Spaces:
Runtime error
Runtime error
| /*! | |
| * Copyright (c) 2017 Microsoft | |
| * Licensed under The MIT License [see LICENSE for details] | |
| * \file deformable_psroi_pooling.cu | |
| * \brief | |
| * \author Yi Li, Guodong Zhang, Jifeng Dai | |
| */ | |
| /***************** Adapted by Charles Shang *********************/ | |
| // modify from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/cuda/deform_psroi_pooling_cuda.cu | |
| using namespace at; | |
| for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ | |
| i < (n); \ | |
| i += blockDim.x * gridDim.x) | |
| const int CUDA_NUM_THREADS = 1024; | |
| inline int GET_BLOCKS(const int N) | |
| { | |
| return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS; | |
| } | |
| template <typename scalar_t> | |
| __device__ scalar_t bilinear_interp( | |
| const scalar_t *data, | |
| const scalar_t x, | |
| const scalar_t y, | |
| const int width, | |
| const int height) | |
| { | |
| int x1 = floor(x); | |
| int x2 = ceil(x); | |
| int y1 = floor(y); | |
| int y2 = ceil(y); | |
| scalar_t dist_x = (scalar_t)(x - x1); | |
| scalar_t dist_y = (scalar_t)(y - y1); | |
| scalar_t value11 = data[y1 * width + x1]; | |
| scalar_t value12 = data[y2 * width + x1]; | |
| scalar_t value21 = data[y1 * width + x2]; | |
| scalar_t value22 = data[y2 * width + x2]; | |
| scalar_t value = (1 - dist_x) * (1 - dist_y) * value11 + (1 - dist_x) * dist_y * value12 + dist_x * (1 - dist_y) * value21 + dist_x * dist_y * value22; | |
| return value; | |
| } | |
| template <typename scalar_t> | |
| __global__ void DeformablePSROIPoolForwardKernel( | |
| const int count, | |
| const scalar_t *bottom_data, | |
| const scalar_t spatial_scale, | |
| const int channels, | |
| const int height, const int width, | |
| const int pooled_height, const int pooled_width, | |
| const scalar_t *bottom_rois, const scalar_t *bottom_trans, | |
| const int no_trans, | |
| const scalar_t trans_std, | |
| const int sample_per_part, | |
| const int output_dim, | |
| const int group_size, | |
| const int part_size, | |
| const int num_classes, | |
| const int channels_each_class, | |
| scalar_t *top_data, | |
| scalar_t *top_count) | |
| { | |
| CUDA_KERNEL_LOOP(index, count) | |
| { | |
| // The output is in order (n, ctop, ph, pw) | |
| int pw = index % pooled_width; | |
| int ph = (index / pooled_width) % pooled_height; | |
| int ctop = (index / pooled_width / pooled_height) % output_dim; | |
| int n = index / pooled_width / pooled_height / output_dim; | |
| // [start, end) interval for spatial sampling | |
| const scalar_t *offset_bottom_rois = bottom_rois + n * 5; | |
| int roi_batch_ind = offset_bottom_rois[0]; | |
| scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5; | |
| scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5; | |
| scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; | |
| scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; | |
| // Force too small ROIs to be 1x1 | |
| scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0 | |
| scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1); | |
| // Compute w and h at bottom | |
| scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height); | |
| scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width); | |
| scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part); | |
| scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part); | |
| int part_h = floor((scalar_t)(ph) / pooled_height * part_size); | |
| int part_w = floor((scalar_t)(pw) / pooled_width * part_size); | |
| int class_id = ctop / channels_each_class; | |
| scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; | |
| scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; | |
| scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w; | |
| wstart += trans_x * roi_width; | |
| scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h; | |
| hstart += trans_y * roi_height; | |
| scalar_t sum = 0; | |
| int count = 0; | |
| int gw = floor((scalar_t)(pw)*group_size / pooled_width); | |
| int gh = floor((scalar_t)(ph)*group_size / pooled_height); | |
| gw = min(max(gw, 0), group_size - 1); | |
| gh = min(max(gh, 0), group_size - 1); | |
| const scalar_t *offset_bottom_data = bottom_data + (roi_batch_ind * channels) * height * width; | |
| for (int ih = 0; ih < sample_per_part; ih++) | |
| { | |
| for (int iw = 0; iw < sample_per_part; iw++) | |
| { | |
| scalar_t w = wstart + iw * sub_bin_size_w; | |
| scalar_t h = hstart + ih * sub_bin_size_h; | |
| // bilinear interpolation | |
| if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) | |
| { | |
| continue; | |
| } | |
| w = min(max(w, 0.), width - 1.); | |
| h = min(max(h, 0.), height - 1.); | |
