Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ import yaml
|
|
| 7 |
from hf_utils import load_custom_model_from_hf
|
| 8 |
import numpy as np
|
| 9 |
from pydub import AudioSegment
|
| 10 |
-
import spaces
|
| 11 |
|
| 12 |
# Load model and configuration
|
| 13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -15,6 +14,8 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 15 |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
| 16 |
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
|
| 17 |
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
|
|
|
|
|
|
|
| 18 |
config = yaml.safe_load(open(dit_config_path, 'r'))
|
| 19 |
model_params = recursive_munch(config['model_params'])
|
| 20 |
model = build_model(model_params, stage='DiT')
|
|
@@ -79,25 +80,14 @@ mel_fn_args = {
|
|
| 79 |
"fmax": None,
|
| 80 |
"center": False
|
| 81 |
}
|
| 82 |
-
mel_fn_args_f0 = {
|
| 83 |
-
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
| 84 |
-
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
| 85 |
-
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
| 86 |
-
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
| 87 |
-
"sampling_rate": sr,
|
| 88 |
-
"fmin": 0,
|
| 89 |
-
"fmax": None,
|
| 90 |
-
"center": False
|
| 91 |
-
}
|
| 92 |
from modules.audio import mel_spectrogram
|
| 93 |
|
| 94 |
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
| 95 |
-
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
|
| 96 |
|
| 97 |
# f0 conditioned model
|
| 98 |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
| 99 |
-
"
|
| 100 |
-
"
|
| 101 |
|
| 102 |
config = yaml.safe_load(open(dit_config_path, 'r'))
|
| 103 |
model_params = recursive_munch(config['model_params'])
|
|
@@ -107,7 +97,7 @@ sr = config['preprocess_params']['sr']
|
|
| 107 |
|
| 108 |
# Load checkpoints
|
| 109 |
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path,
|
| 110 |
-
load_only_params=True, ignore_modules=[], is_distributed=False)
|
| 111 |
for key in model_f0:
|
| 112 |
model_f0[key].eval()
|
| 113 |
model_f0[key].to(device)
|
|
@@ -119,28 +109,46 @@ from modules.rmvpe import RMVPE
|
|
| 119 |
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
|
| 120 |
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
def adjust_f0_semitones(f0_sequence, n_semitones):
|
| 123 |
factor = 2 ** (n_semitones / 12)
|
| 124 |
return f0_sequence * factor
|
| 125 |
|
| 126 |
def crossfade(chunk1, chunk2, overlap):
|
| 127 |
-
fade_out = np.linspace(
|
| 128 |
-
fade_in = np.linspace(
|
| 129 |
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
|
| 130 |
return chunk2
|
| 131 |
|
| 132 |
# streaming and chunk processing related params
|
| 133 |
max_context_window = sr // hop_length * 30
|
| 134 |
-
overlap_frame_len =
|
| 135 |
overlap_wave_len = overlap_frame_len * hop_length
|
| 136 |
bitrate = "320k"
|
| 137 |
|
| 138 |
-
@spaces.GPU
|
| 139 |
@torch.no_grad()
|
| 140 |
@torch.inference_mode()
|
| 141 |
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
|
| 142 |
inference_module = model if not f0_condition else model_f0
|
| 143 |
mel_fn = to_mel if not f0_condition else to_mel_f0
|
|
|
|
|
|
|
| 144 |
# Load audio
|
| 145 |
source_audio = librosa.load(source, sr=sr)[0]
|
| 146 |
ref_audio = librosa.load(target, sr=sr)[0]
|
|
@@ -151,46 +159,35 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
| 151 |
|
| 152 |
# Resample
|
| 153 |
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
| 154 |
-
|
| 155 |
-
#
|
| 156 |
-
if
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
) = codec_encoder.quantizer(
|
| 170 |
-
z,
|
| 171 |
-
chunk,
|
| 172 |
-
)
|
| 173 |
-
S_alt = torch.cat([codes[1], codes[0]], dim=1)
|
| 174 |
-
S_alt_chunks.append(S_alt)
|
| 175 |
-
