Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| from torch import Tensor | |
| from torch.nn import functional as F | |
| import time | |
| def find_multiple(n: int, k: int) -> int: | |
| if n % k == 0: | |
| return n | |
| return n + k - (n % k) | |
| class AdaptiveLayerNorm(nn.Module): | |
| r"""Adaptive Layer Normalization""" | |
| def __init__(self, d_model, norm) -> None: | |
| super(AdaptiveLayerNorm, self).__init__() | |
| self.project_layer = nn.Linear(d_model, 2 * d_model) | |
| self.norm = norm | |
| self.d_model = d_model | |
| self.eps = self.norm.eps | |
| def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: | |
| if embedding is None: | |
| return self.norm(input) | |
| weight, bias = torch.split( | |
| self.project_layer(embedding), | |
| split_size_or_sections=self.d_model, | |
| dim=-1, | |
| ) | |
| return weight * self.norm(input) + bias | |
| class ModelArgs: | |
| block_size: int = 2048 | |
| vocab_size: int = 32000 | |
| n_layer: int = 32 | |
| n_head: int = 32 | |
| dim: int = 4096 | |
| intermediate_size: int = None | |
| n_local_heads: int = -1 | |
| head_dim: int = 64 | |
| rope_base: float = 10000 | |
| norm_eps: float = 1e-5 | |
| has_cross_attention: bool = False | |
| context_dim: int = 0 | |
| is_causal: bool = False | |
| dropout_rate: float = 0.1 | |
| attn_dropout_rate: float = 0.1 | |
| def __post_init__(self): | |
| if self.n_local_heads == -1: | |
| self.n_local_heads = self.n_head | |
| if self.intermediate_size is None: | |
| hidden_dim = 4 * self.dim | |
| n_hidden = int(2 * hidden_dim / 3) | |
| self.intermediate_size = find_multiple(n_hidden, 256) | |
| # self.head_dim = self.dim // self.n_head | |
| class Transformer(nn.Module): | |
| def __init__(self, config: ModelArgs) -> None: | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer)) | |
| self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
| self.max_batch_size = -1 | |
| self.max_seq_length = config.block_size | |
| freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim, | |
| self.config.rope_base) | |
| self.register_buffer("freqs_cis", freqs_cis) | |
| causal_mask = torch.tril( | |
| torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool) | |
| ) | |
| self.register_buffer("causal_mask", causal_mask) | |
| def forward(self, | |
| x: Tensor, | |
| c: Tensor, | |
| input_pos: Optional[Tensor] = None, | |
| mask: Optional[Tensor] = None, | |
| context: Optional[Tensor] = None, | |
| context_input_pos: Optional[Tensor] = None, | |
| cross_attention_mask: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| if mask is None: | |
| mask = self.causal_mask[:x.size(1), :x.size(1)] | |
| else: | |
| mask = mask[..., input_pos] | |
| freqs_cis = self.freqs_cis[input_pos] | |
| if context is not None: | |
| context_freqs_cis = self.freqs_cis[context_input_pos] | |
| else: | |
| context_freqs_cis = None | |
| skip_in_x_list = [] | |
| for i, layer in enumerate(self.layers): | |
| x = layer(x, c, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask) | |
| x = self.norm(x, c) | |
| return x | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, config: ModelArgs) -> None: | |
| super().__init__() | |
| self.attention = Attention(config) | |
| self.feed_forward = FeedForward(config) | |
| self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
| self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
| if config.has_cross_attention: | |
| self.has_cross_attention = True | |
| self.cross_attention = Attention(config, is_cross_attention=True) | |
| self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
| else: | |
| self.has_cross_attention = False | |
| def forward(self, | |
| x: Tensor, | |
| c: Tensor, | |
| freqs_cis: Tensor, | |
| mask: Tensor, | |
| context: Optional[Tensor] = None, | |
| context_freqs_cis: Optional[Tensor] = None, | |
| cross_attention_mask: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| #time_attn_start = time.time() | |
| h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask) | |
| #print(f"time take for attention of sequence length {x.shape[1]} is {time.time() - time_attn_start}") | |
| if self.has_cross_attention: | |
| h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, context, context_freqs_cis) | |
| out = h + self.feed_forward(self.ffn_norm(h, c)) | |
| return out | |
| class Attention(nn.Module): | |
| def __init__(self, config: ModelArgs, is_cross_attention: bool = False): | |
| super().__init__() | |
| assert config.dim % config.n_head == 0 | |
| total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim | |
| # key, query, value projections for all heads, but in a batch | |
| if is_cross_attention: | |
| self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False) | |
| self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False) | |
| else: | |
| self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) | |
| self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False) | |
| self.kv_cache = None | |
| self.n_head = config.n_head | |
| self.head_dim = config.head_dim | |
| self.n_local_heads = config.n_local_heads | |
| self.dim = config.dim | |
| self.attn_dropout_rate = config.attn_dropout_rate | |
| def forward(self, | |
| x: Tensor, | |
| freqs_cis: Tensor, | |
| mask: Tensor, | |
| context: Optional[Tensor] = None, | |
| context_freqs_cis: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| bsz, seqlen, _ = x.shape | |
| kv_size = self.n_local_heads * self.head_dim | |
| if context is None: | |
| q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1) | |
| context_seqlen = seqlen | |
| else: | |
| q = self.wq(x) | |
| k, v = self.wkv(context).split([kv_size, kv_size], dim=-1) | |
| context_seqlen = context.shape[1] | |
| q = q.view(bsz, seqlen, self.n_head, self.head_dim) | |
| k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) | |
| v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) | |
| q = apply_rotary_emb(q, freqs_cis) | |
| k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis) | |
| q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) | |
| k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
| v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
| y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=self.attn_dropout_rate if self.training else 0.0) | |
| y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head) | |
| y = self.wo(y) | |
| return y | |
| class FeedForward(nn.Module): | |
| def __init__(self, config: ModelArgs) -> None: | |
| super().__init__() | |
| self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
| self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
| self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward(self, x: Tensor) -> Tensor: | |
| return self.w2(self.dropout(F.silu(self.w1(x)) * self.w3(x))) | |
| class RMSNorm(nn.Module): | |
| def __init__(self, dim: int, eps: float = 1e-5): | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def _norm(self, x): | |
| return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
| def forward(self, x: Tensor) -> Tensor: | |
| output = self._norm(x.float()).type_as(x) | |
| return output * self.weight | |
| def precompute_freqs_cis( | |
| seq_len: int, n_elem: int, base: int = 10000, | |
| dtype: torch.dtype = torch.bfloat16 | |
| ) -> Tensor: | |
| freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) | |
| t = torch.arange(seq_len, device=freqs.device) | |
| freqs = torch.outer(t, freqs) | |
| freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
| cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) | |
| return cache.to(dtype=dtype) | |
| def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: | |
| xshaped = x.float().reshape(*x.shape[:-1], -1, 2) | |
| freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) | |
| x_out2 = torch.stack( | |
| [ | |
| xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
| xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
| ], | |
| -1, | |
| ) | |
| x_out2 = x_out2.flatten(3) | |
| return x_out2.type_as(x) | |