Update app.py
Browse files
app.py
CHANGED
|
@@ -175,13 +175,15 @@ with col:
|
|
| 175 |
# st.markdown("Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
|
| 176 |
# st.markdown("If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
|
| 177 |
|
| 178 |
-
st.markdown("<div style='border-radius:5px;background-color:#F3F4F6;padding-top:8px;padding-bottom:8px;padding-left:14px;padding-right:14px'>\
|
| 179 |
Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies. <br>\
|
| 180 |
To use this tool: upload your image, select the scale of interest, make a prediction, and decompose it into individual cavities! <br>\
|
| 181 |
Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background \
|
| 182 |
(<a href='https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html'>dmfilth</a>). <br><br>\
|
| 183 |
If you use this tool for your research, please cite <a href='https://arxiv.org/abs/2304.05457'>Plšek et al. 2023</a>\
|
| 184 |
-
</div>", unsafe_allow_html=True)
|
|
|
|
|
|
|
| 185 |
|
| 186 |
# _, col_1, col_2, col_3, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])
|
| 187 |
|
|
|
|
| 175 |
# st.markdown("Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
|
| 176 |
# st.markdown("If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
|
| 177 |
|
| 178 |
+
st.markdown("<div style='border-radius:5px;background-color:#F3F4F6;padding-top:8px;padding-bottom:8px;padding-left:14px;padding-right:14px;line-height:140%;font-size:120%'>\
|
| 179 |
Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies. <br>\
|
| 180 |
To use this tool: upload your image, select the scale of interest, make a prediction, and decompose it into individual cavities! <br>\
|
| 181 |
Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background \
|
| 182 |
(<a href='https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html'>dmfilth</a>). <br><br>\
|
| 183 |
If you use this tool for your research, please cite <a href='https://arxiv.org/abs/2304.05457'>Plšek et al. 2023</a>\
|
| 184 |
+
</div><br>", unsafe_allow_html=True)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
|
| 188 |
# _, col_1, col_2, col_3, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])
|
| 189 |
|