S_alt = torch.cat(S_alt_chunks, dim=-1)
|
| 176 |
-
|
| 177 |
-
# S_ori should be extracted in the same way
|
| 178 |
-
waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000)
|
| 179 |
-
waves_input = waves_24k.unsqueeze(1)
|
| 180 |
-
z = codec_encoder.encoder(waves_input)
|
| 181 |
-
(
|
| 182 |
-
quantized,
|
| 183 |
-
codes
|
| 184 |
-
) = codec_encoder.quantizer(
|
| 185 |
-
z,
|
| 186 |
-
waves_input,
|
| 187 |
)
|
| 188 |
-
|
|
|
|
| 189 |
else:
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
return_tensors="pt",
|
| 195 |
return_attention_mask=True,
|
| 196 |
sampling_rate=16000)
|
|
@@ -204,56 +201,31 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
| 204 |
return_dict=True,
|
| 205 |
)
|
| 206 |
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
| 207 |
-
S_alt = S_alt[:, :
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
|
| 233 |
-
if traversed_time == 0:
|
| 234 |
-
S_alt_list.append(S_alt)
|
| 235 |
-
else:
|
| 236 |
-
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
|
| 237 |
-
buffer = chunk[:, -16000 * overlapping_time:]
|
| 238 |
-
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
|
| 239 |
-
S_alt = torch.cat(S_alt_list, dim=1)
|
| 240 |
-
|
| 241 |
-
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
| 242 |
-
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
|
| 243 |
-
return_tensors="pt",
|
| 244 |
-
return_attention_mask=True)
|
| 245 |
-
ori_input_features = whisper_model._mask_input_features(
|
| 246 |
-
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
|
| 247 |
-
with torch.no_grad():
|
| 248 |
-
ori_outputs = whisper_model.encoder(
|
| 249 |
-
ori_input_features.to(whisper_model.encoder.dtype),
|
| 250 |
-
head_mask=None,
|
| 251 |
-
output_attentions=False,
|
| 252 |
-
output_hidden_states=False,
|
| 253 |
-
return_dict=True,
|
| 254 |
-
)
|
| 255 |
-
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
|
| 256 |
-
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
|
| 257 |
|
| 258 |
mel = mel_fn(source_audio.to(device).float())
|
| 259 |
mel2 = mel_fn(ref_audio.to(device).float())
|
|
@@ -269,10 +241,8 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
| 269 |
style2 = campplus_model(feat2.unsqueeze(0))
|
| 270 |
|
| 271 |
if f0_condition:
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
F0_ori = rmvpe.infer_from_audio(waves_16k[0], thred=0.03)
|
| 275 |
-
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03)
|
| 276 |
|
| 277 |
F0_ori = torch.from_numpy(F0_ori).to(device)[None]
|
| 278 |
F0_alt = torch.from_numpy(F0_alt).to(device)[None]
|
|
@@ -285,8 +255,6 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
| 285 |
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
|
| 286 |
median_log_f0_ori = torch.median(voiced_log_f0_ori)
|
| 287 |
median_log_f0_alt = torch.median(voiced_log_f0_alt)
|
| 288 |
-
# mean_log_f0_ori = torch.mean(voiced_log_f0_ori)
|
| 289 |
-
# mean_log_f0_alt = torch.mean(voiced_log_f0_alt)
|
| 290 |
|
| 291 |
# shift alt log f0 level to ori log f0 level
|
| 292 |
shifted_log_f0_alt = log_f0_alt.clone()
|
|
@@ -319,7 +287,7 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
| 319 |
mel2, style2, None, diffusion_steps,
|
| 320 |
inference_cfg_rate=inference_cfg_rate)
|
| 321 |
vc_target = vc_target[:, :, mel2.size(-1):]
|
| 322 |
-
vc_wave =
|
| 323 |
if processed_frames == 0:
|
| 324 |
if is_last_chunk:
|
| 325 |
output_wave = vc_wave[0].cpu().numpy()
|
|
|
|
| 7 |
from hf_utils import load_custom_model_from_hf
|
| 8 |
import numpy as np
|
| 9 |
from pydub import AudioSegment
|
|
|
|
| 10 |
|
| 11 |
# Load model and configuration
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 14 |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
| 15 |
