gelu = torch.nn.GELU()
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    def y_fwd():
         | 
| 164 | 
            +
                        return torch_gelu(x)
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                # forward pass
         | 
| 167 | 
            +
                if mode == "time-consuming":
         | 
| 168 | 
            +
                    convert_func = lambda ms: ms
         | 
| 169 | 
            +
                    ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, quantiles=quantiles, rep=100)
         | 
| 170 | 
            +
                # backward pass
         | 
| 171 | 
            +
                if mode == "gbps":
         | 
| 172 | 
            +
                    convert_func = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6
         | 
| 173 | 
            +
                    ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, quantiles=quantiles, rep=100)
         | 
| 174 | 
            +
                return convert_func(ms), convert_func(max_ms), convert_func(min_ms)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
             | 
| 177 | 
            +
            if __name__ == "__main__":
         | 
| 178 | 
            +
                torch.manual_seed(0)
         | 
| 179 | 
            +
                torch.set_printoptions(precision=8, linewidth=1600, sci_mode=False, edgeitems=3)
         | 
| 180 | 
            +
                bench_load_store.run(print_data=True)
         | 
    	
        llava/model/coat/activation/real_quantization/_quantize.py
    ADDED
    
    | @@ -0,0 +1,176 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # 4 block
         | 
| 26 | 
            +
            import triton
         | 
| 27 | 
            +
            import triton.language as tl
         | 
| 28 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8, get_configs_io_block
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            """Quantize Operator"""
         | 
| 33 | 
            +
            """Input uses 1 * 16 group quantization"""
         | 
| 34 | 
            +
            """Output uses 1 * 16 group quantization"""
         | 
| 35 | 
            +
            """The input can be 2D or 3D, but the calculation is performed in 2D"""
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            @triton.autotune(
         | 
| 39 | 
            +
                configs=[] + get_configs_io_block(),
         | 
| 40 | 
            +
                key=[
         | 
| 41 | 
            +
                    "N",
         | 
| 42 | 
            +
                ],
         | 
| 43 | 
            +
            )
         | 
| 44 | 
            +
            @triton.heuristics(
         | 
| 45 | 
            +
                {
         | 
| 46 | 
            +
                    "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
         | 
| 47 | 
            +
                }
         | 
| 48 | 
            +
            )
         | 
| 49 | 
            +
            @triton.jit
         | 
| 50 | 
            +
            def _fp8_quantize_kernel(
         | 
| 51 | 
            +
                output_ptr,
         | 
| 52 | 
            +
                output_scale_ptr,  # output
         | 
| 53 | 
            +
                input_ptr,  # input
         | 
| 54 | 
            +
                M,
         | 
| 55 | 
            +
                N,
         | 
| 56 | 
            +
                SN,
         | 
| 57 | 
            +
                QB: tl.constexpr,
         | 
| 58 | 
            +
                fp8_max,  # shape
         | 
| 59 | 
            +
                input_stride_0,
         | 
| 60 | 
            +
                input_stride_1,  # input stride
         | 
| 61 | 
            +
                output_stride_0,
         | 
| 62 | 
            +
                output_stride_1,  # output stride
         | 
| 63 | 
            +
                s_output_stride_0,
         | 
| 64 | 
            +
                s_output_stride_1,  # scale of output stride
         | 
| 65 | 
            +
                SCALE_MIN_THRES: tl.constexpr,
         | 
| 66 | 
            +
                BLOCK_M: tl.constexpr,
         | 
| 67 | 
            +
                BLOCK_N: tl.constexpr,
         | 
| 68 | 
            +
                BLOCK_SN: tl.constexpr,
         | 
| 69 | 
            +
            ):  # CUDA block size
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                # Block PID
         | 
| 72 | 
            +
                pid = tl.program_id(0)
         | 
| 73 | 
            +
                NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
         | 
| 74 | 
            +
                pid_dim0 = pid // NUM_BLOCK_N
         | 
| 75 | 
            +
                pid_dim1 = pid % NUM_BLOCK_N
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                # pointers
         | 
| 78 | 
            +
                input_block_ptr = tl.make_block_ptr(
         | 
| 79 | 
            +
                    base=input_ptr,
         | 
| 80 | 
            +
                    shape=(M, N),
         | 
| 81 | 
            +
                    strides=(input_stride_0, input_stride_1),
         | 
| 82 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 83 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 84 | 
            +
                    order=(1, 0),
         | 
| 85 | 
            +
                )
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                input = tl.load(input_block_ptr)
         | 
| 88 | 
            +
                input = input.to(tl.float32)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                # Quantize Scale calculation
         | 
| 93 | 
            +
