Update app.py
Browse files
app.py
CHANGED
|
@@ -24,8 +24,6 @@ from sklearn.cluster import DBSCAN
|
|
| 24 |
# Streamlit
|
| 25 |
import streamlit as st
|
| 26 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
| 27 |
-
st.set_page_config(page_title="Cavity Detection Tool", layout="wide")
|
| 28 |
-
# st.title("Cavity Detection Tool")
|
| 29 |
|
| 30 |
# Define function to plot the uploaded image
|
| 31 |
def plot_image(image, scale):
|
|
@@ -58,7 +56,7 @@ def plot_decomposed(decomposed):
|
|
| 58 |
plt.axis('off')
|
| 59 |
with colC: st.pyplot()
|
| 60 |
|
| 61 |
-
#
|
| 62 |
def cut(data0, wcs0, scale=1):
|
| 63 |
shape = data0.shape[0]
|
| 64 |
x0 = shape / 2
|
|
@@ -81,7 +79,7 @@ def cut(data0, wcs0, scale=1):
|
|
| 81 |
|
| 82 |
return data, wcs
|
| 83 |
|
| 84 |
-
|
| 85 |
@st.cache
|
| 86 |
def cut_n_predict(data, wcs, scale):
|
| 87 |
data, wcs = cut(data, wcs, scale=scale)
|
|
@@ -96,13 +94,13 @@ def cut_n_predict(data, wcs, scale):
|
|
| 96 |
|
| 97 |
return y_pred, wcs
|
| 98 |
|
| 99 |
-
# Define function to
|
| 100 |
@st.cache
|
| 101 |
def decompose_cavity(pred, th2=0.7, amin=10):
|
| 102 |
X, Y = pred.nonzero()
|
| 103 |
data = np.array([X,Y]).reshape(2, -1)
|
| 104 |
|
| 105 |
-
# DBSCAN
|
| 106 |
try: clusters = DBSCAN(eps=1.0, min_samples=3).fit(data.T).labels_
|
| 107 |
except: clusters = []
|
| 108 |
|
|
@@ -115,14 +113,16 @@ def decompose_cavity(pred, th2=0.7, amin=10):
|
|
| 115 |
xi, yi = X[b], Y[b]
|
| 116 |
img[xi, yi] = pred[xi, yi]
|
| 117 |
|
| 118 |
-
#
|
| 119 |
if not (img > th2).any(): continue
|
| 120 |
|
| 121 |
-
#
|
| 122 |
if np.sum(img) <= amin: continue
|
| 123 |
|
| 124 |
cavities.append(img)
|
| 125 |
|
|
|
|
|
|
|
| 126 |
ccd = CCDData(pred, unit="adu", wcs=wcs)
|
| 127 |
ccd.write(f"predictions/predicted.fits", overwrite=True)
|
| 128 |
image_decomposed = np.zeros((128,128))
|
|
@@ -133,24 +133,14 @@ def decompose_cavity(pred, th2=0.7, amin=10):
|
|
| 133 |
|
| 134 |
return image_decomposed
|
| 135 |
|
| 136 |
-
#
|
| 137 |
-
|
| 138 |
-
# shutil.make_archive("predictions.zip", 'zip', "predictions")
|
| 139 |
-
# with open('predictions.zip', 'rb') as f:
|
| 140 |
-
# res = f.read()
|
| 141 |
-
# return res
|
| 142 |
-
|
| 143 |
bordersize = 0.6
|
| 144 |
_, col, _ = st.columns([bordersize, 3, bordersize])
|
| 145 |
|
| 146 |
-
# if os.path.exists("pred.npy"): os.system("rm pred.npy")
|
| 147 |
-
# os.system("rm -r predictions")
|
| 148 |
-
# os.system("rm predictions.zip Views")
|
| 149 |
-
os.system("mkdir -p predictions")
|
| 150 |
-
|
| 151 |
with col:
|
| 152 |
-
|
| 153 |
-
|
| 154 |
st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies.")
|
| 155 |
st.markdown("To use this tool: upload your image, select the scale of interest, and make a prediction!")