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
|
| 16 |
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
|
| 17 |
+
# dit_checkpoint_path = "E:/DiT_epoch_00018_step_801000.pth"
|
| 18 |
+
# dit_config_path = "configs/config_dit_mel_seed_uvit_whisper_small_encoder_wavenet.yml"
|
| 19 |
config = yaml.safe_load(open(dit_config_path, 'r'))
|
| 20 |
model_params = recursive_munch(config['model_params'])
|
| 21 |
model = build_model(model_params, stage='DiT')
|
|
|
|
| 80 |
"fmax": None,
|
| 81 |
"center": False
|
| 82 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
from modules.audio import mel_spectrogram
|
| 84 |
|
| 85 |
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
|
|
|
| 86 |
|
| 87 |
# f0 conditioned model
|
| 88 |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
| 89 |
+
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ema.pth",
|
| 90 |
+
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
|
| 91 |
|
| 92 |
config = yaml.safe_load(open(dit_config_path, 'r'))
|
| 93 |
model_params = recursive_munch(config['model_params'])
|
|
|
|
| 97 |
|
| 98 |
# Load checkpoints
|
| 99 |
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path,
|
| 100 |
+
load_only_params=True, ignore_modules=[], is_distributed=False, load_ema=True)
|
| 101 |
for key in model_f0:
|
| 102 |
model_f0[key].eval()
|
| 103 |
model_f0[key].to(device)
|
|
|
|
| 109 |
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
|
| 110 |
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
| 111 |
|
| 112 |
+
mel_fn_args_f0 = {
|
| 113 |
+
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
| 114 |
+
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
| 115 |
+
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
| 116 |
+
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
| 117 |
+
"sampling_rate": sr,
|
| 118 |
+
"fmin": 0,
|
| 119 |
+
"fmax": None,
|
| 120 |
+
"center": False
|
| 121 |
+
}
|
| 122 |
+
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
|
| 123 |
+
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
|
| 124 |
+
|
| 125 |
+
# remove weight norm in the model and set to eval mode
|
| 126 |
+
bigvgan_44k_model.remove_weight_norm()
|
| 127 |
+
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
|
| 128 |
+
|
| 129 |
def adjust_f0_semitones(f0_sequence, n_semitones):
|
| 130 |
factor = 2 ** (n_semitones / 12)
|
| 131 |
return f0_sequence * factor
|
| 132 |
|
| 133 |
def crossfade(chunk1, chunk2, overlap):
|
| 134 |
+
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
|
| 135 |
+
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
|
| 136 |
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
|
| 137 |
return chunk2
|
| 138 |
|
| 139 |
# streaming and chunk processing related params
|
| 140 |
max_context_window = sr // hop_length * 30
|
| 141 |
+
overlap_frame_len = 16
|
| 142 |
overlap_wave_len = overlap_frame_len * hop_length
|
| 143 |
bitrate = "320k"
|
| 144 |
|
|
|
|
| 145 |
@torch.no_grad()
|
| 146 |
@torch.inference_mode()
|
| 147 |
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
|
| 148 |
inference_module = model if not f0_condition else model_f0
|
| 149 |
mel_fn = to_mel if not f0_condition else to_mel_f0
|
| 150 |
+
bigvgan_fn = bigvgan_model if not f0_condition else bigvgan_44k_model
|
| 151 |
+
sr = 22050 if not f0_condition else 44100
|
| 152 |
# Load audio
|
| 153 |
source_audio = librosa.load(source, sr=sr)[0]
|
| 154 |
ref_audio = librosa.load(target, sr=sr)[0]
|
|
|
|
| 159 |
|
| 160 |
# Resample
|
| 161 |
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
| 162 |
+
converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
| 163 |
+
# if source audio less than 30 seconds, whisper can handle in one forward
|
| 164 |
+