                abs_output = tl.abs(output)
         | 
| 94 | 
            +
                max_val = tl.max(abs_output, axis=2) + SCALE_MIN_THRES
         | 
| 95 | 
            +
                scale_output = max_val / fp8_max
         | 
| 96 | 
            +
                scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN, 1))
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                # Quantize
         | 
| 99 | 
            +
                output = tl.fdiv(output, scale_output)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                output = output.to(output_ptr.type.element_ty)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                scale_output = scale_output.to(output_scale_ptr.type.element_ty)
         | 
| 104 | 
            +
                scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN))
         | 
| 105 | 
            +
                output = tl.reshape(output, (BLOCK_M, BLOCK_N))
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                # debug
         | 
| 108 | 
            +
                # gelu_output = input
         | 
| 109 | 
            +
                # scale_output = scale_input
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                # pointers
         | 
| 112 | 
            +
                output_block_ptr = tl.make_block_ptr(
         | 
| 113 | 
            +
                    base=output_ptr,
         | 
| 114 | 
            +
                    shape=(M, N),
         | 
| 115 | 
            +
                    strides=(output_stride_0, output_stride_1),
         | 
| 116 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 117 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 118 | 
            +
                    order=(1, 0),
         | 
| 119 | 
            +
                )
         | 
| 120 | 
            +
                scale_output_ptr = tl.make_block_ptr(
         | 
| 121 | 
            +
                    base=output_scale_ptr,
         | 
| 122 | 
            +
                    shape=(M, SN),
         | 
| 123 | 
            +
                    strides=(s_output_stride_0, s_output_stride_1),
         | 
| 124 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
         | 
| 125 | 
            +
                    block_shape=(BLOCK_M, BLOCK_SN),
         | 
| 126 | 
            +
                    order=(1, 0),
         | 
| 127 | 
            +
                )
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                tl.store(output_block_ptr, output, boundary_check=(0, 1))
         | 
| 130 | 
            +
                tl.store(scale_output_ptr, scale_output, boundary_check=(0, 1))
         | 
| 131 | 
            +
             | 
| 132 | 
            +
             | 
| 133 | 
            +
            def fp8_quantize(x, QB, fp8type):
         | 
| 134 | 
            +
                # Change batched 3D input to 2D
         | 
| 135 | 
            +
                batched = False
         | 
| 136 | 
            +
                if len(x.shape) == 3:
         | 
| 137 | 
            +
                    batched = True
         | 
| 138 | 
            +
                    BS = x.shape[0]
         | 
| 139 | 
            +
                    x = x.reshape(-1, x.shape[-1])
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                # defining the input and output tensor
         | 
| 142 | 
            +
                M, N = x.shape
         | 
| 143 | 
            +
                SN = N // QB
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                if isinstance(fp8type, str):
         | 
| 146 | 
            +
                    fp8type = convert_str_to_fp8[fp8type]
         | 
| 147 | 
            +
                y = torch.empty_like(x, dtype=fp8type)
         | 
| 148 | 
            +
                s_y = torch.empty((M, SN), dtype=torch.bfloat16, device=x.device)
         | 
| 149 | 
            +
                fp8MaxValue = FP8_MAX_VALUE[fp8type]  # E4M3 and E5M2 have different max value
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                _fp8_quantize_kernel[grid](
         | 
| 154 | 
            +
                    y,
         | 
| 155 | 
            +
                    s_y,
         | 
| 156 | 
            +
                    x,
         | 
| 157 | 
            +
                    M,
         | 
| 158 | 
            +
                    N,
         | 
| 159 | 
            +
                    SN,
         | 
| 160 | 
            +
                    QB,
         | 
| 161 | 
            +
                    fp8MaxValue,
         | 
| 162 | 
            +
                    x.stride(0),
         | 
| 163 | 
            +
                    x.stride(1),
         | 
| 164 | 
            +
                    y.stride(0),
         | 
| 165 | 
            +
                    y.stride(1),
         | 
| 166 | 
            +
                    s_y.stride(0),
         | 
| 167 | 
            +
                    s_y.stride(1),
         | 
| 168 | 
            +
                    SCALE_MIN_THRES=SCALE_MIN_THRES,
         | 
| 169 | 
            +
                )
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                # Recover 2D to 3D
         | 
| 172 | 
            +
                if batched:
         | 
| 173 | 
            +
                    y = y.reshape(BS, -1, y.shape[-1])
         | 
| 174 | 
            +
                    s_y = s_y.reshape(BS, -1, s_y.shape[-1])
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                return y, s_y
         | 
    	
        llava/model/coat/activation/real_quantization/_quantize_pertensor.py
    ADDED
    
    | @@ -0,0 +1,152 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # 4 block
         | 