|
| 156 |
st.markdown("Input images should be centred at the centre of the galaxy and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
|
|
@@ -170,61 +160,46 @@ if uploaded_file is not None:
|
|
| 170 |
col1.subheader("Input image")
|
| 171 |
col3.subheader("Prediction")
|
| 172 |
col5.subheader("Decomposed")
|
| 173 |
-
col6.subheader("")
|
| 174 |
|
| 175 |
with col1:
|
| 176 |
-
|
| 177 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -26px;}</style>""", unsafe_allow_html=True)
|
| 178 |
max_scale = int(data.shape[0] // 128)
|
| 179 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
| 180 |
scale = int(scale.split("x")[0]) // 128
|
| 181 |
-
|
| 182 |
-
with col3:
|
| 183 |
-
detect = st.button('Detect')
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
# Make two columns for plots
|
| 189 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
| 190 |
|
| 191 |
image = np.log10(data+1)
|
| 192 |
plot_image(image, scale)
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
with col4:
|
| 196 |
-
st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
|
| 197 |
-
threshold = st.slider("", 0.0, 1.0, 0.0, 0.05, label_visibility="hidden")
|
| 198 |
|
| 199 |
if detect or threshold:
|
| 200 |
y_pred, wcs = cut_n_predict(data, wcs, scale)
|
| 201 |
|
| 202 |
-
#
|
| 203 |
-
|
| 204 |
-
# try: y_pred = np.load("pred.npy")
|
| 205 |
# except: y_pred = np.zeros((128,128))
|
| 206 |
-
try: _ = y_pred
|
| 207 |
-
except: y_pred = np.zeros((128,128))
|
| 208 |
y_pred_th = np.where(y_pred > threshold, y_pred, 0)
|
| 209 |
-
# np.save("thresh.npy", y_pred)
|
| 210 |
|
| 211 |
plot_prediction(y_pred_th)
|
| 212 |
|
| 213 |
if decompose:
|
| 214 |
-
# y_pred = np.load("thresh.npy")
|
| 215 |
|
| 216 |
image_decomposed = decompose_cavity(y_pred_th)
|
| 217 |
|
| 218 |
-
#
|
| 219 |
-
#
|
| 220 |
-
# image_decomposed = np.zeros((128,128))
|
| 221 |
-
# for i, cav in enumerate(cavs):
|
| 222 |
-
# ccd = CCDData(cav, unit="adu", wcs=wcs)
|
| 223 |
-
# ccd.write(f"predictions/predicted_{i+1}.fits", overwrite=True)
|
| 224 |
-
# image_decomposed += (i+1) * np.where(cav > 0, 1, 0)
|
| 225 |
-
|
| 226 |
-
try: _ = image_decomposed
|
| 227 |
-
except: image_decomposed = np.zeros((128,128))
|
| 228 |
plot_decomposed(image_decomposed)
|
| 229 |
|
| 230 |
with col6:
|
|
@@ -235,4 +210,4 @@ if uploaded_file is not None:
|
|
| 235 |
st.markdown("")
|
| 236 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
| 237 |
fname = uploaded_file.name.strip(".fits")
|
| 238 |
-
download = st.download_button(label="Download", data=res, file_name=f'
|
|
|
|
| 24 |
# Streamlit
|
| 25 |
import streamlit as st
|
| 26 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# Define function to plot the uploaded image
|
| 29 |
def plot_image(image, scale):
|
|
|
|
| 56 |
plt.axis('off')
|
| 57 |
with colC: st.pyplot()
|
| 58 |
|
| 59 |
+
# Define function to cut input image and rebin it to 128x128 pixels
|
| 60 |
def cut(data0, wcs0, scale=1):
|
| 61 |
shape = data0.shape[0]
|
| 62 |
x0 = shape / 2
|
|
|
|
| 79 |
|
| 80 |
return data, wcs
|
| 81 |
|
| 82 |
+
# Define function to apply cutting and produce a prediction
|
| 83 |
@st.cache
|
| 84 |
def cut_n_predict(data, wcs, scale):
|
| 85 |
data, wcs = cut(data, wcs, scale=scale)
|
|
|
|
| 94 |
|
| 95 |
return y_pred, wcs
|
| 96 |
|
| 97 |
+
# Define function to decompose prediction into individual cavities
|
| 98 |
@st.cache
|
| 99 |
def decompose_cavity(pred, th2=0.7, amin=10):
|
| 100 |
X, Y = pred.nonzero()
|
| 101 |
data = np.array([X,Y]).reshape(2, -1)
|
| 102 |
|
| 103 |
+
# DBSCAN clustering
|
