Spaces:
Running
on
Zero
Running
on
Zero
| import dataclasses | |
| import json | |
| import math | |
| from collections import OrderedDict | |
| from functools import partial, wraps | |
| from dataclasses import dataclass | |
| from pathlib import Path | |
| from typing import Optional, Tuple, List | |
| from tqdm import tqdm | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| from torch import Tensor | |
| from torch.nn import functional as F | |
| from torch.utils.checkpoint import checkpoint | |
| def find_multiple(n: int, k: int) -> int: | |
| if n % k == 0: | |
| return n | |
| return n + k - (n % k) | |
| def l2norm(t, groups = 1): | |
| t = rearrange(t, '... (g d) -> ... g d', g = groups) | |
| t = F.normalize(t, p = 2, dim = -1) | |
| return rearrange(t, '... g d -> ... (g d)') | |
| class BaseModelArgs: | |
| model_type: str = "base" | |
| vocab_size: int = 32000 | |
| n_layer: int = 32 | |
| n_head: int = 32 | |
| dim: int = 4096 | |
| intermediate_size: int = None | |
| n_local_heads: int = -1 | |
| head_dim: int = 64 | |
| rope_base: float = 10000 | |
| norm_eps: float = 1e-5 | |
| max_seq_len: int = 4096 | |
| dropout: float = 0.0 | |
| tie_word_embeddings: bool = True | |
| attention_qkv_bias: bool = False | |
| # Gradient checkpointing | |
| use_gradient_checkpointing: bool = False | |
| # Initialize the model | |
| initializer_range: float = 0.02 | |
| qk_norm: bool = False | |
| layerscale: bool = False | |
| def __post_init__(self): | |
| if self.n_local_heads == -1: | |
| self.n_local_heads = self.n_head | |
| if self.intermediate_size is None: | |
| hidden_dim = 4 * self.dim | |
| n_hidden = int(2 * hidden_dim / 3) | |
| self.intermediate_size = find_multiple(n_hidden, 256) | |
| self.head_dim = self.dim // self.n_head | |
| def save(self, path: str): | |
| with open(path, "w") as f: | |
| json.dump(self.__dict__, f, indent=4, sort_keys=True, ensure_ascii=False) | |
| class NaiveModelArgs(BaseModelArgs): | |
| model_type: str = "naive" | |
| class KVCache(nn.Module): | |
| def __init__( | |
| self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16 | |
| ): | |
| super().__init__() | |
| cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim) | |
| self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype)) | |
| self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype)) | |
| def update(self, input_pos, k_val, v_val): | |
| # input_pos: [S], k_val: [B, H, S, D] | |
| assert input_pos.shape[0] == k_val.shape[2] | |
| k_out = self.k_cache | |
| v_out = self.v_cache | |
| k_out[:, :, input_pos] = k_val | |
| v_out[:, :, input_pos] = v_val | |
| return k_out, v_out | |
| class TransformerForwardResult: | |
| token_logits: Tensor | |
| token_targets: Tensor | |
| class BaseTransformerForwardResult: | |
| logits: Tensor | |
| hidden_states: Tensor | |
| class BaseTransformer(nn.Module): | |
| def __init__( | |
| self, | |
| config: BaseModelArgs, | |
| init_weights: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| self.config = config | |
| # Slow transformer | |
| self.embeddings = nn.Embedding( | |
| config.vocab_size, | |
| config.dim, | |
| ) | |
| self.layers = nn.ModuleList( | |
| TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer) | |
| ) | |
| self.norm = RMSNorm(config.dim, eps=config.norm_eps) | |
| if self.config.tie_word_embeddings is False: | |
| self.output = nn.Linear( | |
| config.dim, | |
| config.vocab_size, | |
| bias=False, | |
| ) | |
| self.register_buffer( | |
| "freqs_cis", | |
| precompute_freqs_cis( | |
| config.max_seq_len, | |
| config.dim // config.n_head, | |
| config.rope_base, | |