| 26 | 
            +
            import triton
         | 
| 27 | 
            +
            import triton.language as tl
         | 
| 28 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from ._division import fp8_division
         | 
| 31 | 
            +
            from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_str_to_fp8, get_configs_io_block
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            """Per Tensor Quantize Operator"""
         | 
| 34 | 
            +
            """Input uses full precision"""
         | 
| 35 | 
            +
            """Output uses per tensor quantization"""
         | 
| 36 | 
            +
            """The input can be 2D or 3D, but the calculation is performed in 2D"""
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
            @triton.autotune(
         | 
| 40 | 
            +
                configs=[] + get_configs_io_block(),
         | 
| 41 | 
            +
                key=[
         | 
| 42 | 
            +
                    "N",
         | 
| 43 | 
            +
                ],
         | 
| 44 | 
            +
            )
         | 
| 45 | 
            +
            @triton.heuristics(
         | 
| 46 | 
            +
                {
         | 
| 47 | 
            +
                    "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
         | 
| 48 | 
            +
                }
         | 
| 49 | 
            +
            )
         | 
| 50 | 
            +
            @triton.jit
         | 
| 51 | 
            +
            def _fp8_quantize_pertensor_kernel(
         | 
| 52 | 
            +
                output_scale_ptr,  # output
         | 
| 53 | 
            +
                input_ptr,  # input
         | 
| 54 | 
            +
                M,
         | 
| 55 | 
            +
                N,
         | 
| 56 | 
            +
                SN,
         | 
| 57 | 
            +
                QB: tl.constexpr,
         | 
| 58 | 
            +
                fp8_max,  # shape
         | 
| 59 | 
            +
                input_stride_0,
         | 
| 60 | 
            +
                input_stride_1,  # input stride
         | 
| 61 | 
            +
                s_output_stride_0,
         | 
| 62 | 
            +
                s_output_stride_1,  # scale of output stride
         | 
| 63 | 
            +
                SCALE_MIN_THRES: tl.constexpr,
         | 
| 64 | 
            +
                BLOCK_M: tl.constexpr,
         | 
| 65 | 
            +
                BLOCK_N: tl.constexpr,
         | 
| 66 | 
            +
                BLOCK_SN: tl.constexpr,
         | 
| 67 | 
            +
            ):  # CUDA block size
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                # Block PID
         | 
| 70 | 
            +
                pid = tl.program_id(0)
         | 
| 71 | 
            +
                NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
         | 
| 72 | 
            +
                pid_dim0 = pid // NUM_BLOCK_N
         | 
| 73 | 
            +
                pid_dim1 = pid % NUM_BLOCK_N
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                # pointers
         | 
| 76 | 
            +
                input_block_ptr = tl.make_block_ptr(
         | 
| 77 | 
            +
                    base=input_ptr,
         | 
| 78 | 
            +
                    shape=(M, N),
         | 
| 79 | 
            +
                    strides=(input_stride_0, input_stride_1),
         | 
| 80 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 81 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 82 | 
            +
                    order=(1, 0),
         | 
| 83 | 
            +
                )
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                input = tl.load(input_block_ptr)
         | 
| 86 | 
            +
                input = input.to(tl.float32)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                # Quantize Scale calculation
         | 
| 91 | 
            +
                abs_output = tl.abs(output)
         | 
| 92 | 
            +
                max_val = tl.max(abs_output, axis=2) + SCALE_MIN_THRES
         | 
| 93 | 
            +
                scale_output = max_val / fp8_max
         | 
| 94 | 
            +
                scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN, 1))
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                scale_output = scale_output.to(output_scale_ptr.type.element_ty)
         | 
| 97 | 
            +
                scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN))
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                scale_output_ptr = tl.make_block_ptr(
         | 
| 100 | 
            +
                    base=output_scale_ptr,
         | 
| 101 | 
            +
                    shape=(M, SN),
         | 
| 102 | 
            +
                    strides=(s_output_stride_0, s_output_stride_1),
         | 
| 103 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
         | 
| 104 | 
            +
                    block_shape=(BLOCK_M, BLOCK_SN),
         | 
| 105 | 
            +
                    order=(1, 0),
         | 
| 106 | 
            +
                )
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                tl.store(scale_output_ptr, scale_output, boundary_check=(0, 1))
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            def fp8_quantize_pertensor(x, QB, fp8type, stochastic=False):
         | 
| 112 | 
            +
                # Change batched 3D input to 2D
         | 
| 113 | 
            +
                batched = False
         | 
| 114 | 
            +
                if len(x.shape) == 3:
         | 
| 115 | 
            +
