Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,34 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import time
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
|
| 7 |
-
def define_model():
|
| 8 |
-
model = AutoModelForCausalLM.from_pretrained("facebook/opt-1.3b", torch_dtype=torch.float16).cuda()
|
| 9 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b", use_fast=False)
|
| 10 |
-
return model, tokenizer
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
| 15 |
-
generated_ids = model.generate(input_ids, num_return_sequences=num_sequences, max_length=max_length)
|
| 16 |
-
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 17 |
-
return answer
|
| 18 |
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
prompt= st.text_area('Your prompt here',
|
| 23 |
'''Hello, I'm am conscious and''')
|
| 24 |
|
| 25 |
-
answer = opt_model(prompt, model, tokenizer,)
|
| 26 |
#lst = ['ciao come stai sjfsbd dfhsdf fuahfuf feuhfu wefwu ']
|
| 27 |
lst = ' '.join(answer)
|
| 28 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import time
|
| 3 |
+
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
#@st.cache(allow_output_mutation=True)
|
| 7 |
+
#def define_model():
|
| 8 |
+
# model = AutoModelForCausalLM.from_pretrained("facebook/opt-1.3b", torch_dtype=torch.float16).cuda()
|
| 9 |
+
# tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b", use_fast=False)
|
| 10 |
+
# return model, tokenizer
|
| 11 |
+
|
| 12 |
+
from transformers import pipeline
|
| 13 |
|
| 14 |
+
generator = pipeline('text-generation', model="facebook/opt-1.3b")
|
| 15 |
+
answer = generator("Hello, I'm am conscious and")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
+
#@st.cache(allow_output_mutation=True)
|
| 19 |
+
#def opt_model(prompt, model, tokenizer, num_sequences = 1, max_length = 50):
|
| 20 |
+
# input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
| 21 |
+
# generated_ids = model.generate(input_ids, num_return_sequences=num_sequences, max_length=max_length)
|
| 22 |
+
# answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 23 |
+
# return answer
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
#model, tokenizer = define_model()
|
| 27 |
|
| 28 |
prompt= st.text_area('Your prompt here',
|
| 29 |
'''Hello, I'm am conscious and''')
|
| 30 |
|
| 31 |
+
#answer = opt_model(prompt, model, tokenizer,)
|
| 32 |
#lst = ['ciao come stai sjfsbd dfhsdf fuahfuf feuhfu wefwu ']
|
| 33 |
lst = ' '.join(answer)
|
| 34 |
|