| ), | |
| persistent=False, | |
| ) | |
| self.register_buffer( | |
| "causal_mask", | |
| torch.tril( | |
| torch.ones( | |
| config.max_seq_len, | |
| config.max_seq_len, | |
| dtype=torch.bool, | |
| ) | |
| ), | |
| persistent=False, | |
| ) | |
| self.output = nn.Linear( | |
| config.dim, | |
| config.vocab_size, | |
| bias=False, | |
| ) | |
| # For kv cache | |
| self.max_batch_size = -1 | |
| self.max_seq_len = -1 | |
| if init_weights: | |
| self.apply(self._init_weights) | |
| def setup_caches( | |
| self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16, device: torch.device = "cuda" | |
| ): | |
| if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size: | |
| return | |
| head_dim = self.config.dim // self.config.n_head | |
| max_seq_len = find_multiple(max_seq_len, 8) | |
| self.max_seq_len = max_seq_len | |
| self.max_batch_size = max_batch_size | |
| for b in self.layers: | |
| b.attention.kv_cache = KVCache( | |
| max_batch_size, | |
| max_seq_len, | |
| self.config.n_local_heads, | |
| head_dim, | |
| dtype=dtype, | |
| ).to(device) | |
| def embed_base(self, x: Tensor, x_lens: Tensor) -> Tensor: | |
| for bib in range(x.size(0)): | |
| x[bib, x_lens[bib]:] = self.config.vocab_size - 1 | |
| x_emb = self.embeddings(x) | |
| return x, x_emb | |
| def forward( | |
| self, | |
| inp: Tensor, | |
| key_padding_mask: Optional[Tensor] = None, | |
| input_pos: Optional[Tensor] = None, | |
| ) -> BaseTransformerForwardResult: | |
| seq_len = inp.size(1) | |
| # Here we want to merge the embeddings of the codebooks | |
| # x = self.embed(inp) | |
| x = inp.clone() | |
| if input_pos is None: | |
| freqs_cis = self.freqs_cis[:seq_len].repeat(inp.size(0), 1, 1, 1) | |
| else: | |
| freqs_cis = self.freqs_cis[input_pos] | |
| # Not that the causal mask here follows the definition of scaled_dot_product_attention | |
| # That is, FALSE means masked out | |
| # To maintain consistency, key_padding_mask use TRUE to mask out | |
| mask = None | |
| if key_padding_mask is not None: | |
| mask = self.causal_mask[None, None, :seq_len, :seq_len] # (B, N, Q, K) | |
| mask = mask & key_padding_mask[:, None, None, :].logical_not() | |
| for layer in self.layers: | |
| if self.config.use_gradient_checkpointing and self.training: | |
| x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True) | |
| else: | |
| x = layer(x, freqs_cis, mask) | |
| # We got slow_out here | |
| slow_out = self.norm(x) | |
| if self.config.tie_word_embeddings: | |
| token_logits = F.linear(slow_out, self.embeddings.weight) | |
| else: | |
| token_logits = self.output(slow_out) | |
| return BaseTransformerForwardResult( | |
| logits=token_logits, | |
| hidden_states=x, | |
| ) | |
| def forward_generate( | |
| self, | |
| inp: Tensor, | |
| input_pos: Optional[Tensor] = None, | |
| kv_pos: Optional[Tensor] = None, | |
| return_all: bool = False, | |
| ) -> BaseTransformerForwardResult: | |
| # This is used for generation, optimized for torch compile | |
| x = inp | |
| max_seq_len = self.max_seq_len | |
| mask = self.causal_mask[None, None, kv_pos, :max_seq_len] # (B, N, Q, K) | |
| freqs_cis = self.freqs_cis[input_pos] | |
| for layer in self.layers: | |
| x = layer(x, freqs_cis, mask, input_pos=kv_pos) | |
| x = x[:, -1:] | |
| # We got slow_out here | |
| slow_out = self.norm(x) | |
| token_logits = self.output(slow_out) | |
| return BaseTransformerForwardResult( | |
| logits=token_logits, | |
| hidden_states=x, | |
| ) | |
| def _init_weights(self, module): | |
| std = self.config.initializer_range | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| class NaiveTransformer(BaseTransformer): | |