                    batched = True
         | 
| 116 | 
            +
                    BS = x.shape[0]
         | 
| 117 | 
            +
                    x = x.reshape(-1, x.shape[-1])
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                # defining the input and output tensor
         | 
| 120 | 
            +
                M, N = x.shape
         | 
| 121 | 
            +
                SN = N // QB
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                fp8type = convert_str_to_fp8[fp8type]
         | 
| 124 | 
            +
                s_y = torch.empty((M, SN), dtype=torch.bfloat16, device=x.device)
         | 
| 125 | 
            +
                fp8MaxValue = FP8_MAX_VALUE[fp8type]  # E4M3 and E5M2 have different max value
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                _fp8_quantize_pertensor_kernel[grid](
         | 
| 130 | 
            +
                    s_y,
         | 
| 131 | 
            +
                    x,
         | 
| 132 | 
            +
                    M,
         | 
| 133 | 
            +
                    N,
         | 
| 134 | 
            +
                    SN,
         | 
| 135 | 
            +
                    QB,
         | 
| 136 | 
            +
                    fp8MaxValue,
         | 
| 137 | 
            +
                    x.stride(0),
         | 
| 138 | 
            +
                    x.stride(1),
         | 
| 139 | 
            +
                    s_y.stride(0),
         | 
| 140 | 
            +
                    s_y.stride(1),
         | 
| 141 | 
            +
                    SCALE_MIN_THRES=SCALE_MIN_THRES,
         | 
| 142 | 
            +
                )
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                s_y_max = s_y.max()
         | 
| 145 | 
            +
                y, s_y_max = fp8_division(x, QB, fp8type, s_y_max, stochastic=stochastic)  # reuse the floating point output y1
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                # Recover 2D to 3D
         | 
| 148 | 
            +
                if batched:
         | 
| 149 | 
            +
                    y = y.reshape(BS, -1, y.shape[-1])
         | 
| 150 | 
            +
                    s_y = s_y.reshape(BS, -1, s_y.shape[-1])
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                return y, s_y_max, s_y
         | 
    	
        llava/model/coat/activation/real_quantization/_quantize_pertensor_transpose.py
    ADDED
    
    | @@ -0,0 +1,155 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # 4 block
         | 
| 26 | 
            +
            import triton
         | 
| 27 | 
            +
            import triton.language as tl
         | 
| 28 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from ._division_transpose import fp8_division_transpose
         | 
| 31 | 
            +
            from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_str_to_fp8, get_configs_io_block
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            """Per Tensor Quantize and Transpose Operator"""
         | 
| 34 | 
            +
            """Input uses floating point tensor"""
         | 
| 35 | 
            +
            """Output uses per-tensor quantization, returns a non-transpose version and a transpose version"""
         | 
| 36 | 
            +
            """The input can be 2D or 3D, but the calculation is performed in 2D"""
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
            @triton.autotune(
         | 
| 40 | 
            +
                configs=[] + get_configs_io_block(),
         | 
| 41 | 
            +
                key=[
         | 
| 42 | 
            +
                    "N",
         | 
| 43 | 
            +
                ],
         | 
| 44 | 
            +
            )
         | 
| 45 | 
            +
            @triton.heuristics(
         | 
| 46 | 
            +
                {
         | 
| 47 | 
            +
                    "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
         | 
| 48 | 
            +
                }
         | 
| 49 | 
            +
            )
         | 
| 50 | 
            +
            @triton.jit
         | 
| 51 | 
            +
            def _fp8_quantize_pertensor_transpose_kernel(
         | 
| 52 | 
            +
                output_scale_ptr,  # output
         | 
| 53 | 
            +
                input_ptr,  # input
         | 
| 54 | 
            +
                M,
         | 
| 55 | 
            +
                N,
         | 
| 56 | 
            +
                SN,
         | 
| 57 | 
            +
                QB: tl.constexpr,
         | 
| 58 | 
            +
                fp8_max,  # shape
         | 
| 59 | 
            +
                input_stride_0,
         | 
| 60 | 
            +
                input_stride_1,  # input stride
         | 
| 61 | 
            +
                s_output_stride_0,
         | 
| 62 | 
            +
                s_output_stride_1,  # scale of output stride
         | 
| 63 | 
            +
                SCALE_MIN_THRES: tl.constexpr,
         | 
| 64 | 
            +
                BLOCK_M: tl.constexpr,
         | 
| 65 | 
            +
                BLOCK_N: tl.constexpr,
         | 
| 66 | 
            +
                BLOCK_SN: tl.constexpr,
         | 
| 67 | 
            +
            ):  # CUDA block size
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                # Block PID
         | 
| 70 | 
            +
                pid = tl.program_id(0)
         | 
| 71 | 
            +
                NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
         | 
| 72 | 
            +
                pid_dim0 = pid // NUM_BLOCK_N
         | 
| 73 | 
            +