| 104 |
try: clusters = DBSCAN(eps=1.0, min_samples=3).fit(data.T).labels_
|
| 105 |
except: clusters = []
|
| 106 |
|
|
|
|
| 113 |
xi, yi = X[b], Y[b]
|
| 114 |
img[xi, yi] = pred[xi, yi]
|
| 115 |
|
| 116 |
+
# Thresholding #2
|
| 117 |
if not (img > th2).any(): continue
|
| 118 |
|
| 119 |
+
# Minimal area
|
| 120 |
if np.sum(img) <= amin: continue
|
| 121 |
|
| 122 |
cavities.append(img)
|
| 123 |
|
| 124 |
+
# Save raw and decomposed predictions to predictions folder
|
| 125 |
+
os.system("mkdir -p predictions")
|
| 126 |
ccd = CCDData(pred, unit="adu", wcs=wcs)
|
| 127 |
ccd.write(f"predictions/predicted.fits", overwrite=True)
|
| 128 |
image_decomposed = np.zeros((128,128))
|
|
|
|
| 133 |
|
| 134 |
return image_decomposed
|
| 135 |
|
| 136 |
+
# Use wide layout and create columns
|
| 137 |
+
st.set_page_config(page_title="Cavity Detection Tool", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
bordersize = 0.6
|
| 139 |
_, col, _ = st.columns([bordersize, 3, bordersize])
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
with col:
|
| 142 |
+
# Create heading and description
|
| 143 |
+
st.markdown("# Cavity Detection Tool")
|
| 144 |
st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies.")
|
| 145 |
st.markdown("To use this tool: upload your image, select the scale of interest, and make a prediction!")
|
| 146 |
st.markdown("Input images should be centred at the centre of the galaxy and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
|
|
|
|
| 160 |
col1.subheader("Input image")
|
| 161 |
col3.subheader("Prediction")
|
| 162 |
col5.subheader("Decomposed")
|
| 163 |
+
# col6.subheader("")
|
| 164 |
|
| 165 |
with col1:
|
|
|
|
| 166 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -26px;}</style>""", unsafe_allow_html=True)
|
| 167 |
max_scale = int(data.shape[0] // 128)
|
| 168 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
| 169 |
scale = int(scale.split("x")[0]) // 128
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
# Detect button
|
| 172 |
+
with col3: detect = st.button('Detect')
|
| 173 |
+
|
| 174 |
+
# Threshold slider
|
| 175 |
+
with col4:
|
| 176 |
+
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
|
| 177 |
+
threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05) #, label_visibility="hidden")
|
| 178 |
+
|
| 179 |
+
# Decompose button
|
| 180 |
+
with col5: decompose = st.button('Decompose')
|
| 181 |
|
| 182 |
# Make two columns for plots
|
| 183 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
| 184 |
|
| 185 |
image = np.log10(data+1)
|
| 186 |
plot_image(image, scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
if detect or threshold:
|
| 189 |
y_pred, wcs = cut_n_predict(data, wcs, scale)
|
| 190 |
|
| 191 |
+
# try: _ = y_pred
|
|
|
|
|
|
|
| 192 |
# except: y_pred = np.zeros((128,128))
|
|
|
|
|
|
|
| 193 |
y_pred_th = np.where(y_pred > threshold, y_pred, 0)
|
|
|
|
| 194 |
|
| 195 |
plot_prediction(y_pred_th)
|
| 196 |
|
| 197 |
if decompose:
|
|
|
|
| 198 |
|
| 199 |
image_decomposed = decompose_cavity(y_pred_th)
|
| 200 |
|
| 201 |
+
# try: _ = image_decomposed
|
| 202 |
+
# except: image_decomposed = np.zeros((128,128))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
plot_decomposed(image_decomposed)
|
| 204 |
|
| 205 |
with col6:
|
|
|
|
| 210 |
st.markdown("")
|
| 211 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
| 212 |
fname = uploaded_file.name.strip(".fits")
|
| 213 |
+
download = st.download_button(label="Download", data=res, file_name=f'{fname}_{int(scale*128)}.zip', mime="application/octet-stream")
|