| def __init__(self, config: NaiveModelArgs) -> None: | |
| super().__init__(config, init_weights=False) | |
| self.apply(self._init_weights) | |
| def forward( | |
| self, | |
| inp: Tensor, | |
| cond_lens: Tensor, | |
| target: Tensor, | |
| target_lens: Tensor, | |
| key_padding_mask: Optional[Tensor] = None, | |
| input_pos: Optional[Tensor] = None, | |
| ) -> TransformerForwardResult: | |
| parent_result = super().forward( | |
| inp=inp, | |
| key_padding_mask=key_padding_mask, | |
| input_pos=input_pos, | |
| ) | |
| token_logits = parent_result.logits | |
| # construct targets for token_logits | |
| token_targets = torch.zeros(token_logits.size(0), token_logits.size(1), dtype=torch.long, | |
| device=target.device) - 100 | |
| for bib in range(token_targets.size(0)): | |
| token_targets[bib, cond_lens[bib] + 1:cond_lens[bib] + target_lens[bib] + 1] = target[bib, :target_lens[bib]] | |
| token_targets[bib, cond_lens[bib] + target_lens[bib] + 1] = self.config.vocab_size - 1 | |
| return TransformerForwardResult( | |
| token_logits=token_logits, | |
| token_targets=token_targets, | |
| ) | |
| def infer_slow(self, inp: Tensor, input_pos: Optional[Tensor] = None): | |
| # no kv cache used | |
| parent_result = super().forward(inp, input_pos=input_pos) | |
| latent = parent_result.hidden_states[:, -1] | |
| base_logits = parent_result.logits[:, -1] | |
| base_sampled, _ = topk_sampling(base_logits, top_k=-1, top_p=1.0) | |
| return base_sampled | |
| def forward_generate( | |
| self, | |
| x: Tensor, | |
| input_pos: Optional[Tensor] = None, | |
| kv_pos: Optional[Tensor] = None, | |
| vq_masks: Optional[Tensor] = None, | |
| ) -> TransformerForwardResult: | |
| x = super().forward_generate(x, input_pos, kv_pos, vq_masks) | |
| return x | |
| class NaiveWrapper(nn.Module): | |
| def __init__(self, model: NaiveTransformer) -> None: | |
| super().__init__() | |
| self.model = model | |
| self.sep_token_emb = nn.Parameter(torch.randn(model.config.dim)) | |
| def setup_caches(self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16, device: torch.device = "cuda"): | |
| self.model.setup_caches(max_batch_size, max_seq_len, dtype, device) | |
| def forward(self, cond: Tensor, cond_lens: Tensor, x: Tensor, x_lens: Tensor) -> torch.Tensor: | |
| # style_emb = self.style_in(style).unsqueeze(1) # [B, 1, D] | |
| sep_token_emb = self.sep_token_emb.expand(x.size(0), 1, -1) | |
| _, x_emb = self.model.embed_base(x, x_lens) | |
| emb_seq_list = [] | |
| for i in range(x.size(0)): | |
| emb_seq = torch.cat([ | |
| sep_token_emb[i:i + 1], | |
| cond[i:i+1, :cond_lens[i]], | |
| sep_token_emb[i:i+1], | |
| x_emb[i:i+1, :x_lens[i]]], dim=1) | |
| emb_seq_list.append(emb_seq) | |
| max_len = max([emb_seq.size(1) for emb_seq in emb_seq_list]) | |
| emb_seq = torch.cat([ | |
| F.pad(emb_seq, (0, 0, 0, max_len - emb_seq.size(1)), value=0) | |
| for emb_seq in emb_seq_list | |
| ], dim=0) | |
| # input_pos = torch.arange(emb_seq.size(1), device=emb_seq.device).repeat(emb_seq.size(0), 1) | |
| input_pos = torch.zeros(emb_seq.size(0), emb_seq.size(1), device=emb_seq.device, dtype=torch.long) | |
| for i in range(x.size(0)): | |
| input_pos[i, :cond_lens[i] + 1] = torch.arange(cond_lens[i] + 1, device=emb_seq.device) | |
| input_pos[i, cond_lens[i] + 1: cond_lens[i] + x_lens[i] + 2] = torch.arange(x_lens[i] + 1, device=emb_seq.device) | |
| out = self.model(emb_seq, cond_lens, x, x_lens, input_pos=input_pos) | |
| loss = F.cross_entropy(out.token_logits.transpose(1, 2), out.token_targets.long(), ignore_index=-100) | |
