Update app.py
Browse files
app.py
CHANGED
|
@@ -192,7 +192,7 @@ with col_1:
|
|
| 192 |
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'], on_change=reset_threshold)
|
| 193 |
|
| 194 |
with col_2:
|
| 195 |
-
st.markdown("<br style='margin:
|
| 196 |
example = st.button("Example")
|
| 197 |
|
| 198 |
# with col_2:
|
|
@@ -212,10 +212,11 @@ with col_2:
|
|
| 212 |
if uploaded_file is not None:
|
| 213 |
data, wcs = load_file(uploaded_file)
|
| 214 |
os.system(f'mkdir -p {uploaded_file.name.strip(".fits")}')
|
|
|
|
| 215 |
|
| 216 |
if example:
|
| 217 |
-
|
| 218 |
-
data, wcs = load_file("
|
| 219 |
|
| 220 |
if "data" not in locals():
|
| 221 |
data = np.zeros((128,128))
|
|
@@ -249,7 +250,7 @@ with col5: decompose = st.button('Decompose', key="decompose")
|
|
| 249 |
# Make two columns for plots
|
| 250 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
| 251 |
|
| 252 |
-
if uploaded_file is not None:
|
| 253 |
# NORMALIZE IMAGE
|
| 254 |
MIN = np.min(np.where(data == 0, 1, data))
|
| 255 |
if MIN < 1: data = data / MIN
|
|
@@ -258,7 +259,6 @@ if uploaded_file is not None:
|
|
| 258 |
plot_image(image, scale)
|
| 259 |
|
| 260 |
if detect or threshold or st.session_state.get("decompose", False):
|
| 261 |
-
fname = uploaded_file.name.strip(".fits")
|
| 262 |
|
| 263 |
y_pred, wcs = cut_n_predict(data, wcs, scale)
|
| 264 |
|
|
|
|
| 192 |
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'], on_change=reset_threshold)
|
| 193 |
|
| 194 |
with col_2:
|
| 195 |
+
st.markdown("<br style='margin:18px 0'>", unsafe_allow_html=True)
|
| 196 |
example = st.button("Example")
|
| 197 |
|
| 198 |
# with col_2:
|
|
|
|
| 212 |
if uploaded_file is not None:
|
| 213 |
data, wcs = load_file(uploaded_file)
|
| 214 |
os.system(f'mkdir -p {uploaded_file.name.strip(".fits")}')
|
| 215 |
+
fname = uploaded_file.name.strip(".fits")
|
| 216 |
|
| 217 |
if example:
|
| 218 |
+
fname = "NGC4649_example"
|
| 219 |
+
data, wcs = load_file(f"{fname}.fits")
|
| 220 |
|
| 221 |
if "data" not in locals():
|
| 222 |
data = np.zeros((128,128))
|
|
|
|
| 250 |
# Make two columns for plots
|
| 251 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
| 252 |
|
| 253 |
+
if (uploaded_file is not None) or example:
|
| 254 |
# NORMALIZE IMAGE
|
| 255 |
MIN = np.min(np.where(data == 0, 1, data))
|
| 256 |
if MIN < 1: data = data / MIN
|
|
|
|
| 259 |
plot_image(image, scale)
|
| 260 |
|
| 261 |
if detect or threshold or st.session_state.get("decompose", False):
|
|
|
|
| 262 |
|
| 263 |
y_pred, wcs = cut_n_predict(data, wcs, scale)
|
| 264 |
|