                pid_dim1 = pid % NUM_BLOCK_N
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                # pointers
         | 
| 76 | 
            +
                input_block_ptr = tl.make_block_ptr(
         | 
| 77 | 
            +
                    base=input_ptr,
         | 
| 78 | 
            +
                    shape=(M, N),
         | 
| 79 | 
            +
                    strides=(input_stride_0, input_stride_1),
         | 
| 80 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 81 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 82 | 
            +
                    order=(1, 0),
         | 
| 83 | 
            +
                )
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                input = tl.load(input_block_ptr)
         | 
| 86 | 
            +
                input = input.to(tl.float32)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                # Quantize Scale calculation
         | 
| 91 | 
            +
                abs_output = tl.abs(output)
         | 
| 92 | 
            +
                max_val = tl.max(abs_output, axis=2) + SCALE_MIN_THRES
         | 
| 93 | 
            +
                scale_output = max_val / fp8_max
         | 
| 94 | 
            +
                scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN, 1))
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                scale_output = scale_output.to(output_scale_ptr.type.element_ty)
         | 
| 97 | 
            +
                scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN))
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                scale_output_ptr = tl.make_block_ptr(
         | 
| 100 | 
            +
                    base=output_scale_ptr,
         | 
| 101 | 
            +
                    shape=(M, SN),
         | 
| 102 | 
            +
                    strides=(s_output_stride_0, s_output_stride_1),
         | 
| 103 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
         | 
| 104 | 
            +
                    block_shape=(BLOCK_M, BLOCK_SN),
         | 
| 105 | 
            +
                    order=(1, 0),
         | 
| 106 | 
            +
                )
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                tl.store(scale_output_ptr, scale_output, boundary_check=(0, 1))
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            def fp8_quantize_pertensor_transpose(x, QB, fp8type, transpose_output_2d=False, stochastic=False):
         | 
| 112 | 
            +
                # Change batched 3D input to 2D
         | 
| 113 | 
            +
                batched = False
         | 
| 114 | 
            +
                if len(x.shape) == 3:
         | 
| 115 | 
            +
                    batched = True
         | 
| 116 | 
            +
                    BS = x.shape[0]
         | 
| 117 | 
            +
                    x = x.reshape(-1, x.shape[-1])
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                # defining the input and output tensor
         | 
| 120 | 
            +
                M, N = x.shape
         | 
| 121 | 
            +
                SN = N // QB
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                fp8type = convert_str_to_fp8[fp8type]
         | 
| 124 | 
            +
                s_y = torch.empty((M, SN), dtype=torch.bfloat16, device=x.device)
         | 
| 125 | 
            +
                fp8MaxValue = FP8_MAX_VALUE[fp8type]  # E4M3 and E5M2 have different max value
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                _fp8_quantize_pertensor_transpose_kernel[grid](
         | 
| 130 | 
            +
                    s_y,
         | 
| 131 | 
            +
                    x,
         | 
| 132 | 
            +
                    M,
         | 
| 133 | 
            +
                    N,
         | 
| 134 | 
            +
                    SN,
         | 
| 135 | 
            +
                    QB,
         | 
| 136 | 
            +
                    fp8MaxValue,
         | 
| 137 | 
            +
                    x.stride(0),
         | 
| 138 | 
            +
                    x.stride(1),
         | 
| 139 | 
            +
                    s_y.stride(0),
         | 
| 140 | 
            +
                    s_y.stride(1),
         | 
| 141 | 
            +
                    SCALE_MIN_THRES=SCALE_MIN_THRES,
         | 
| 142 | 
            +
                )
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                s_y_max = s_y.max()
         | 
| 145 | 
            +
                qy, s_y_max, qy_t = fp8_division_transpose(
         | 
| 146 | 
            +
                    x, QB, fp8type, s_y_max, stochastic=stochastic
         | 
| 147 | 
            +
                )  # Stochastic Rounding happens here
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                # Recover 2D to 3D
         | 
| 150 | 
            +
                if batched:
         | 
| 151 | 
            +
                    qy = qy.reshape(BS, -1, qy.shape[-1])
         | 
| 152 | 
            +
                    if not transpose_output_2d:
         | 
| 153 | 
            +
                        qy_t = qy_t.reshape(BS, -1, qy_t.shape[-1])
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                return qy, s_y_max, qy_t  # y_t is expected to be 2D tensor
         | 
    	
        llava/model/coat/activation/real_quantization/_transpose.py
    ADDED
    
    | @@ -0,0 +1,121 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # 4 block
         | 
| 26 | 
            +
            import triton
         | 
| 27 | 
            +
            import triton.language as tl
         | 
| 28 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from .common import get_configs_io_block