| return loss | |
| def infer(self, cond: Tensor) -> torch.Tensor: | |
| sep_token_emb = self.sep_token_emb.expand(1, 1, -1) | |
| emb_seq = torch.cat([sep_token_emb, cond, sep_token_emb], dim=1) | |
| pred_codes = [] | |
| input_pos = torch.arange(cond.size(1) + 1, device=cond.device) | |
| for i in tqdm(range(4000)): | |
| input_pos = torch.cat([input_pos, torch.LongTensor([i]).to(cond.device)], dim=0) | |
| base = self.model.infer_slow(emb_seq, input_pos) | |
| if base == self.model.config.vocab_size - 1: | |
| break | |
| new_emb = self.model.embed_base(base, torch.LongTensor([1]).to(base.device))[1] | |
| emb_seq = torch.cat([emb_seq, new_emb], dim=1) | |
| pred_codes.append(base) | |
| return torch.cat(pred_codes, dim=-1) | |
| def generate( | |
| self, | |
| prompt_text, | |
| prompt_target, | |
| compiled_decode_fn = None, | |
| **sampling_kwargs, | |
| ): | |
| sep_token_emb = self.sep_token_emb.expand(1, 1, -1) | |
| emb_seq = torch.cat([sep_token_emb, prompt_text, sep_token_emb], dim=1) | |
| input_pos = torch.arange(prompt_text.size(1) + 1, device=emb_seq.device) | |
| input_pos = torch.cat([input_pos, torch.LongTensor([0]).to(emb_seq.device)]) | |
| prompt_target_emb = self.model.embed_base(prompt_target,torch.LongTensor([prompt_target.size(1)]).to(prompt_target.device))[1] | |
| emb_seq = torch.cat([emb_seq, prompt_target_emb], dim=1) | |
| input_pos = torch.cat([input_pos, torch.arange(prompt_target_emb.size(1)).to(input_pos.device) + 1]) | |
| pred_codes = [] | |
| kv_pos = torch.arange(emb_seq.size(1), device=emb_seq.device) | |
| next_tokens = self.decode_one_token_ar(emb_seq, input_pos, kv_pos, suppress_tokens=[self.model.config.vocab_size - 1], **sampling_kwargs) | |
| pred_base = next_tokens[0] | |
| pred_codes.append(pred_base) | |
| new_emb = self.model.embed_base(pred_base.unsqueeze(0), torch.LongTensor([1]).to(pred_base.device))[1] | |
| emb_seq = torch.cat([emb_seq, new_emb], dim=1) | |
| for _ in tqdm(range(4000)): | |
| suppress_eos = len(pred_codes) < 10 | |
| input_pos = input_pos[-1:] + 1 | |
| kv_pos = kv_pos[-1:] + 1 | |
| next_tokens = self.decode_one_token_ar( | |
| emb_seq[:, -1:].reshape(1, 1, -1), | |
| input_pos.reshape(1), | |
| kv_pos.reshape(1), | |
| previous_tokens=torch.cat(pred_codes), | |
| suppress_tokens=[self.model.config.vocab_size - 1] if suppress_eos else None, | |
| compiled_decode_fn=compiled_decode_fn, | |
| **sampling_kwargs) | |
| pred_base = next_tokens[0] | |
| if pred_base == self.model.config.vocab_size - 1: | |
| break | |
| pred_codes.append(pred_base.clone()) | |
| new_emb = self.model.embed_base(pred_base.unsqueeze(0), torch.LongTensor([1]).to(pred_base.device))[1] | |
| emb_seq = torch.cat([emb_seq, new_emb], dim=1) | |
| return torch.stack(pred_codes, dim=-1) | |
| def decode_one_token_ar( | |
| self, | |
| x: torch.Tensor, | |
| input_pos: torch.Tensor, | |
| kv_pos: torch.Tensor, | |
| previous_tokens: torch.Tensor = None, | |
| compiled_decode_fn = None, | |
| **sampling_kwargs, | |
| ) -> torch.Tensor: | |
| if compiled_decode_fn is not None: | |
| x = compiled_decode_fn(x, input_pos, kv_pos) | |
| else: | |
| x = self.model.forward_generate(x, input_pos, kv_pos) | |
| sampling_kwargs_main = sampling_kwargs.copy() | |
| codebooks = [ | |
| sample( | |
| x.logits, | |
| previous_tokens=( | |
| previous_tokens[0] if previous_tokens is not None else None | |
| ), | |
| **sampling_kwargs_main, | |
| )[0] | |
| ] | |
| codebooks = torch.stack(codebooks, dim=0) | |
| return codebooks | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None: | |
| super().__init__() | |
