| import os | |
| import glob | |
| import torch | |
| import numpy as np | |
| from scipy.io.wavfile import read | |
| from collections import OrderedDict | |
| import matplotlib.pylab as plt | |
| MATPLOTLIB_FLAG = False | |
| def replace_keys_in_dict(d, old_key_part, new_key_part): | |
| """ | |
| Replaces keys in a dictionary recursively. | |
| Args: | |
| d (dict or OrderedDict): The dictionary to update. | |
| old_key_part (str): The part of the key to replace. | |
| new_key_part (str): The new part of the key. | |
| """ | |
| if isinstance(d, OrderedDict): | |
| updated_dict = OrderedDict() | |
| else: | |
| updated_dict = {} | |
| for key, value in d.items(): | |
| if isinstance(key, str): | |
| new_key = key.replace(old_key_part, new_key_part) | |
| else: | |
| new_key = key | |
| if isinstance(value, dict): | |
| value = replace_keys_in_dict(value, old_key_part, new_key_part) | |
| updated_dict[new_key] = value | |
| return updated_dict | |
| def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1): | |
| """ | |
| Loads a checkpoint from a file. | |
| Args: | |
| checkpoint_path (str): Path to the checkpoint file. | |
| model (torch.nn.Module): The model to load the checkpoint into. | |
| optimizer (torch.optim.Optimizer, optional): The optimizer to load the state from. Defaults to None. | |
| load_opt (int, optional): Whether to load the optimizer state. Defaults to 1. | |
| """ | |
| assert os.path.isfile(checkpoint_path) | |
| checkpoint_old_dict = torch.load(checkpoint_path, map_location="cpu") | |
| checkpoint_new_version_path = os.path.join( | |
| os.path.dirname(checkpoint_path), | |
| f"{os.path.splitext(os.path.basename(checkpoint_path))[0]}_new_version.pth", | |
| ) | |
| torch.save( | |
| replace_keys_in_dict( | |
| replace_keys_in_dict( | |
| checkpoint_old_dict, ".weight_v", ".parametrizations.weight.original1" | |
| ), | |
| ".weight_g", | |
| ".parametrizations.weight.original0", | |
| ), | |
| checkpoint_new_version_path, | |
| ) | |
| os.remove(checkpoint_path) | |
| os.rename(checkpoint_new_version_path, checkpoint_path) | |
| checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
| saved_state_dict = checkpoint_dict["model"] | |
| if hasattr(model, "module"): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| new_state_dict = {} | |
| for k, v in state_dict.items(): | |
| try: | |
| new_state_dict[k] = saved_state_dict[k] | |
| if saved_state_dict[k].shape != state_dict[k].shape: | |
| print( | |
| "shape-%s-mismatch|need-%s|get-%s", | |
| k, | |
| state_dict[k].shape, | |
| saved_state_dict[k].shape, | |
| ) | |
| raise KeyError | |
| except: | |
| print("%s is not in the checkpoint", k) | |
| new_state_dict[k] = v | |
| if hasattr(model, "module"): | |
| model.module.load_state_dict(new_state_dict, strict=False) | |
| else: | |
| model.load_state_dict(new_state_dict, strict=False) | |
| iteration = checkpoint_dict["iteration"] | |
| learning_rate = checkpoint_dict["learning_rate"] | |
| if optimizer is not None and load_opt == 1: | |
| optimizer.load_state_dict(checkpoint_dict["optimizer"]) | |
| print(f"Loaded checkpoint '{checkpoint_path}' (epoch {iteration})") | |
| return model, optimizer, learning_rate, iteration | |
| def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
| """ | |
| Saves a checkpoint to a file. | |
| Args: | |
| model (torch.nn.Module): The model to save. | |
| optimizer (torch.optim.Optimizer): The optimizer to save the state of. | |
| learning_rate (float): The current learning rate. | |
| iteration (int): The current iteration. | |
| checkpoint_path (str): The path to save the checkpoint to. | |
| """ | |
| print(f"Saved model '{checkpoint_path}' (epoch {iteration})") | |
| checkpoint_old_version_path = os.path.join( | |
| os.path.dirname(checkpoint_path), | |
| f"{os.path.splitext(os.path.basename(checkpoint_path))[0]}_old_version.pth", | |
| ) | |
| if hasattr(model, "module"): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| torch.save( | |
| { | |
| "model": state_dict, | |
| "iteration": iteration, | |
| "optimizer": optimizer.state_dict(), | |
| "learning_rate": learning_rate, | |
| }, | |
| checkpoint_path, | |
| ) | |
| checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu")) | |
| torch.save( | |
| replace_keys_in_dict( | |
| replace_keys_in_dict( | |
| checkpoint, ".parametrizations.weight.original1", ".weight_v" | |
| ), | |
| ".parametrizations.weight.original0", | |
| ".weight_g", | |
| ), | |
