Spaces:
Runtime error
Runtime error
| import torch | |
| from maskrcnn_benchmark.config import cfg | |
| # transpose | |
| FLIP_LEFT_RIGHT = 0 | |
| FLIP_TOP_BOTTOM = 1 | |
| class Keypoints(object): | |
| def __init__(self, keypoints, size, mode=None): | |
| # FIXME remove check once we have better integration with device | |
| # in my version this would consistently return a CPU tensor | |
| device = keypoints.device if isinstance(keypoints, torch.Tensor) else torch.device('cpu') | |
| keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=device) | |
| num_keypoints = keypoints.shape[0] | |
| if num_keypoints: | |
| keypoints = keypoints.view(num_keypoints, -1, 3) | |
| # TODO should I split them? | |
| # self.visibility = keypoints[..., 2] | |
| self.keypoints = keypoints # [..., :2] | |
| self.size = size | |
| self.mode = mode | |
| self.extra_fields = {} | |
| def crop(self, box): | |
| raise NotImplementedError() | |
| def resize(self, size, *args, **kwargs): | |
| ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size)) | |
| ratio_w, ratio_h = ratios | |
| resized_data = self.keypoints.clone() | |
| resized_data[..., 0] *= ratio_w | |
| resized_data[..., 1] *= ratio_h | |
| keypoints = type(self)(resized_data, size, self.mode) | |
| for k, v in self.extra_fields.items(): | |
| keypoints.add_field(k, v) | |
| return keypoints | |
| def transpose(self, method): | |
| if method not in (FLIP_LEFT_RIGHT,): | |
| raise NotImplementedError( | |
| "Only FLIP_LEFT_RIGHT implemented") | |
| flip_inds = self.FLIP_INDS | |
| flipped_data = self.keypoints[:, flip_inds] | |
| width = self.size[0] | |
| TO_REMOVE = 1 | |
| # Flip x coordinates | |
| flipped_data[..., 0] = width - flipped_data[..., 0] - TO_REMOVE | |
| # Maintain COCO convention that if visibility == 0, then x, y = 0 | |
| inds = flipped_data[..., 2] == 0 | |
| flipped_data[inds] = 0 | |
| keypoints = type(self)(flipped_data, self.size, self.mode) | |
| for k, v in self.extra_fields.items(): | |
| keypoints.add_field(k, v) | |
| return keypoints | |
| def to(self, *args, **kwargs): | |
| keypoints = type(self)(self.keypoints.to(*args, **kwargs), self.size, self.mode) | |
| for k, v in self.extra_fields.items(): | |
| if hasattr(v, "to"): | |
| v = v.to(*args, **kwargs) | |
| keypoints.add_field(k, v) | |
| return keypoints | |
| def __getitem__(self, item): | |
| keypoints = type(self)(self.keypoints[item], self.size, self.mode) | |
| for k, v in self.extra_fields.items(): | |
| keypoints.add_field(k, v[item]) | |
| return keypoints | |
| def add_field(self, field, field_data): | |
| self.extra_fields[field] = field_data | |
| def get_field(self, field): | |
| return self.extra_fields[field] | |
| def __repr__(self): | |
| s = self.__class__.__name__ + '(' | |
| s += 'num_instances={}, '.format(len(self.keypoints)) | |
| s += 'image_width={}, '.format(self.size[0]) | |
| s += 'image_height={})'.format(self.size[1]) | |
| return s | |
| class PersonKeypoints(Keypoints): | |
| _NAMES = [ | |
| 'nose', | |
| 'left_eye', | |
| 'right_eye', | |
| 'left_ear', | |
| 'right_ear', | |
| 'left_shoulder', | |
| 'right_shoulder', | |
| 'left_elbow', | |
| 'right_elbow', | |
| 'left_wrist', | |
| 'right_wrist', | |
| 'left_hip', | |
| 'right_hip', | |
| 'left_knee', | |
| 'right_knee', | |
| 'left_ankle', | |
| 'right_ankle' | |
| ] | |
| _FLIP_MAP = { | |
| 'left_eye': 'right_eye', | |
| 'left_ear': 'right_ear', | |
| 'left_shoulder': 'right_shoulder', | |
| 'left_elbow': 'right_elbow', | |
| 'left_wrist': 'right_wrist', | |