| self.attention = Attention(config, use_sdpa=use_sdpa) | |
| self.feed_forward = FeedForward(config) | |
| self.ffn_norm = RMSNorm(config.dim, config.norm_eps) | |
| self.attention_norm = RMSNorm(config.dim, config.norm_eps) | |
| def forward( | |
| self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None | |
| ) -> Tensor: | |
| h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos) | |
| out = h + self.feed_forward(self.ffn_norm(h)) | |
| return out | |
| class Attention(nn.Module): | |
| def __init__(self, config: BaseModelArgs, use_sdpa: bool = True): | |
| super().__init__() | |
| assert config.dim % config.n_head == 0 | |
| total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim | |
| # key, query, value projections for all heads, but in a batch | |
| self.wqkv = nn.Linear( | |
| config.dim, total_head_dim, bias=config.attention_qkv_bias | |
| ) | |
| self.wo = nn.Linear(config.dim, config.dim, bias=False) | |
| self.kv_cache = None | |
| self.dropout = config.dropout | |
| self.n_head = config.n_head | |
| self.head_dim = config.head_dim | |
| self.n_local_heads = config.n_local_heads | |
| self.dim = config.dim | |
| self.use_sdpa = use_sdpa | |
| self._register_load_state_dict_pre_hook(self.load_hook) | |
| self.qk_norm = config.qk_norm | |
| self.qk_norm_groups = 1 | |
| self.qk_norm_scale = 10 | |
| self.qk_norm_dim_scale = False | |
| self.qk_norm_q_scale = self.qk_norm_k_scale = 1 | |
| if self.qk_norm and self.qk_norm_dim_scale: | |
| self.qk_norm_q_scale = nn.Parameter(torch.ones(self.n_head, 1, self.head_dim)) | |
| self.qk_norm_k_scale = nn.Parameter(torch.ones(self.n_head, 1, self.head_dim)) | |
| def load_hook(self, state_dict, prefix, *args): | |
| if prefix + "wq.weight" in state_dict: | |
| wq = state_dict.pop(prefix + "wq.weight") | |
| wk = state_dict.pop(prefix + "wk.weight") | |
| wv = state_dict.pop(prefix + "wv.weight") | |
| state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) | |
| def forward( | |
| self, | |
| x: Tensor, | |
| freqs_cis: Tensor, | |
| mask: Tensor, | |
| input_pos: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| bsz, seqlen, _ = x.shape | |
| kv_size = self.n_local_heads * self.head_dim | |
| q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) | |
| q = q.view(bsz, seqlen, self.n_head, self.head_dim) | |
| k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
| v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
| if self.qk_norm: | |
| qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) | |
| q, k = map(qk_l2norm, (q, k)) | |
| scale = self.qk_norm_scale | |
| q = q * self.qk_norm_q_scale | |
| k = k * self.qk_norm_k_scale | |
| q = apply_rotary_emb(q, freqs_cis) | |
| k = apply_rotary_emb(k, freqs_cis) | |
| q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) | |
| if self.kv_cache is not None: | |
| k, v = self.kv_cache.update(input_pos, k, v) | |
| k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
| v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
| if self.use_sdpa: | |
| if mask is None: | |
| y = F.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| dropout_p=self.dropout if self.training else 0.0, | |
| is_causal=True, | |
| # No third party attn_mask here to use flash_attention | |
| ) | |
| else: | |
| y = F.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=mask, | |
| dropout_p=self.dropout if self.training else 0.0, | |
| ) | |
| else: | |
| y = self.eq_scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=mask, | |
| dropout_p=self.dropout if self.training else 0.0, | |
| ) | |
| y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) | |