if converted_waves_16k.size(-1) <= 16000 * 30:
|
| 165 |
+
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
|
| 166 |
+
return_tensors="pt",
|
| 167 |
+
return_attention_mask=True,
|
| 168 |
+
sampling_rate=16000)
|
| 169 |
+
alt_input_features = whisper_model._mask_input_features(
|
| 170 |
+
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
| 171 |
+
alt_outputs = whisper_model.encoder(
|
| 172 |
+
alt_input_features.to(whisper_model.encoder.dtype),
|
| 173 |
+
head_mask=None,
|
| 174 |
+
output_attentions=False,
|
| 175 |
+
output_hidden_states=False,
|
| 176 |
+
return_dict=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
)
|
| 178 |
+
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
| 179 |
+
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
|
| 180 |
else:
|
| 181 |
+
overlapping_time = 5 # 5 seconds
|
| 182 |
+
S_alt_list = []
|
| 183 |
+
buffer = None
|
| 184 |
+
traversed_time = 0
|
| 185 |
+
while traversed_time < converted_waves_16k.size(-1):
|
| 186 |
+
if buffer is None: # first chunk
|
| 187 |
+
chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
|
| 188 |
+
else:
|
| 189 |
+
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
|
| 190 |
+
alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
|
| 191 |
return_tensors="pt",
|
| 192 |
return_attention_mask=True,
|
| 193 |
sampling_rate=16000)
|
|
|
|
| 201 |
return_dict=True,
|
| 202 |
)
|
| 203 |
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
| 204 |
+
S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
|
| 205 |
+
if traversed_time == 0:
|
| 206 |
+
S_alt_list.append(S_alt)
|
| 207 |
+
else:
|
| 208 |
+
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
|
| 209 |
+
buffer = chunk[:, -16000 * overlapping_time:]
|
| 210 |
+
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
|
| 211 |
+
S_alt = torch.cat(S_alt_list, dim=1)
|
| 212 |
+
|
| 213 |
+
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
| 214 |
+
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
|
| 215 |
+
return_tensors="pt",
|
| 216 |
+
return_attention_mask=True)
|
| 217 |
+
ori_input_features = whisper_model._mask_input_features(
|
| 218 |
+
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
|
| 219 |
+
with torch.no_grad():
|
| 220 |
+
ori_outputs = whisper_model.encoder(
|
| 221 |
+
ori_input_features.to(whisper_model.encoder.dtype),
|
| 222 |
+
head_mask=None,
|
| 223 |
+
output_attentions=False,
|
| 224 |
+
output_hidden_states=False,
|
| 225 |
+
return_dict=True,
|
| 226 |
+
)
|
| 227 |
+
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
|
| 228 |
+
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
mel = mel_fn(source_audio.to(device).float())
|
| 231 |
mel2 = mel_fn(ref_audio.to(device).float())
|
|
|
|
| 241 |
style2 = campplus_model(feat2.unsqueeze(0))
|
| 242 |
|
| 243 |
if f0_condition:
|
| 244 |
+
F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
|
| 245 |
+
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)
|
|
|
|
|
|
|
| 246 |
|
| 247 |
F0_ori = torch.from_numpy(F0_ori).to(device)[None]
|
| 248 |
F0_alt = torch.from_numpy(F0_alt).to(device)[None]
|
|
|
|
| 255 |
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
|
| 256 |
median_log_f0_ori = torch.median(voiced_log_f0_ori)
|
| 257 |
median_log_f0_alt = torch.median(voiced_log_f0_alt)
|
|
|
|
|
|
|
| 258 |
|
| 259 |
# shift alt log f0 level to ori log f0 level
|
| 260 |
shifted_log_f0_alt = log_f0_alt.clone()
|
|
|
|
| 287 |
mel2, style2, None, diffusion_steps,
|
| 288 |
inference_cfg_rate=inference_cfg_rate)
|
| 289 |
vc_target = vc_target[:, :, mel2.size(-1):]
|
| 290 |
+
vc_wave = bigvgan_fn(vc_target)[0]
|
| 291 |
if processed_frames == 0:
|
| 292 |
if is_last_chunk:
|
| 293 |
output_wave = vc_wave[0].cpu().numpy()
|