| checkpoint_old_version_path, | |
| ) | |
| os.remove(checkpoint_path) | |
| os.rename(checkpoint_old_version_path, checkpoint_path) | |
| def summarize( | |
| writer, | |
| global_step, | |
| scalars={}, | |
| histograms={}, | |
| images={}, | |
| audios={}, | |
| audio_sample_rate=22050, | |
| ): | |
| """ | |
| Summarizes training statistics and logs them to a TensorBoard writer. | |
| Args: | |
| writer (SummaryWriter): The TensorBoard writer. | |
| global_step (int): The current global step. | |
| scalars (dict, optional): Dictionary of scalar values to log. Defaults to {}. | |
| histograms (dict, optional): Dictionary of histogram values to log. Defaults to {}. | |
| images (dict, optional): Dictionary of image values to log. Defaults to {}. | |
| audios (dict, optional): Dictionary of audio values to log. Defaults to {}. | |
| audio_sample_rate (int, optional): Sampling rate of the audio data. Defaults to 22050. | |
| """ | |
| for k, v in scalars.items(): | |
| writer.add_scalar(k, v, global_step) | |
| for k, v in histograms.items(): | |
| writer.add_histogram(k, v, global_step) | |
| for k, v in images.items(): | |
| writer.add_image(k, v, global_step, dataformats="HWC") | |
| for k, v in audios.items(): | |
| writer.add_audio(k, v, global_step, audio_sample_rate) | |
| def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
| """ | |
| Returns the path to the latest checkpoint file in a directory. | |
| Args: | |
| dir_path (str): The directory to search for checkpoints. | |
| regex (str, optional): The regular expression to match checkpoint files. Defaults to "G_*.pth". | |
| """ | |
| f_list = glob.glob(os.path.join(dir_path, regex)) | |
| f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) | |
| x = f_list[-1] | |
| return x | |
| def plot_spectrogram_to_numpy(spectrogram): | |
| """ | |
| Plots a spectrogram to a NumPy array. | |
| Args: | |
| spectrogram (numpy.ndarray): The spectrogram to plot. | |
| """ | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| fig, ax = plt.subplots(figsize=(10, 2)) | |
| im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
| plt.colorbar(im, ax=ax) | |
| plt.xlabel("Frames") | |
| plt.ylabel("Channels") | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def load_wav_to_torch(full_path): | |
| """ | |
| Loads a WAV file into a PyTorch tensor. | |
| Args: | |
| full_path (str): The path to the WAV file. | |
| """ | |
| sample_rate, data = read(full_path) | |
| return torch.FloatTensor(data.astype(np.float32)), sample_rate | |
| def load_filepaths_and_text(filename, split="|"): | |
| """ | |
| Loads filepaths and text from a file. | |
| Args: | |
| filename (str): The path to the file. | |
| split (str, optional): The delimiter used to split the lines. Defaults to "|". | |
| """ | |
| with open(filename, encoding="utf-8") as f: | |
| filepaths_and_text = [line.strip().split(split) for line in f] | |
| return filepaths_and_text | |
| class HParams: | |
| """ | |
| A class for storing and accessing hyperparameters. | |
| Attributes: | |
| **kwargs: Keyword arguments representing hyperparameters and their values. | |
| """ | |
| def __init__(self, **kwargs): | |
| """ | |
| Initializes an HParams object. | |
| Args: | |
| **kwargs: Keyword arguments representing hyperparameters and their values. | |
| """ | |
| for k, v in kwargs.items(): | |
| if type(v) == dict: | |
| v = HParams(**v) | |
| self[k] = v | |
| def keys(self): | |
| """ | |
| Returns a list of hyperparameter keys. | |
| """ | |
| return self.__dict__.keys() | |
| def items(self): | |
| """ | |
| Returns a list of (key, value) pairs for each hyperparameter. | |
| """ | |
| return self.__dict__.items() | |
| def values(self): | |
| """ | |
| Returns a list of hyperparameter values. | |
| """ | |
| return self.__dict__.values() | |
| def __len__(self): | |
| """ | |
| Returns the number of hyperparameters. | |
| """ | |
| return len(self.__dict__) | |
| def __getitem__(self, key): | |
| """ | |
| Gets the value of a hyperparameter. | |
| """ | |
| return getattr(self, key) | |
| def __setitem__(self, key, value): | |
| """ | |
| Sets the value of a hyperparameter. | |
| """ | |
| return setattr(self, key, value) | |
| def __contains__(self, key): | |
| """ | |
| Checks if a hyperparameter key exists. | |
| """ | |
| return key in self.__dict__ | |
| def __repr__(self): | |
| """ | |
| Returns a string representation of the HParams object. | |
| """ | |
| return self.__dict__.__repr__() | |