| return self.wo(y) | |
| def eq_scaled_dot_product_attention( | |
| self, | |
| query, | |
| key, | |
| value, | |
| attn_mask=None, | |
| dropout_p=0.0, | |
| ) -> torch.Tensor: | |
| # This is a standard scaled dot product attention | |
| # It's low efficient, but it doesn't raise cuda error | |
| L, S = query.size(-2), key.size(-2) | |
| scale_factor = 1 / math.sqrt(query.size(-1)) | |
| attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device) | |
| if attn_mask is not None: | |
| if attn_mask.dtype == torch.bool: | |
| attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
| else: | |
| attn_bias += attn_mask | |
| attn_weight = query @ key.transpose(-2, -1) * scale_factor | |
| attn_weight += attn_bias | |
| attn_weight = torch.softmax(attn_weight, dim=-1) | |
| attn_weight = torch.dropout(attn_weight, dropout_p, train=True) | |
| return attn_weight @ value | |
| class FeedForward(nn.Module): | |
| def __init__(self, config: BaseModelArgs) -> None: | |
| super().__init__() | |
| self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
| self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
| self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) | |
| self.dropout = nn.Dropout(p=config.dropout) | |
| def forward(self, x: Tensor) -> Tensor: | |
| return self.w2(self.dropout(F.silu(self.w1(x)) * self.w3(x))) | |
| class RMSNorm(nn.Module): | |
| def __init__(self, dim: int, eps: float = 1e-5): | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def _norm(self, x): | |
| return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
| def forward(self, x: Tensor) -> Tensor: | |
| output = self._norm(x.float()).type_as(x) | |
| return output * self.weight | |
| def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor: | |
| freqs = 1.0 / ( | |
| base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem) | |
| ) | |
| t = torch.arange(seq_len, device=freqs.device) | |
| freqs = torch.outer(t, freqs) | |
| freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
| cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) | |
| return cache.to(dtype=torch.bfloat16) | |
| def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: | |
| xshaped = x.float().reshape(*x.shape[:-1], -1, 2) | |
| freqs_cis = freqs_cis.view(x.size(0), xshaped.size(1), 1, xshaped.size(3), 2) | |
| x_out2 = torch.stack( | |
| [ | |
| xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
| xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
| ], | |
| -1, | |
| ) | |
| x_out2 = x_out2.flatten(3) | |
| return x_out2.type_as(x) | |
| def top_k_top_p_filtering( | |
| logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1 | |
| ): | |
| """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
| Args: | |
| logits: logits distribution shape (batch size, vocabulary size) | |
| if top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
| if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
| Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
| Make sure we keep at least min_tokens_to_keep per batch example in the output | |
| From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
| """ | |
| if top_k > 0: | |
| top_k = min( | |
| max(top_k, min_tokens_to_keep), logits.size(-1) | |
| ) # Safety check | |
| # Remove all tokens with a probability less than the last token of the top-k | |
| indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
| logits[indices_to_remove] = filter_value | |
| if top_p < 1.0: | |
| sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
| cumulative_probs = torch.cumsum( | |
| F.softmax(sorted_logits, dim=-1), dim=-1 | |