| int c = (ctop * group_size + gh) * group_size + gw; | |
| scalar_t val = bilinear_interp(offset_bottom_data + c * height * width, w, h, width, height); | |
| sum += val; | |
| count++; | |
| } | |
| } | |
| top_data[index] = count == 0 ? (scalar_t)(0) : sum / count; | |
| top_count[index] = count; | |
| } | |
| } | |
| template <typename scalar_t> | |
| __global__ void DeformablePSROIPoolBackwardAccKernel( | |
| const int count, | |
| const scalar_t *top_diff, | |
| const scalar_t *top_count, | |
| const int num_rois, | |
| const scalar_t spatial_scale, | |
| const int channels, | |
| const int height, const int width, | |
| const int pooled_height, const int pooled_width, | |
| const int output_dim, | |
| scalar_t *bottom_data_diff, scalar_t *bottom_trans_diff, | |
| const scalar_t *bottom_data, | |
| const scalar_t *bottom_rois, | |
| const scalar_t *bottom_trans, | |
| const int no_trans, | |
| const scalar_t trans_std, | |
| const int sample_per_part, | |
| const int group_size, | |
| const int part_size, | |
| const int num_classes, | |
| const int channels_each_class) | |
| { | |
| CUDA_KERNEL_LOOP(index, count) | |
| { | |
| // The output is in order (n, ctop, ph, pw) | |
| int pw = index % pooled_width; | |
| int ph = (index / pooled_width) % pooled_height; | |
| int ctop = (index / pooled_width / pooled_height) % output_dim; | |
| int n = index / pooled_width / pooled_height / output_dim; | |
| // [start, end) interval for spatial sampling | |
| const scalar_t *offset_bottom_rois = bottom_rois + n * 5; | |
| int roi_batch_ind = offset_bottom_rois[0]; | |
| scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5; | |
| scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5; | |
| scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; | |
| scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; | |
| // Force too small ROIs to be 1x1 | |
| scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0 | |
| scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1); | |
| // Compute w and h at bottom | |
| scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height); | |
| scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width); | |
| scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part); | |
| scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part); | |
| int part_h = floor((scalar_t)(ph) / pooled_height * part_size); | |
| int part_w = floor((scalar_t)(pw) / pooled_width * part_size); | |
| int class_id = ctop / channels_each_class; | |
| scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; | |
| scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; | |
| scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w; | |
| wstart += trans_x * roi_width; | |
| scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h; | |
| hstart += trans_y * roi_height; | |
| if (top_count[index] <= 0) | |
| { | |
| continue; | |
| } | |
| scalar_t diff_val = top_diff[index] / top_count[index]; | |
| const scalar_t *offset_bottom_data = bottom_data + roi_batch_ind * channels * height * width; | |
| scalar_t *offset_bottom_data_diff = bottom_data_diff + roi_batch_ind * channels * height * width; | |
| int gw = floor((scalar_t)(pw)*group_size / pooled_width); | |
| int gh = floor((scalar_t)(ph)*group_size / pooled_height); | |
| gw = min(max(gw, 0), group_size - 1); | |
| gh = min(max(gh, 0), group_size - 1); | |
| for (int ih = 0; ih < sample_per_part; ih++) | |
| { | |
| for (int iw = 0; iw < sample_per_part; iw++) | |
| { | |
| scalar_t w = wstart + iw * sub_bin_size_w; | |
| scalar_t h = hstart + ih * sub_bin_size_h; | |
| // bilinear interpolation | |
| if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) | |
| { | |
| continue; | |
| } | |
| w = min(max(w, 0.), width - 1.); | |
| h = min(max(h, 0.), height - 1.); | |
| int c = (ctop * group_size + gh) * group_size + gw; | |
| // backward on feature | |
| int x0 = floor(w); | |
| int x1 = ceil(w); | |
| int y0 = floor(h); | |
| int y1 = ceil(h); | |
| scalar_t dist_x = w - x0, dist_y = h - y0; | |
| scalar_t q00 = (1 - dist_x) * (1 - dist_y); | |
| scalar_t q01 = (1 - dist_x) * dist_y; | |
| scalar_t q10 = dist_x * (1 - dist_y); | |
| scalar_t q11 = dist_x * dist_y; | |
| int bottom_index_base = c * height * width; | |
| atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x0, q00 * diff_val); | |
| atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x0, q01 * diff_val); | |
| atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x1, q10 * diff_val); | |
| atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x1, q11 * diff_val); | |
| if (no_trans) | |
| { | |
| continue; | |
| } | |
| scalar_t U00 = offset_bottom_data[bottom_index_base + y0 * width + x0]; | |