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            """Quantize Operator"""
         | 
| 33 | 
            +
            """Input uses 1 * 16 group quantization"""
         | 
| 34 | 
            +
            """Output uses 1 * 16 group quantization"""
         | 
| 35 | 
            +
            """The input can be 2D or 3D, but the calculation is performed in 2D"""
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            @triton.autotune(
         | 
| 39 | 
            +
                configs=[] + get_configs_io_block(),
         | 
| 40 | 
            +
                key=[
         | 
| 41 | 
            +
                    "N",
         | 
| 42 | 
            +
                ],
         | 
| 43 | 
            +
            )
         | 
| 44 | 
            +
            @triton.jit
         | 
| 45 | 
            +
            def _fp8_transpose_kernel(
         | 
| 46 | 
            +
                output_ptr,  # output
         | 
| 47 | 
            +
                input_ptr,  # input
         | 
| 48 | 
            +
                M,
         | 
| 49 | 
            +
                N,  # shape
         | 
| 50 | 
            +
                input_stride_0,
         | 
| 51 | 
            +
                input_stride_1,  # input stride
         | 
| 52 | 
            +
                output_stride_0,
         | 
| 53 | 
            +
                output_stride_1,  # output stride
         | 
| 54 | 
            +
                BLOCK_M: tl.constexpr,
         | 
| 55 | 
            +
                BLOCK_N: tl.constexpr,
         | 
| 56 | 
            +
            ):  # CUDA block size
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                # Block PID
         | 
| 59 | 
            +
                pid = tl.program_id(0)
         | 
| 60 | 
            +
                NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
         | 
| 61 | 
            +
                pid_dim0 = pid // NUM_BLOCK_N
         | 
| 62 | 
            +
                pid_dim1 = pid % NUM_BLOCK_N
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                # pointers
         | 
| 65 | 
            +
                input_block_ptr = tl.make_block_ptr(
         | 
| 66 | 
            +
                    base=input_ptr,
         | 
| 67 | 
            +
                    shape=(M, N),
         | 
| 68 | 
            +
                    strides=(input_stride_0, input_stride_1),
         | 
| 69 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 70 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 71 | 
            +
                    order=(1, 0),
         | 
| 72 | 
            +
                )
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                input = tl.load(input_block_ptr)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                output = tl.trans(input)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                # pointers
         | 
| 79 | 
            +
                output_block_ptr = tl.make_block_ptr(
         | 
| 80 | 
            +
                    base=output_ptr,
         | 
| 81 | 
            +
                    shape=(N, M),
         | 
| 82 | 
            +
                    strides=(output_stride_0, output_stride_1),
         | 
| 83 | 
            +
                    offsets=(pid_dim1 * BLOCK_N, pid_dim0 * BLOCK_M),
         | 
| 84 | 
            +
                    block_shape=(BLOCK_N, BLOCK_M),
         | 
| 85 | 
            +
                    order=(1, 0),
         | 
| 86 | 
            +
                )
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                tl.store(output_block_ptr, output, boundary_check=(0, 1))
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            def fp8_transpose(x, transpose_output_2d=False):
         | 
| 92 | 
            +
                # Change batched 3D input to 2D
         | 
| 93 | 
            +
                batched = False
         | 
| 94 | 
            +
                if len(x.shape) == 3:
         | 
| 95 | 
            +
                    batched = True
         | 
| 96 | 
            +
                    BS = x.shape[0]
         | 
| 97 | 
            +
                    x = x.reshape(-1, x.shape[-1])
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                # defining the input and output tensor
         | 
| 100 | 
            +
                M, N = x.shape
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                y = torch.empty((N, M), dtype=x.dtype, device=x.device)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                _fp8_transpose_kernel[grid](
         | 
| 107 | 
            +
                    y,
         | 
| 108 | 
            +
                    x,
         | 
| 109 | 
            +
                    M,
         | 
| 110 | 
            +
                    N,
         | 
| 111 | 
            +
                    x.stride(0),
         | 
| 112 | 
            +
                    x.stride(1),
         | 
| 113 | 
            +
                    y.stride(0),
         | 
| 114 | 
            +
                    y.stride(1),
         | 
| 115 | 
            +
                )
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                # Recover 2D to 3D
         | 
| 118 | 
            +
                if batched and not transpose_output_2d:
         | 
| 119 | 
            +
                    y = y.reshape(BS, -1, y.shape[-1])
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                return y
         | 
    	
        llava/model/coat/activation/real_quantization/add_bwd.py
    ADDED
    
    | @@ -0,0 +1,205 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) 2025 NVIDIA CORPORATION.