| ) | |
| # Remove tokens with cumulative probability above the threshold (token with 0 are kept) | |
| sorted_indices_to_remove = cumulative_probs > top_p | |
| if min_tokens_to_keep > 1: | |
| # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) | |
| sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 | |
| # Shift the indices to the right to keep also the first token above the threshold | |
| sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |
| ..., :-1 | |
| ].clone() | |
| sorted_indices_to_remove[..., 0] = 0 | |
| # scatter sorted tensors to original indexing | |
| indices_to_remove = sorted_indices_to_remove.scatter( | |
| 1, sorted_indices, sorted_indices_to_remove | |
| ) | |
| logits[indices_to_remove] = filter_value | |
| return logits | |
| def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0): | |
| # temperature: (`optional`) float | |
| # The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. | |
| # top_k: (`optional`) int | |
| # The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50. | |
| # top_p: (`optional`) float | |
| # The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1. | |
| # Temperature (higher temperature => more likely to sample low probability tokens) | |
| if temperature != 1.0: | |
| logits = logits / temperature | |
| # Top-p/top-k filtering | |
| logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) | |
| # Sample | |
| token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) | |
| logprobs = F.log_softmax(logits.float(), dim=-1) | |
| current_logprobs = logprobs[torch.arange(logprobs.shape[0]), token.squeeze(1)] | |
| return token, current_logprobs | |
| def sample( | |
| logits, | |
| previous_tokens: Optional[torch.Tensor] = None, | |
| **sampling_kwargs, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| probs = logits_to_probs( | |
| logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs | |
| ) | |
| idx_next = multinomial_sample_one_no_sync(probs) | |
| return idx_next, probs | |
| def multinomial_sample_one_no_sync( | |
| probs_sort, | |
| ): # Does multinomial sampling without a cuda synchronization | |
| q = torch.empty_like(probs_sort).exponential_(1) | |
| return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) | |
| def logits_to_probs( | |
| logits, | |
| previous_tokens: Optional[torch.Tensor] = None, | |
| suppress_tokens: Optional[List[int]] = None, | |
| temperature: torch.Tensor = 0.7, | |
| top_p: torch.Tensor = 0.7, | |
| repetition_penalty: torch.Tensor = 1.5, | |
| ) -> torch.Tensor: | |
| # Apply repetition penalty | |
| if previous_tokens is not None: | |
| previous_tokens = previous_tokens.long() | |
| score = torch.gather(logits, dim=0, index=previous_tokens) | |
| score = torch.where( | |
| score < 0, score * repetition_penalty, score / repetition_penalty | |
| ) | |
| logits.scatter_(dim=0, index=previous_tokens, src=score) | |
| if suppress_tokens is not None: | |
| for token in suppress_tokens: | |
| logits[token] = -float("Inf") | |
| # Apply top-p sampling | |
| sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
| cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1) | |
| sorted_indices_to_remove = cum_probs > top_p | |
| sorted_indices_to_remove[0] = False # keep at least one option | |
| indices_to_remove = sorted_indices_to_remove.scatter( | |
| dim=0, index=sorted_indices, src=sorted_indices_to_remove | |
| ) | |
| logits = logits.masked_fill(indices_to_remove, -float("Inf")) | |
| logits = logits / max(temperature, 1e-5) | |
| probs = torch.nn.functional.softmax(logits, dim=-1) | |
| return probs | |