| import math | |
| import torch | |
| from torch.nn.utils import remove_weight_norm | |
| from torch.nn.utils.parametrizations import weight_norm | |
| from typing import Optional | |
| from rvc.lib.algorithm.generators import SineGen | |
| from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock1, ResBlock2 | |
| from rvc.lib.algorithm.commons import init_weights | |
| class SourceModuleHnNSF(torch.nn.Module): | |
| """ | |
| Source Module for harmonic-plus-noise excitation. | |
| Args: | |
| sample_rate (int): Sampling rate in Hz. | |
| harmonic_num (int, optional): Number of harmonics above F0. Defaults to 0. | |
| sine_amp (float, optional): Amplitude of sine source signal. Defaults to 0.1. | |
| add_noise_std (float, optional): Standard deviation of additive Gaussian noise. Defaults to 0.003. | |
| voiced_threshod (float, optional): Threshold to set voiced/unvoiced given F0. Defaults to 0. | |
| is_half (bool, optional): Whether to use half precision. Defaults to True. | |
| """ | |
| def __init__( | |
| self, | |
| sample_rate, | |
| harmonic_num=0, | |
| sine_amp=0.1, | |
| add_noise_std=0.003, | |
| voiced_threshod=0, | |
| is_half=True, | |
| ): | |
| super(SourceModuleHnNSF, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = add_noise_std | |
| self.is_half = is_half | |
| self.l_sin_gen = SineGen( | |
| sample_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod | |
| ) | |
| self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
| self.l_tanh = torch.nn.Tanh() | |
| def forward(self, x: torch.Tensor, upp: int = 1): | |
| sine_wavs, uv, _ = self.l_sin_gen(x, upp) | |
| sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype) | |
| sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
| return sine_merge, None, None | |
| class GeneratorNSF(torch.nn.Module): | |
| """ | |
| Generator for synthesizing audio using the NSF (Neural Source Filter) approach. | |
| Args: | |
| initial_channel (int): Number of channels in the initial convolutional layer. | |
| resblock (str): Type of residual block to use (1 or 2). | |
| resblock_kernel_sizes (list): Kernel sizes of the residual blocks. | |
| resblock_dilation_sizes (list): Dilation rates of the residual blocks. | |
| upsample_rates (list): Upsampling rates. | |
| upsample_initial_channel (int): Number of channels in the initial upsampling layer. | |
| upsample_kernel_sizes (list): Kernel sizes of the upsampling layers. | |
| gin_channels (int): Number of channels for the global conditioning input. | |
| sr (int): Sampling rate. | |
| is_half (bool, optional): Whether to use half precision. Defaults to False. | |
| """ | |
| def __init__( | |
| self, | |
| initial_channel, | |
| resblock, | |
| resblock_kernel_sizes, | |
| resblock_dilation_sizes, | |
| upsample_rates, | |
| upsample_initial_channel, | |
| upsample_kernel_sizes, | |
| gin_channels, | |
| sr, | |
| is_half=False, | |
| ): | |
| super(GeneratorNSF, self).__init__() | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.num_upsamples = len(upsample_rates) | |
| self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates)) | |
| self.m_source = SourceModuleHnNSF( | |
| sample_rate=sr, harmonic_num=0, is_half=is_half | |
| ) | |
| self.conv_pre = torch.nn.Conv1d( | |
| initial_channel, upsample_initial_channel, 7, 1, padding=3 | |
| ) | |
| resblock_cls = ResBlock1 if resblock == "1" else ResBlock2 | |
| self.ups = torch.nn.ModuleList() | |
| self.noise_convs = torch.nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
| current_channel = upsample_initial_channel // (2 ** (i + 1)) | |
| self.ups.append( | |
| weight_norm( | |
| torch.nn.ConvTranspose1d( | |
| upsample_initial_channel // (2**i), | |
| current_channel, | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| stride_f0 = ( | |
| math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1 | |
| ) | |
| self.noise_convs.append( | |
| torch.nn.Conv1d( | |
| 1, | |
| current_channel, | |
| kernel_size=stride_f0 * 2 if stride_f0 > 1 else 1, | |
| stride=stride_f0, | |
| padding=(stride_f0 // 2 if stride_f0 > 1 else 0), | |
| ) | |
| ) | |
| self.resblocks = torch.nn.ModuleList( | |
| [ | |
| resblock_cls(upsample_initial_channel // (2 ** (i + 1)), k, d) | |
| for i in range(len(self.ups)) | |
| for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes) | |
| ] | |
| ) | |
| self.conv_post = torch.nn.Conv1d( | |
| current_channel, 1, 7, 1, padding=3, bias=False | |
| ) | |
| self.ups.apply(init_weights) | |
| if gin_channels != 0: | |
| self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
| self.upp = math.prod(upsample_rates) | |
| self.lrelu_slope = LRELU_SLOPE | |
| def forward(self, x, f0, g: Optional[torch.Tensor] = None): | |
| har_source, _, _ = self.m_source(f0, self.upp) | |
| har_source = har_source.transpose(1, 2) | |
| x = self.conv_pre(x) | |
| if g is not None: | |
| x = x + self.cond(g) | |
| for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)): | |
| x = torch.nn.functional.leaky_relu(x, self.lrelu_slope) | |
| x = ups(x) | |
| x = x + noise_convs(har_source) | |
| xs = sum( | |
| [ | |
| resblock(x) | |
| for j, resblock in enumerate(self.resblocks) | |
| if j in range(i * self.num_kernels, (i + 1) * self.num_kernels) | |
| ] | |
| ) | |
| x = xs / self.num_kernels | |
| x = torch.nn.functional.leaky_relu(x) | |
| x = torch.tanh(self.conv_post(x)) | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| def __prepare_scriptable__(self): | |
| for l in self.ups: | |
| for hook in l._forward_pre_hooks.values(): | |
| if ( | |
| hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
| and hook.__class__.__name__ == "WeightNorm" | |
| ): | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| for hook in l._forward_pre_hooks.values(): | |
| if ( | |
| hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
| and hook.__class__.__name__ == "WeightNorm" | |
| ): | |
| remove_weight_norm(l) | |
| return self | |