| 'left_hip': 'right_hip', | |
| 'left_knee': 'right_knee', | |
| 'left_ankle': 'right_ankle' | |
| } | |
| def __init__(self, *args, **kwargs): | |
| super(PersonKeypoints, self).__init__(*args, **kwargs) | |
| if len(cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME)>0: | |
| self.NAMES = cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME | |
| self.FLIP_MAP = {l:r for l,r in PersonKeypoints._FLIP_MAP.items() if l in cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME} | |
| else: | |
| self.NAMES = PersonKeypoints._NAMES | |
| self.FLIP_MAP = PersonKeypoints._FLIP_MAP | |
| self.FLIP_INDS = self._create_flip_indices(self.NAMES, self.FLIP_MAP) | |
| self.CONNECTIONS = self._kp_connections(self.NAMES) | |
| def to_coco_format(self): | |
| coco_result = [] | |
| for i in range(self.keypoints.shape[0]): | |
| coco_kps = [0]*len(PersonKeypoints._NAMES)*3 | |
| for ki, name in enumerate(self.NAMES): | |
| coco_kps[3*PersonKeypoints._NAMES.index(name)] = self.keypoints[i,ki,0].item() | |
| coco_kps[3*PersonKeypoints._NAMES.index(name)+1] = self.keypoints[i,ki,1].item() | |
| coco_kps[3*PersonKeypoints._NAMES.index(name)+2] = self.keypoints[i,ki,2].item() | |
| coco_result.append(coco_kps) | |
| return coco_result | |
| def _create_flip_indices(self, names, flip_map): | |
| full_flip_map = flip_map.copy() | |
| full_flip_map.update({v: k for k, v in flip_map.items()}) | |
| flipped_names = [i if i not in full_flip_map else full_flip_map[i] for i in names] | |
| flip_indices = [names.index(i) for i in flipped_names] | |
| return torch.tensor(flip_indices) | |
| def _kp_connections(self, keypoints): | |
| CONNECTIONS = [ | |
| ['left_eye', 'right_eye'], | |
| ['left_eye', 'nose'], | |
| ['right_eye', 'nose'], | |
| ['right_eye', 'right_ear'], | |
| ['left_eye', 'left_ear'], | |
| ['right_shoulder', 'right_elbow'], | |
| ['right_elbow', 'right_wrist'], | |
| ['left_shoulder', 'left_elbow'], | |
| ['left_elbow', 'left_wrist'], | |
| ['right_hip', 'right_knee'], | |
| ['right_knee', 'right_ankle'], | |
| ['left_hip', 'left_knee'], | |
| ['left_knee', 'left_ankle'], | |
| ['right_shoulder', 'left_shoulder'], | |
| ['right_hip', 'left_hip'], | |
| ] | |
| kp_lines = [[keypoints.index(conn[0]), keypoints.index(conn[1])] for conn in CONNECTIONS | |
| if conn[0] in self.NAMES and conn[1] in self.NAMES] | |
| return kp_lines | |
| # TODO make this nicer, this is a direct translation from C2 (but removing the inner loop) | |
| def keypoints_to_heat_map(keypoints, rois, heatmap_size): | |
| if rois.numel() == 0: | |
| return rois.new().long(), rois.new().long() | |
| offset_x = rois[:, 0] | |
| offset_y = rois[:, 1] | |
| scale_x = heatmap_size / (rois[:, 2] - rois[:, 0]) | |
| scale_y = heatmap_size / (rois[:, 3] - rois[:, 1]) | |
| offset_x = offset_x[:, None] | |
| offset_y = offset_y[:, None] | |
| scale_x = scale_x[:, None] | |
| scale_y = scale_y[:, None] | |
| x = keypoints[..., 0] | |
| y = keypoints[..., 1] | |
| x_boundary_inds = x == rois[:, 2][:, None] | |
| y_boundary_inds = y == rois[:, 3][:, None] | |
| x = (x - offset_x) * scale_x | |
| x = x.floor().long() | |
| y = (y - offset_y) * scale_y | |
| y = y.floor().long() | |
| x[x_boundary_inds] = heatmap_size - 1 | |
| y[y_boundary_inds] = heatmap_size - 1 | |
| valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size) | |
| vis = keypoints[..., 2] > 0 | |
| valid = (valid_loc & vis).long() | |
| lin_ind = y * heatmap_size + x | |
| heatmaps = lin_ind * valid | |
| return heatmaps, valid |