         | 
| 2 | 
            +
            # Licensed under the MIT license.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
         | 
| 5 | 
            +
            # LICENSE is in incl_licenses directory.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # 4 block
         | 
| 26 | 
            +
            import triton
         | 
| 27 | 
            +
            import triton.language as tl
         | 
| 28 | 
            +
            from triton.language.extra.cuda import libdevice
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from ._division import fp8_division
         | 
| 31 | 
            +
            from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_str_to_fp8, get_configs_io_block
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            """Element-wise Add, useful for backward"""
         | 
| 34 | 
            +
            """Input1 (Residual) uses full-precision/BF16"""
         | 
| 35 | 
            +
            """Input2 (Backbone) uses full-precision/BF16"""
         | 
| 36 | 
            +
            """Output1 uses full-precision/BF16"""
         | 
| 37 | 
            +
            """Output2 uses per-tensor quantization"""
         | 
| 38 | 
            +
            """The input can be 2D or 3D, but the calculation is performed in 2D"""
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            @triton.autotune(
         | 
| 42 | 
            +
                configs=[] + get_configs_io_block(),
         | 
| 43 | 
            +
                key=[
         | 
| 44 | 
            +
                    "N",
         | 
| 45 | 
            +
                ],
         | 
| 46 | 
            +
            )
         | 
| 47 | 
            +
            @triton.heuristics(
         | 
| 48 | 
            +
                {
         | 
| 49 | 
            +
                    "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
         | 
| 50 | 
            +
                }
         | 
| 51 | 
            +
            )
         | 
| 52 | 
            +
            @triton.jit
         | 
| 53 | 
            +
            def _fp8_add_Ifp_Ifp_Ofp_Opt_kernel(
         | 
| 54 | 
            +
                output1_ptr,  # output
         | 
| 55 | 
            +
                output2_scale_ptr,
         | 
| 56 | 
            +
                input1_ptr,  # input
         | 
| 57 | 
            +
                input2_ptr,  # input
         | 
| 58 | 
            +
                M,
         | 
| 59 | 
            +
                N,
         | 
| 60 | 
            +
                SN,
         | 
| 61 | 
            +
                QB: tl.constexpr,
         | 
| 62 | 
            +
                fp8_max,  # shape
         | 
| 63 | 
            +
                input1_stride_0,
         | 
| 64 | 
            +
                input1_stride_1,  # input1 stride
         | 
| 65 | 
            +
                input2_stride_0,
         | 
| 66 | 
            +
                input2_stride_1,  # input2 stride
         | 
| 67 | 
            +
                output1_stride_0,
         | 
| 68 | 
            +
                output1_stride_1,  # output stride
         | 
| 69 | 
            +
                s_output2_stride_0,
         | 
| 70 | 
            +
                s_output2_stride_1,  # scale of output stride
         | 
| 71 | 
            +
                SCALE_MIN_THRES: tl.constexpr,
         | 
| 72 | 
            +
                BLOCK_M: tl.constexpr,
         | 
| 73 | 
            +
                BLOCK_N: tl.constexpr,
         | 
| 74 | 
            +
                BLOCK_SN: tl.constexpr,
         | 
| 75 | 
            +
            ):  # CUDA block size
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                # Block PID
         | 
| 78 | 
            +
                pid = tl.program_id(0)
         | 
| 79 | 
            +
                NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
         | 
| 80 | 
            +
                pid_dim0 = pid // NUM_BLOCK_N
         | 
| 81 | 
            +
                pid_dim1 = pid % NUM_BLOCK_N
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                # --- The first input ---
         | 
| 84 | 
            +
                input1_block_ptr = tl.make_block_ptr(
         | 
| 85 | 
            +
                    base=input1_ptr,
         | 
| 86 | 
            +
                    shape=(M, N),
         | 
| 87 | 
            +
                    strides=(input1_stride_0, input1_stride_1),
         | 
| 88 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 89 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 90 | 
            +
                    order=(1, 0),
         | 
| 91 | 
            +
                )
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                input1 = tl.load(input1_block_ptr)
         | 
| 94 | 
            +
                input1 = input1.to(tl.float32)
         | 
| 95 | 
            +
                input1 = tl.reshape(input1, (BLOCK_M, BLOCK_SN, QB))
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                # --- The second input ---
         | 
| 98 | 
            +
                input2_block_ptr = tl.make_block_ptr(
         | 
| 99 | 
            +
                    base=input2_ptr,
         | 
| 100 | 
            +
                    shape=(M, N),
         | 
| 101 | 
            +
                    strides=(input2_stride_0, input2_stride_1),
         | 
| 102 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 103 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 104 | 
            +
                    order=(1, 0),
         | 
| 105 | 
            +
                )
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                input2 = tl.load(input2_block_ptr)
         | 
| 108 | 
            +
                input2 = input2.to(tl.float32)
         | 
| 109 | 
            +
                input2 = tl.reshape(input2, (BLOCK_M, BLOCK_SN, QB))
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                # Actual Calculation of Add
         | 
| 112 | 
            +
                add_output = input1 + input2
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                # Quantize the grad 1 - Scale calculation
         | 
| 115 | 
            +
                abs_add_output = tl.abs(add_output)
         | 
| 116 | 
            +