| scalar_t U01 = offset_bottom_data[bottom_index_base + y1 * width + x0]; | |
| scalar_t U10 = offset_bottom_data[bottom_index_base + y0 * width + x1]; | |
| scalar_t U11 = offset_bottom_data[bottom_index_base + y1 * width + x1]; | |
| scalar_t diff_x = (U11 * dist_y + U10 * (1 - dist_y) - U01 * dist_y - U00 * (1 - dist_y)) * trans_std * diff_val; | |
| diff_x *= roi_width; | |
| scalar_t diff_y = (U11 * dist_x + U01 * (1 - dist_x) - U10 * dist_x - U00 * (1 - dist_x)) * trans_std * diff_val; | |
| diff_y *= roi_height; | |
| atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w, diff_x); | |
| atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w, diff_y); | |
| } | |
| } | |
| } | |
| } | |
| void DeformablePSROIPoolForward(const at::Tensor data, | |
| const at::Tensor bbox, | |
| const at::Tensor trans, | |
| at::Tensor out, | |
| at::Tensor top_count, | |
| const int batch, | |
| const int channels, | |
| const int height, | |
| const int width, | |
| const int num_bbox, | |
| const int channels_trans, | |
| const int no_trans, | |
| const float spatial_scale, | |
| const int output_dim, | |
| const int group_size, | |
| const int pooled_size, | |
| const int part_size, | |
| const int sample_per_part, | |
| const float trans_std) | |
| { | |
| const int pooled_height = pooled_size; | |
| const int pooled_width = pooled_size; | |
| const int count = num_bbox * output_dim * pooled_height * pooled_width; | |
| const int num_classes = no_trans ? 1 : channels_trans / 2; | |
| const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; | |
| AT_DISPATCH_FLOATING_TYPES_AND_HALF( | |
| data.scalar_type(), "deformable_psroi_pool_forward", ([&] { | |
| const scalar_t *bottom_data = data.data_ptr<scalar_t>(); | |
| const scalar_t *bottom_rois = bbox.data_ptr<scalar_t>(); | |
| const scalar_t *bottom_trans = no_trans ? NULL : trans.data_ptr<scalar_t>(); | |
| scalar_t *top_data = out.data_ptr<scalar_t>(); | |
| scalar_t *top_count_data = top_count.data_ptr<scalar_t>(); | |
| DeformablePSROIPoolForwardKernel<<<GET_BLOCKS(count), CUDA_NUM_THREADS>>>( | |
| count, bottom_data, (scalar_t)spatial_scale, channels, height, width, pooled_height, pooled_width, | |
| bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part, output_dim, | |
| group_size, part_size, num_classes, channels_each_class, top_data, top_count_data); | |
| })); | |
| cudaError_t err = cudaGetLastError(); | |
| if (err != cudaSuccess) | |
| { | |
| printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err)); | |
| } | |
| } | |
| void DeformablePSROIPoolBackwardAcc(const at::Tensor out_grad, | |
| const at::Tensor data, | |
| const at::Tensor bbox, | |
| const at::Tensor trans, | |
| const at::Tensor top_count, | |
| at::Tensor in_grad, | |
| at::Tensor trans_grad, | |
| const int batch, | |
| const int channels, | |
| const int height, | |
| const int width, | |
| const int num_bbox, | |
| const int channels_trans, | |
| const int no_trans, | |
| const float spatial_scale, | |
| const int output_dim, | |
| const int group_size, | |
| const int pooled_size, | |
| const int part_size, | |
| const int sample_per_part, | |
| const float trans_std) | |
| { | |
| // LOG(INFO) << "DeformablePSROIPoolBackward"; | |
| const int num_rois = num_bbox; | |
| const int pooled_height = pooled_size; | |
| const int pooled_width = pooled_size; | |
| const int count = num_bbox * output_dim * pooled_height * pooled_width; | |
| const int num_classes = no_trans ? 1 : channels_trans / 2; | |
| const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; | |
| AT_DISPATCH_FLOATING_TYPES_AND_HALF( | |
| out_grad.scalar_type(), "deformable_psroi_pool_backward_acc", ([&] { | |
| const scalar_t *top_diff = out_grad.data_ptr<scalar_t>(); | |
| const scalar_t *bottom_data = data.data_ptr<scalar_t>(); | |
| const scalar_t *bottom_rois = bbox.data_ptr<scalar_t>(); | |
| const scalar_t *bottom_trans = no_trans ? NULL : trans.data_ptr<scalar_t>(); | |
| scalar_t *bottom_data_diff = in_grad.data_ptr<scalar_t>(); | |
| scalar_t *bottom_trans_diff = no_trans ? NULL : trans_grad.data_ptr<scalar_t>(); | |
| const scalar_t *top_count_data = top_count.data_ptr<scalar_t>(); | |
| DeformablePSROIPoolBackwardAccKernel<<<GET_BLOCKS(count), CUDA_NUM_THREADS>>>( | |
| count, top_diff, top_count_data, num_rois, (scalar_t)spatial_scale, channels, height, width, | |
| pooled_height, pooled_width, output_dim, bottom_data_diff, bottom_trans_diff, | |
| bottom_data, bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part, | |
| group_size, part_size, num_classes, channels_each_class); | |
| })); | |
| cudaError_t err = cudaGetLastError(); | |
| if (err != cudaSuccess) | |
| { | |
| printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err)); | |
| } | |
| } |