Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from torch import nn | |
| import math | |
| from modules.v2.dit_model import ModelArgs, Transformer | |
| from modules.commons import sequence_mask | |
| from torch.nn.utils import weight_norm | |
| def modulate(x, shift, scale): | |
| return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
| ################################################################################# | |
| # Embedding Layers for Timesteps and Class Labels # | |
| ################################################################################# | |
| class TimestepEmbedder(nn.Module): | |
| """ | |
| Embeds scalar timesteps into vector representations. | |
| """ | |
| def __init__(self, hidden_size, frequency_embedding_size=256): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, hidden_size, bias=True), | |
| ) | |
| self.frequency_embedding_size = frequency_embedding_size | |
| def timestep_embedding(t, dim, max_period=10000, scale=1000): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param t: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an (N, D) Tensor of positional embeddings. | |
| """ | |
| # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
| ).to(device=t.device) | |
| args = scale * t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| def forward(self, t): | |
| t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
| t_emb = self.mlp(t_freq) | |
| return t_emb | |
| class DiT(torch.nn.Module): | |
| def __init__( | |
| self, | |
| time_as_token, | |
| style_as_token, | |
| uvit_skip_connection, | |
| block_size, | |
| depth, | |
| num_heads, | |
| hidden_dim, | |
| in_channels, | |
| content_dim, | |
| style_encoder_dim, | |
| class_dropout_prob, | |
| dropout_rate, | |
| attn_dropout_rate, | |
| ): | |
| super(DiT, self).__init__() | |
| self.time_as_token = time_as_token | |
| self.style_as_token = style_as_token | |
| self.uvit_skip_connection = uvit_skip_connection | |
| model_args = ModelArgs( | |
| block_size=block_size, | |
| n_layer=depth, | |
| n_head=num_heads, | |
| dim=hidden_dim, | |
| head_dim=hidden_dim // num_heads, | |
| vocab_size=1, # we don't use this | |
| uvit_skip_connection=self.uvit_skip_connection, | |
| time_as_token=self.time_as_token, | |
| dropout_rate=dropout_rate, | |
| attn_dropout_rate=attn_dropout_rate, | |
| ) | |
| self.transformer = Transformer(model_args) | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels | |
| self.num_heads = num_heads | |
| self.x_embedder = weight_norm(nn.Linear(in_channels, hidden_dim, bias=True)) | |
| self.content_dim = content_dim # for continuous content | |
| self.cond_projection = nn.Linear(content_dim, hidden_dim, bias=True) # continuous content | |
| self.t_embedder = TimestepEmbedder(hidden_dim) | |
| self.final_mlp = nn.Sequential( | |
| nn.Linear(hidden_dim, hidden_dim), | |
| nn.SiLU(), | |
| nn.Linear(hidden_dim, in_channels), | |
| ) | |
| self.class_dropout_prob = class_dropout_prob | |
| self.cond_x_merge_linear = nn.Linear(hidden_dim + in_channels + in_channels, hidden_dim) | |
| self.style_in = nn.Linear(style_encoder_dim, hidden_dim) | |
| def forward(self, x, prompt_x, x_lens, t, style, cond): | |
| class_dropout = False | |
| content_dropout = False | |
| if self.training and torch.rand(1) < self.class_dropout_prob: | |
| class_dropout = True | |
| if self.training and torch.rand(1) < 0.5: | |
| content_dropout = True | |
| cond_in_module = self.cond_projection | |
| B, _, T = x.size() | |
| t1 = self.t_embedder(t) # (N, D) | |
| cond = cond_in_module(cond) | |
| x = x.transpose(1, 2) | |
| prompt_x = prompt_x.transpose(1, 2) | |
| x_in = torch.cat([x, prompt_x, cond], dim=-1) | |
| if class_dropout: | |
| x_in[..., self.in_channels:self.in_channels*2] = 0 | |
| if content_dropout: | |
| x_in[..., self.in_channels*2:] = 0 | |
| x_in = self.cond_x_merge_linear(x_in) # (N, T, D) | |
| style = self.style_in(style) | |
| style = torch.zeros_like(style) if class_dropout else style | |
| if self.style_as_token: | |
| x_in = torch.cat([style.unsqueeze(1), x_in], dim=1) | |
| if self.time_as_token: | |
| x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1) | |
| x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token, max_length=x_in.size(1)).to(x.device).unsqueeze(1) | |
| input_pos = torch.arange(x_in.size(1)).to(x.device) | |
| x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) | |
| x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded) | |
| x_res = x_res[:, 1:] if self.time_as_token else x_res | |
| x_res = x_res[:, 1:] if self.style_as_token else x_res | |
| x = self.final_mlp(x_res) | |
| x = x.transpose(1, 2) | |
| return x | |