                max_val = tl.max(abs_add_output, axis=2) + SCALE_MIN_THRES
         | 
| 117 | 
            +
                scale_output2 = max_val / fp8_max
         | 
| 118 | 
            +
                scale_output2 = tl.reshape(scale_output2, (BLOCK_M, BLOCK_SN, 1))
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                # save the fp add output
         | 
| 121 | 
            +
                fp_add_output = add_output.to(output1_ptr.type.element_ty)
         | 
| 122 | 
            +
                fp_add_output = tl.reshape(fp_add_output, (BLOCK_M, BLOCK_N))
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                # pointers
         | 
| 125 | 
            +
                output1_block_ptr = tl.make_block_ptr(
         | 
| 126 | 
            +
                    base=output1_ptr,
         | 
| 127 | 
            +
                    shape=(M, N),
         | 
| 128 | 
            +
                    strides=(output1_stride_0, output1_stride_1),
         | 
| 129 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
         | 
| 130 | 
            +
                    block_shape=(BLOCK_M, BLOCK_N),
         | 
| 131 | 
            +
                    order=(1, 0),
         | 
| 132 | 
            +
                )
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                tl.store(output1_block_ptr, fp_add_output, boundary_check=(0, 1))
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                # Quantize
         | 
| 137 | 
            +
                scale_output2 = scale_output2.to(output2_scale_ptr.type.element_ty)
         | 
| 138 | 
            +
                scale_output2 = tl.reshape(scale_output2, (BLOCK_M, BLOCK_SN))
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                # pointers
         | 
| 141 | 
            +
                scale_output2_ptr = tl.make_block_ptr(
         | 
| 142 | 
            +
                    base=output2_scale_ptr,
         | 
| 143 | 
            +
                    shape=(M, SN),
         | 
| 144 | 
            +
                    strides=(s_output2_stride_0, s_output2_stride_1),
         | 
| 145 | 
            +
                    offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
         | 
| 146 | 
            +
                    block_shape=(BLOCK_M, BLOCK_SN),
         | 
| 147 | 
            +
                    order=(1, 0),
         | 
| 148 | 
            +
                )
         | 
| 149 | 
            +
                tl.store(scale_output2_ptr, scale_output2, boundary_check=(0, 1))
         | 
| 150 | 
            +
             | 
| 151 | 
            +
             | 
| 152 | 
            +
            def fp8_add_Ifp_Ifp_Ofp_Opt(x1, x2, QB, fp8type, stochastic=False):  # suppose x1 is full precision or BF16
         | 
| 153 | 
            +
                # Change batched 3D input to 2D
         | 
| 154 | 
            +
                batched = False
         | 
| 155 | 
            +
                if len(x1.shape) == 3:
         | 
| 156 | 
            +
                    assert len(x2.shape) == 3
         | 
| 157 | 
            +
                    batched = True
         | 
| 158 | 
            +
                    BS = x1.shape[0]
         | 
| 159 | 
            +
                    x1 = x1.reshape(-1, x1.shape[-1])
         | 
| 160 | 
            +
                    x2 = x2.reshape(-1, x2.shape[-1])
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                # defining the input and output tensor
         | 
| 163 | 
            +
                M, N = x1.shape
         | 
| 164 | 
            +
                SN = N // QB
         | 
| 165 | 
            +
                assert x1.shape == x2.shape
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                if isinstance(fp8type, str):
         | 
| 168 | 
            +
                    fp8type = convert_str_to_fp8[fp8type]
         | 
| 169 | 
            +
                y1 = torch.empty_like(x1, dtype=torch.bfloat16)
         | 
| 170 | 
            +
                s_y2 = torch.empty((M, SN), dtype=torch.bfloat16, device=x2.device)
         | 
| 171 | 
            +
                fp8MaxValue = FP8_MAX_VALUE[fp8type]  # E4M3 and E5M2 have different max value
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                _fp8_add_Ifp_Ifp_Ofp_Opt_kernel[grid](
         | 
| 176 | 
            +
                    y1,
         | 
| 177 | 
            +
                    s_y2,
         | 
| 178 | 
            +
                    x1,
         | 
| 179 | 
            +
                    x2,
         | 
| 180 | 
            +
                    M,
         | 
| 181 | 
            +
                    N,
         | 
| 182 | 
            +
                    SN,
         | 
| 183 | 
            +
                    QB,
         | 
| 184 | 
            +
                    fp8MaxValue,
         | 
| 185 | 
            +
                    x1.stride(0),
         | 
| 186 | 
            +
                    x1.stride(1),
         | 
| 187 | 
            +
                    x2.stride(0),
         | 
| 188 | 
            +
                    x2.stride(1),
         | 
| 189 | 
            +
                    y1.stride(0),
         | 
| 190 | 
            +
                    y1.stride(1),
         | 
| 191 | 
            +
                    s_y2.stride(0),
         | 
| 192 | 
            +
                    s_y2.stride(1),
         | 
| 193 | 
            +
                    SCALE_MIN_THRES=SCALE_MIN_THRES,
         | 
| 194 | 
            +
                )
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                s_y2_max = s_y2.max()
         | 
| 197 | 
            +
                qy2, s_y2_max = fp8_division(y1, QB, fp8type, s_y2_max, stochastic=stochastic)  # reuse the floating point output y1
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                # Recover 2D to 3D
         | 
| 200 | 
            +
                if batched:
         | 
| 201 | 
            +
                    y1 = y1.reshape(BS, -1, y1.shape[-1])
         | 
| 202 | 
            +
                    qy2 = qy2.reshape(BS, -1, qy2.shape[-1])
         | 
| 203 | 
            +
                    s_y2 = s_y2.reshape(BS, -1, s_y2.shape[-1])
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                return y1, (qy2, s_y2_max, s_y2)
         |